地震作用下土钉支护边坡动力分析与抗震设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西北地区大多为黄土山区,在高等级公路、铁路的修建和城市的建设都需要对边坡进行支挡。而我国又是地震高发区,地质条件复杂,很多公路和铁路不可避免地穿越高烈度地震带。所以,研究在地震作用下土钉支护边坡的动力分析及抗震设计方法是很有必要的。更何况,土钉支护边坡与纯土质边坡又有所不同,它不仅存在土体和土钉锚固体的相互作用和协同工作,还存在挡土结构与土体的相互作用和协同工作,所以其振动特性比纯土质边坡复杂得多。本文对土钉支护边坡动力分析及抗震设计计算方法进行了研究,提出了新的思路及计算方法。
     (1)在动力荷载下,土体和结构是一个受力的整体,变形和运动相互制约,无论是土体还是结构的性质都将影响土与结构系统的动力响应。因此同时考虑了土体与结构的性质以及它们之间的相互影响和协同工作,建立了土与土钉支护结构系统动力计算模型,这种模型将土体对土钉的作用处理成一个线性弹簧和一个与速度有关的阻尼器,把面板对土钉的惯性作用简化为集中于土钉头上的等效质量加以考虑,以此为基础,建立土钉土体系统地震动力作用下的阻尼微分方程,求解了在简谐地震作用下土钉动力响应的解析解。最后,结合一案例进行分析,并用大型非线性有限元软件ADINA对此计算模型进行验证。结果表明该计算模型可以比较准确地反映土钉的实际受力,实现了土钉、面板和土体的协同工作计算,保证支护结构的安全可靠。
     (2)参照上部结构抗震设计的方法,对土钉支护边坡的抗震设计提出了三个水准的抗震设防要求和两阶段设计法。综合考虑输入地震波的特性、边坡土体特性、坡高因素,以及土体边坡在水平地震激励下,其位移响应主要为剪切型变形,建立了土钉支护边坡地震动力简化模型。该模型将同一水平层不稳定土体、稳定土体在水平地震作用下运动趋势假想为同步,两者之间相互作用很小,因此取不稳定土体和面板为研究对象。由于面板很柔,其运动随着土体的运动而变化,其刚度只考虑剪切刚度,将土钉处理成弹性支座,建立了土钉支护边坡振动方程,求解了在简谐地震作用下土钉支护边坡动力响应的解析解,通过该模型可以得到滑移面附近土钉轴力动力响应和土钉支护边坡的弹性动位移响应,也可以得到地震响应沿竖向的变化。对传统基于刚性挡墙的土压力求解进行了改进,而传统的土压力只能计算主动和被动这两种极限破坏状态下地震土压力的合力,不能准确地评价地震土压力的分布,没有考虑墙体的变形、设计参数以及破裂面的影响。根据破坏模式及极限平衡理论,推导了面板的冲切和钉头粘结承载力验算公式。最后,结合案例进行了分析,比较了按此分析方法与用ADINA按弹性有限元方法计算的结果,两者吻合较好。故这种方法可用于土钉支护边坡的第一阶段的抗震分析与设计。
     (3)在考虑土钉支护作用的情况下,根据土质边坡的破坏模式,基于极限平衡理论和拟静力法建立了土钉支护边坡地震稳定性分析模型。对边坡作用水平加速度时采用竖向条分的不合理性,提出了水平条分和竖向条分联合的方法进行改进。推导了基于计算机搜索法的边坡土钉支护滑移面动态搜索模式,实现了随着土钉墙设计参数变化的土钉支护稳定性动态分析过程。经计算表明,土钉墙设计参数的变化与土钉墙最危险滑移面之间是一个动态的变化过程,基于滑移面动态搜索模型进行土钉支护动力稳定性分析,较好地解决了通常由经验指定最危险滑移面,或者未考虑土钉作用进行稳定性分析存在的不合理性。利用遗传算法对最危险滑移面的圆心进行动态搜索,并且避免了在圆弧搜索中陷入局部最小值的缺点。最后,编制了土钉支护边坡动力稳定性分析程序。
     (4)基于稳定性分析模型,建立了地震作用下土钉支护边坡永久位移计算模型。提出了永久位移由地震作用过程中位移和震后位移两部分组成。在求解平均加速度时,通过第3章的弹性动力计算模型对Newmark有限滑动位移法的刚性假定进行改进。采用遗传算法动态寻优实现边坡地震过程中永久位移计算。运用功能原理建立地震作用后永久位移计算模型并求解。根据土钉柔性结构特性,对土钉震后随土体滑移机理提出褶皱台阶变形来计算土钉的滑移摩阻做功。给出基于边坡永久位移控制的土钉支护结构动态设计理念及程序步骤,并用实例进行计算及数值验证,结果表明震后位移量与地震作用过程中位移的比值很大,因此震后位移不能忽略。
     (5)采用大型非线性有限元软件ADINA对土钉支护边坡进行动力响应分析。考虑土体和支护结构相互作用及其协同工作建立三维有限元模型,应用非线性静动力性能的弹塑性模型模拟土体;采用可以描述土钉在进入塑性阶段强化性质的双线形弹塑性模型模拟土钉;土与支护结构相互作用由接触单元模拟。对一土钉支护边坡在输入不同的地震波,不同的加速度峰值,不同的支护工况下的动力响应进行了计算、对比、分析,得出了各种工况参数对边坡地震响应的影响和一些有益结论。
There are a number of mountains and valleys in the west of China, therefore flat lands are extended to provide platforms for buildings, roads and other infrastructures when these facilities are constructed in this region. This frequently requires cutting of slopes and filling of valleys. In order to ensure that these facilities work in the right way it is essential for us to adopt retaining wall to prevent landslides and debris flow from occurring. Our country is an earthquake region and the geological condition is complicated. Thus, a lot of the highways and railways will pass through the region of high earthquake intensity. So, it is necessary to study the characteristics of the slope protected by soil nailing under the earthquake. Moreover, the slope protected by soil nailing is different to the pure soil slope. Not only the interaction and work together of surrounding soil and soil nailing but also the interaction of the soil and the facing are considered in the systems. So its characteristic of vibration is much more complicated than the pure soil slope. The comprehensive theoretical analysis and the numerical simulation have been carried out for the soil nailing flexible supporting structure under earthquake. The main work and conclusions gained are listed as follows:
     (1) A dynamic calculation model of soil nailing protected structures for the slope is proposed. The interaction between soil and soil nailing is treated with linear spring and damped system related with velocity. The influence of the facing upon soil nailing is simplified for equivalent mass. Under the condition of horizontal earthquake excitation equation of vibration response is established in according with being mentioned ahead, the analytical solutions are obtained for steady vibration. The method is applied to a case record for illustration of its capability, in order to verify the method 3-D nonlinear FEM (ADINA) is used to analyze the seismic performance of this case, the comparative results show that the design and the analysis are safe and credible using the proposal method. The calculation model provides a new approach for earthquake analysis and antiseismic design of slope protected by soil nailing.
     (2) Corresponding to design method of tall-building seismic design, the request of three levels seismic design and the design way of two stages are proposed for the slope protected by soil nailing. Considering seismic excitation property, soil property and slope height, occurring shear displacement under horizontal excitation, a simplified dynamic calculation model of soil nailing protected structures for the slope is proposed. Based upon the hypothesis which the lateral displacement of the stability soil and instability soil is nearly in phase and the lateral interaction between them is ignored under horizontal excitation, the instability soil and facing is treated as study object. Because the facing is flexible, its lateral displacement depends on the lateral displacement of instability soil. The soil nailing is served as the elastic supports. Under the condition of horizontal earthquake excitation equation of vibration response is established in according with being mentioned ahead, the analytical solutions are obtained for simple harmonic vibration. The soil nailing axial force response near failure surface, elastic lateral displacement time history and vertical seismic response distribution can be obtained by this method. The method and 3-D nonlinear FEM (ADINA) are applied to a case record for illustration of its capability, the comparison of results, using the proposed approach and FEM shows good agreement. This method can be used the first stage seismic design and analysis for the slope protected by soil nailing.
     (3) Under the situation of considering the soil nailing effects on stability of soil side-slope, according to the damage model of the slip surface, the limit equilibrium theory and pseudo static approach, the seismic stability model is set up. Errors should be induced in calculating horizontal seismic inertial force and anti-sliding moment according to vertical slice. The seismic stability analysis method of slope protected by soil sailing is improved by using horizontal and vertical slice method. A dynamical search model is set up for the critical slip surface determination of soil nailing wall, and the dynamical stability analysis of soil nailing wall is realized. By calculating, it is showed that the location of critical slip surface is varied with the design parameters of soil nailing wall. Soil nails have great effect on the slope stability. Compared with the experience methods, it is a good method for the stability analysis of soil nailing wall based on the dynamical search model of slip surface, and can overcome the irrationality without considering the effect of soil nails. Calculation of the stability of slip surface is carried out by using the genetic algorithms. It can avoid getting in local minimum in optimal design. Finally, using object-oriented programming language VC++, a computing program is implemented to make the optimization course reality.
     (4) Based on the analysis model of seismic stability, the permanent displacement calculation model of slope protected by soil nailing is established under earthquake. The total permanent displacement consisted of two parts of the earthquake displacement and the post-earthquake displacement is proposed. The solution of average acceleration adopts the elastic dynamic calculating model of Chapter 3 to improve the rigidity assumptions of Newmark method. Using genetic algorithms to search yield acceleration can achieve the permanent displacement of slope under earthquake. Using principle of works and energy, the calculating model of post-earthquake permanent displacement is established and solved. According to soil nailing characteristic which is flexible, after the earthquake the "folding steps" slip deformation mechanism is proposed to calculate the sliding friction works of soil nailing. The dynamic design philosophy and procedural steps of the soil nailing structure are given based on the control of the permanent displacement of the slope. The analysis results show that the ratio of post-earthquake displacement and seismic displacement is great, post-earthquake displacement can not be ignored.
     (5) Combined with the reality highway slope protected by soil nailing project, nonlinear FEM (ADINA) is used to analyze the seismic performance of slope protected by soil nailing retaining wall. On the base of works together and interaction between loess and flexible retaining wall, 3-D nonlinear FEM model is formed. A model that is capable of simulating the nonlinear static and dynamic elastic-plastic behavior of soil is used to model the soil, and a bilinear elastic-plastic model that has hardening behavior is used to model the soil nailing. Friction-element is employed to describe the soil-structure interaction behavior. By calculating, comparing and parametric analysis, some useful conclusions is drawn, these conclusions can be for reference in constructing some similar engineering and the design.
引文
[1]张咸恭,王思敬,张悼元.中国工程地质学[M].北京:科学出版社,2000.
    [2]Mario Parise,RandallW J ibson.A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January,1994 Northridge,California earthquake[J].Engineering Geology,2000,58(3/4):251-270.
    [3]杨全忠.西藏滑坡地质灾害及防治对策[J].中国地质灾害与防治学报,2002,13(1):94-97.
    [4]R.N.Chowdhury.Developments in geotechnical engineering Vol.22Slope Analysis.1978.
    [5]李宁,程国栋,谢定义.西部大开发中的岩土力学问题[J].岩土工程学报,2001,23(3):268-272.
    [6]黄理兴,陈奕柏.我国岩石动力学研究状况与发展[J].岩石力学与工程学报,2003,22(11):1881-1886.
    [7]李海波,蒋会军,赵坚,等.动荷载作用下岩体工程安全的几个问题[J].岩石力学与工程学报,2003,22(11):1887-1891.
    [8]胡聿贤.地震安全性评价技术教程[M].北京:地震出版社,1999.
    [9]时振梁,王健,张晓东.中国地震活动性分区特征[J].地震学报,1995,17(1):20-24.
    [10]中华人民共和国行业标准.《建筑边坡工程技术规范》(GB50330-2002).北京:中国建筑工业出版社,2002.
    [11]中华人民共和国行业标准.《建筑基坑支护技术规程》(JGJ120-99).北京:中国建筑工业出版社,1999.
    [12]刘力平,雷尊宇,周富春.地震边坡稳定分析方法综述[J].重庆交通学院学报,2001.20(3):83-88.
    [13]王思敬.地球内外动力耦合作用与重大地之灾害的成因初探[J].工程地质学报,2002.10(2):1-3.
    [14]Terzaghi.K,Mechanisms of landslide,Engineering Geoiogy(Berdey)Volume.1950:Geological Society of America.
    [15]Seed.H.B,Consideration in the Earthquake-Resistant Design of Earth and Rockfill Dams[J].Geotechniaue,1979.1(29):251-263.
    [16]Seed.H.B,Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground during Earthquake[J].Journal of Geotechnical engineering Division,ASCE,1979.105(2):201-255.
    [17]Marcuson.WF.111.Moderator's Report for Sessionon Earth Dams and Stability of Slopes Under Dynamic Loads.in International Conference on Recent A dvances in Geotechnieal Earthquake Engineering and Soil Dynamics.St.Louis Missouri.
    [18]中华人民共和国行业标准.《建筑结构设计统一标准》(GBJ-84).北京:中国建筑工业出版社,1984.
    [19]中华人民共和国行业标准.《岩土工程勘察规范》(GBJ50021).北京:中国建筑工业出版社,1995.
    [20]林宗元,岩土工程勘察设计手册[M].北京:中国建筑工业出版社,1996
    [21]Leshchinsky Dov,San&Ka-China,Pseudo-Static Seismic Stability of Slope:Design Chart[J].Journal of Geotechnical engineering,1994.120(9):1514-1532.
    [22]Taylor.Larry.R&Pantmax&Dellingeras,Seismic Stability Analysis for Geosynthetic Clay Liner Landfill Cover Placement on Steep Slope.1995:196-221.
    [23]Bray.Jjnathan.D.&Repetto.P.C,Seismic design consideration for lined solid waste lanfills[J].Geotextiles and Geomembranes,1994.13(8):497-451.
    [24]Siyahi&Bilge.Gokmirza,Pseudo-static Stability Analysis in Normally Consolidated Soil Slopes Subjected to Earthquake[J].Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers,1998.9(12):457-461.
    [25]Ling.Hoe.I&Cheng&Alexander.H-D,Rock Sliding Induced by Seismic Force[J].International Journal of Rock Mechanics and Mining Science,1997.34(6):1021-1029.
    [26]Ausilio.E&Conte.E&Dente.G,Seismic Stability Analysis of Reinforced Slopes[J].Soil Dynamics and Earthquake Engineering,2000.19(3):157-172.
    [27]Wu.X.Y&Law.K.T&Selvaduri&A.P.S.Examination of the Pseudostatic Limit Equilibrium Method for Dynamic Stability Analysis of Slopes[C].In Canadian Geotechninal Conference.1991.
    [28]Ling.Hoe.I&Leshchinsky.Dov&Mohri.Yoshiyuki,Soil Slopes under Combined Horizontal and Vertical Seismic Acceleration Earthquake Engineering[J].Structural Dynamics,1997.26(12):1231-1241.
    [29]Seed.H.B,Stability of earth and rockfill dams during earthquake,in Embankment-Dam Engrg.1973.Casagrande.
    [30]周健,白冰,徐建平.土动力学理论与计算[M].北京:中国建筑工业出版社,2001.
    [31]Newmark N.M,Effect of Earthquake on Dams and Embankment[J].Geotechnique,1965.15(2):139-160.
    [32]Sarma.S.K.Seismic Stability of Earth Dams and Embankment[J].Geotechnique,1975.25:743-761.
    [33]Makdisi.F.I&Seed.H.B,Simpilified Procedure for Estimate Dam and Embankment Earthquake induce deformation[J].Journal of Geotechnical engineering,1978.104(7):849-867.
    [34]Ambraseye.N.N&Menu.J.M,Earthquake induced Ground Displacements.Earthquake Engineering and Structural Dynamics,1988.16:p.9 85-1006.
    [35]Crespellani.T&Madiai.C&Vamtucchi,G.Earthquake Destructiveness Potential Factor and Slope Stability[J].Geotechnique,1998.48(3):411-419
    [36]Giovanni.Biondi&Emesto.Cascone&Michele.Maugeri&Emesto.Motta,Pore Pressure Efect on Seismic Response of Slope.2000:12 WCEE.
    [37]王思敬.岩石边坡动态稳定性的初步探讨[J].地质科学,1977(4):120-125.
    [38]王思敬,张菊明.边坡岩体滑动稳定的动力学分析[J].地质科学,1982(2):162-170.
    [39]王思敬,薛守义.岩体边坡楔形体动力学分析[J].地质科学,1992(2):177-182.
    [40]张菊明,王思敬.层状边坡岩体滑动稳定的三维动力学分析[J].工程地质学报,1994.2(3):1-12.
    [41]Warttnan.Joseph.Riemer.Michael.F&Bray&JonathanD&Seed&Raymond .B,Newmark Analyses of a Shaking Table Slope Stability Experiment[J].Geotechnical Special Publication,1998.1(3-6):778-789.
    [42]Mononobe.H.A.et al.Seismic stability of the earth dam,Proc.2~(nd)Congresson large dams,Washington DC,1936.
    [43]Gazew.G.and Dakoulas.P.Seismic analysis and design of rockfiil dams: State of the art[J].Soil Dyn.Earthq.Engrg.1992,(11):27-61.
    [44]Chopra,A.K.Earthquake response of earth dams[J].Soil Mech.And Found.Div.,ASCE,1967.(93).SM2.
    [45]Dakoulas.P.Contribution to seismic analysis of earth dams,Ph.D.Thesis.Rensselaer Polytechnic Institute,1985.
    [46]Dakoulas.P.and Gazetas.G.A class of inhomogeneous shear models for seismic response of dams and embankments[J].Soil Dyn.and Eanhq.Engrg.1985.14(4):166-182.
    [47]Dakoulas.P.and Gazetas,G.Seismic shear strains and seismic coefficients in dams and embankments[J].Soil Dyn.And Eanhq.Engrg.1986.15(2):75-83.
    [48]Ishizaki and Hatekeyama,Consideration on the dynamical behavior of earth dams,Bul.No.52.Disaster Prevention Research Inst.,Kyoto Unvi,1963.
    [49]Dakoulas.P and Gazetas.G.Seismic lateral vibration of embankment dams in semi-cylindrical valleys.Earthq.Engrg.and Struct.Dyn.1986,No.14.19-40.
    [50]Makdisi.P.I.Kagawa.T.and Seed H.B.Seismic response of earth dams in triangular canyons[J].Greotech Engrg.,ASCE,1982,108,GT10,1328-1337.
    [51]Mafia,L.H.and Seed.H.B Comparision 2D and 3D dynamic analyses of earth dams[J].Geotech.Energ.Div.ASCE,1983,109(GTI1):1383-1398.
    [52]薄景山,徐国栋,景立平.土边坡地震反应及其动力稳定性分析[J].地震工程与工程振动,2001,21(2):116-120.
    [53]陈玲玲,陈敏中,钱胜国.岩质陡高边坡地震动力稳定分析[J].长江科学院院报,2004,21(1):35-35.
    [54]Scott A.Ashford,Nicholas Sitar,John Lysmer,et al.Topographic effects on the seismic response of steep slopes[J].Bulletin of the Seismological Society of America.1997,87(3):701-709.
    [55]刘春玲,祁生文,童立强,等.利用FLAC3D分析某边坡地震稳定性[J].岩石力学与工程学报,2004,23(16):2730-2733.
    [56]许谨,郑书英.边界元法分析边坡动态稳定性[J].西北建筑工程学院学报(自然科学版),2000,17(4):72-75.
    [57]Zhang Chunhan,O.A.Pekau,Jin Feng,et al.Application of distinct element method in dynamic analysis of high rock slopes and blocky structures[J].Soil Dynamics and Earthquake Engineering,1997,16(6):385-394.
    [58]张建海,范景伟,何江达.用刚体弹簧元求解边坡、坝基动力安全系数[J].岩石力学与工程学报,1999,18(4):387-391.
    [59]刘君,孔宪京.卫生填埋场复合边坡地震稳定性和永久变形分析[J].岩土力学,2004,25(5):778-782.
    [60]卓家寿,章青.不连续介质力学问题的界面元法[M].北京:科学出版社,2000.
    [61]石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997.
    [62]Clough R.W.,Chopra A.K.Earthquake stress analysis in earth dams[J].Engrg.Mech.,ASCE 1966.92.EM2:197-211.
    [63]谢康和,周健.岩土工程有限元分析理论与应用[M].北京:科学出版社,2000.
    [64]吴世明.土动力学[M].北京:中国建筑工业出版社,2000.
    [65]Cundall P.A.A computer model for simulating progressive,large scale movement in blocky rock system[A].Symp.of Int.Society of Rock Meth,[C].Nancy,France,1971:11-18.
    [66]Jean-Pierre Bardet,Scott R F.Seismic stability of fracture rock masses with the distinct element method[A].26~(th)U.S.Symp.Rock Mech.[C].Rapid City,1985:139-149.
    [67]陶连金,苏生瑞,张倬元.节理岩体边坡的动力稳定性分析[J].工程地质学报,2001,9(1):32-38.
    [68]黄润秋,许强,陶连金,等.地质灾害过程模拟和过程控制研究[M].北京:科学出版社,2002.
    [69]Itasca Consulting Group Inc.FLAC-3D fast.Iagrangian analysis of continua in 3dimension version 2.0[R].USA:Itasca Consulting Group Inc.,1997.
    [70]祁生文.边坡动力响应分析及应用研究[D].北京:中国科学院地质与地球物理研究所,2002.
    [71]Halatchev.Rossen.A,Probabilistic Stability Analysis of Embankments and Slopes.1992:Proceedings of the 11th international Conference on Ground Control in Mining Ju17-10 1992.432-437.
    [72]Tahtamoni,W.W,A.-H.A.S.,Reliability Analysis of Three-dimensional Dymanic Slope Stability and Earthquake induced Permanent Displacement[J].Soil Dynamics and Earthquake Engineering,2000,19(2):91-114.
    [73]Christian,J.T and Urzua,A.Probabilistic evaluation of earthquake induced slope failure[J].Soils and Foundations.1998,124(11):1140-1143.
    [74]Pal.S.K.,Rahman,M.S.and Tung,C.C.A probabilistic analysis of seismically induced permanent movements to earth dams[J].Soils and Foundations.1991.3(1):47-59.
    [75]王思敬.岩石边坡动态稳定性的初步探讨[J].地质科学,1977,(4):372-376.
    [76]王存玉.地震条件下二滩水库岸坡稳定性研究[A].岩体工程地质力学问题(七)[C].北京:科学出版社,1987.
    [77]何蕴龙,陆述远.岩石边坡地震作用近似计算方法[J].岩土工程学报,1998,20(2):66-68.
    [78]翟阳,韩国城.边坡对土坝稳定影响的振动台模型试验研究[J].烟台大学学报(自然科学与工程技术版),1996(4):67-71.
    [79]张平,吴德伦.动荷载下边坡滑动的试验研究[J].重庆建筑大学学报,1997,19(2):80-86.
    [80]Wartman J,Riemer M.F.,Bray J.D.,et al.Newmark analyses of a shaking table slope stability experiment[A].Proc.,Geotechnical Earthquake Engingineering and Soil Dynamics Ⅲ,ASCE,Geotechnical Special Publication No.75[C].Seattle,1998.778-789.
    [81]Byrne,R.J.,Cotton,D.,Porterfied,J.,Wolschlag,C.,and Ueblacker,G.1998.Manual for design and construction monitoring of soil nail walls,FHWA-SA-96-069R,Federal Highway Administration,Washington,D.C.
    [82]Sheahan,T.C.and Ho,C.L.2003.Simplified trial wedge method for soil nailed wall analysis,J.of Geotech.and Geoenvirn.Eng.,ASCE,129(2):117-124.
    [83]Turner,J.P.and Jensen,W.G.2005.Landslide stabilization using soil nail and mechanically stabilized earth walls:Case study,J.of Geotech.and Geoenvirn.Eng.,ASCE,131(2):141-150.
    [84]Oral T,Sheahan T C.The use of soil nails in soft clays,Design and construction of earth retaining system,R.J.Finno,Y.Hashash,C.L.Ho,and B.Sweeney,eds.,Goetechnical Special Publication No.83,ASCE, Reston,Va.,1998.26-40.
    [85]Sandri,D.,Retaining walls stand up to the Northridge earthquake,Geotechnical Fabrics Report,IFAI,St.Paul,MN,USA,Vol.12,No.4,(1994)30-31.
    [86]Collin,J.G.,Chouery-Curtis,V.E.and Berg,R.R.,Field observations of reinforced soil structures under seismic loading,Earth Reinforcement Practice,Ochiai,Hayashi & Otani(eds),Balkema,Rotterdam,(1992)223-228.
    [87]HANNA S,JURAN I,LEVY O,et al.Recent developments in soil nailing-design and practice[J].Journal of Engineering and Applied Science,1998.81(5):259-284.
    [88]COTTON P E,DAVID M,LUARK P F,et al.Seismic response and extended life analysis of the deepest top-down soil nail wall in the U.S [J].Geotechnical Special Publication,2004,124(3):723-740.
    [89]VUCETIC M,TUFENKJIAN M R,DOROUDIAN M.Dynamic centrifuge testing of soil-nailed excavations[J].teotechnical Testing Journal,1993,16(2):172-187.
    [90]陈建仁.土钉加筋边坡之耐震研究[D].台湾:台湾大学土木工程学研究所,2001.
    [91]赖荣毅.土钉模型边坡动态反应仿真[D].台湾:台湾大学土木工程学研究所,2003.
    [92]Bathurst,R.J.,Karpurapu,R.and Jarrett,PM.,Finite element analysis of a geogrid reinforced soil wall,Grouting,Soil Improvement and Geosynthetics[J].ASCE Geotechnical Special Publication,(1992)30(1):1213-1224.
    [93]Ho,S.K.and Rowe,R.K.,Finite element analysis of geosynthetic reinforced soil walls[J].Proceedings of Geosynthetics '93,Vancouver,1993,1(1)203-216.
    [94]ADINA Research and Development Inc.,ADINA Theory and Modeling Guide.Report ARD 95-8,ADINA R&D Inc.,Watertown,MA,1995.
    [95]M.帕兹.结构动力学理论与计算[M],北京:地震出版社,1993.
    [96]杨桂通.土动力学[M],北京:中国建材工业出版社,2000.
    [97]谢定义.土动力学[M],西安:西安交通大学出版社,1998.
    [98]Yokoyama T,Liu K.A numerical and experimental study of transient tensional waves in stepped circular bars[J].International Journal of Engineering Science,2000,38:287-307.
    [99]Takaaki Kagawa.Lateral Pile-Group Response Under Seismic Loading [J].Soils and Foundations,1983,23(4):75-86.
    [100]Seed,H.B.and Idriss,I.M.,Soil moduli and damping factor for dynamic response analysis,Report EERC 70-10,Earthquake Research Engineering Center,University of California,Berkeley,Dec.,(1970).
    [101]王兰民.黄土动力学[M].北京:地震出版社,2003.
    [102]朱彦鹏,李忠.深基坑土钉支护稳定性分析方法的改进及软件开发[J].岩土工程学报,2005,27(8):939-943.
    [103]朱彦鹏,王秀丽,李忠,等.土钉墙的一种可靠性自动优化设计法[J].岩石力学与工程学报,2006,25(Supp.1):3123-3130.
    [104]宋二祥,陈肇元.土钉支护及其有限元分[J].工程勘察,1996,139(2):1-6.
    [105]张明聚,宋二祥,陈肇元.基坑土钉支护稳定性分析方法及其应用[J].工程力学,1998,15(3):36-43
    [106]孙铁成,张明聚,杨茜.深基坑复合土钉支护稳定分析方法及其应用[J].工程力学,2005,22(3):126-133.
    [107]M.J.Zhan,Q.Yang,T.C.Sun.Parametric studies on behaviors of soil-nailed structure by three-dimensional(3-D)finite element method.Second International Symposium on New Development in Rock Mechanics and Rock Engineering 2002:291-296.
    [108]陈肇元,崔京浩.土钉支护在基坑工程中的应用(第2版)[M].北京:中国建筑工业出版社,2000.12.
    [109]尹骥,杨林德,管飞.强度折减法确定的复合土钉支护整体稳定系数[J].岩石力学与工程学报,2005,24(21):3882-3886.
    [110]贾金青,张明聚.深基坑土钉支护现场测试分析研究[J].岩土力学,2003,24(3):413-416.
    [111]杨茜,刘蓉华,张明聚.土钉支护设计方法综述研究[J].石家庄铁道学院学报,2003,16(2):10-14.
    [112]张明聚,郭忠贤.土钉支护工作性能的现场测试研究[J].岩土工程学报.2001.23(3):319-323.
    [113]Gazetas.G Seismic response of earth dams:some recent developments[J].Soil Dyn.Earthq.Engrg.,1987.6(1):3-47
    [114]R.W.克拉夫,J.彭津.结构动力学(王光远等译)[M].科学出版社,1981.
    [115]Steven L.Kramer.Geotechnical Earthquake Engineering[M].U.S.Washington,Washington University Publishing House Press,1995.
    [116]汪益敏,Richard J.Bathurst.振动条件下EPS缓冲对挡土墙受力与变形影响的水平条分法模型研究[C].第十届土力学及岩土工程学术会议.重庆:重庆大学出版社,2007,11.
    [117]李国豪.工程结构抗震动力学[M].上海:上海科学技术出版社,1980.
    [118]顾慰慈.挡土墙土压力计算[M].北京:中国建材工业出版社,2001.2.
    [119]中华人民共和国国家标准编写组.混凝土结构设计规范(GB50010-2002)[S].[s.l.]:[s.n.],2002.
    [120]李宁,程国栋,谢定义.西部大开发中的岩土力学问题[J].岩土工程学报,2001,23(3):268-272.
    [121]张志涌.精通MATLAB6.5版.北京航空航天大学出版社.2003.
    [122]郑阿奇,丁有和,周怡君.Visual C++实用教程(第2版)[M].北京:电子工业出版社,2003.
    [123]曾宪明,林润德,易平.基坑与边坡事故警示录.北京:中国建筑工业出版社.1999.
    [124]中国科学院地质研究所著.岩体工程地质力学问题(三).北京:科学出版社,1980.
    [125]曾宪民,周早生,施鹏等.软土边坡破坏模式与破坏机理研究.防护工程.1998(1).
    [126]钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996.
    [127]陈祖煜.土质边坡稳定分析-原理,方法,程序[M].北京:水利水电出版社,2003.
    [128]王恭先.滑坡防治中的关键技术及其处理方法[J].岩石力学与工程学报,2005,24(21):3818-3827.
    [129]王仁,黄文彬,黄筑平.塑性力学引论[M].北京:北京大学出版社,1992.
    [130]杨桂通,熊祝华.塑性动力学[M].北京:清华大学出版社,1984.
    [131]Youg R N and KO H Y.Eds,Limit Equilibrium Plasticity and Generalized Stress-Strain in Geotechnical Engineering,ASAC,New York,1981.
    [132]Youg R N,Selig E T.Eds,Application of Plasticity and Generalized Stress-Strain in Geotechnical Engineering,ASAC,New York,1982.
    [133]贺可强,王胜利,阳吉宝.运用遗传算法求解土钉支护结构的整体稳 定性系数[J].岩土力学.2003,24(3):355-358.
    [134]刘万林,张新燕,晃勤.MATLAB环境下遗传算法优化工具箱的应用[J].新疆大学学报(自然科学版).2005,22(3):357-360.
    [135]马永其,冯伟.面向对象有限元程序研究综述[J].计算机应用研究,2001,17(10):7-13.
    [136]GOODMAN R E,SEED H B.Earthquake-induced displacements in sand embankment[J].J Soil Mech FdnEngng Div,ASCE,92(SM2):125-146.
    [137]Kohji Tokimatsa.Empirical correlation of soil liquefaction based on SPT-Value and fines content[J].Soils and Foundations,1983,23(4):56-74.
    [138]胡聿贤.地震工程学[M].北京:地震出版社,2006.
    [139]毛彦龙,胡广韬,赵法锁,等.地震动触发滑坡体滑动的机理[J].西安工程学院学报,1998,20(4):45-52.
    [140]Scheidegger A E.On the prediction of the reach velocity of catastrophic landslides[J].Rock Mech,1973,5:231-236.
    [141]雷晓燕.有限元法[M].北京:中国铁道出版社,2000.
    [142]方同.工程随机振动[M].北京:国防工业出版社,1995,6.
    [143]方远翔,陈安宁.振动模态分析技术[M].北京:国防工业出版社,1993.
    [144]凌道盛,徐 兴.非线性有限元及程序[M].杭州:浙江大学出版社,2005.
    [145]蒋溥,梁小华,雷军.工程地震动时程合成与模拟[M].北京:地震出版社,1991.
    [146]陶明星.土-地下结构动力相互作用有限元分析.西北工业大学硕士学位论文,2004.
    [147]李文涛.地震波作用下地下结构动态分析数值仿真.哈尔滨工程大学硕士学位论文,2003.
    [148]国胜兵,赵毅等.地下结构在竖向和水平地震荷载作用下的动力分析[J].地下空间,2002,22(4):457-460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700