超音速火焰喷涂纳米Ni60-TiB_2复合涂层及其耐磨耐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为Cr3C2和WC的一种潜在替代者,TiB_2陶瓷不仅具有优异的力学性能,同时还具有良好抗高温氧化和耐腐蚀性能,使其成为制备金属基陶瓷复合涂层中的最佳增强候选材料。现有的研究结果表明,M-TiBB_2涂层如Fe(Cr)-TiB_2涂层等具有比常规粗晶Cr3C2-NiCr和TiC-NiCr涂层更优的耐磨粒磨损性能,但TiB_2的本征缺陷如高脆性、低疲劳极限和难烧结等限制了该类涂层性能的进一步提高。纳米化技术尤其是涂层纳米化可望很好地解决这一问题,它能够在很大程度上提高涂层的断裂韧性、疲劳抗性、强度和膜基结合力等,进而提高涂层的耐磨耐蚀及其它性能,成为热喷涂领域的重要发展前沿和研究热点。本课题以高能球磨法制备的纳米Ni60-TiB_2B复合粉作为热喷涂用结构喂料,利用超音速火焰(HVOF)喷涂技术在中碳钢上制备出了高质量的纳米复合涂层,并较系统地研究了其微观组织及其相关性能。与相同成分的常规微米复合涂层相比,纳米复合涂层的力学性能和耐磨耐蚀性能都得到了较大幅度的提高,具有很好的综合性能和使用价值,为高性能纳米涂层的制备和应用提供了新的途径和科学依据。
     研究结果表明,高能球磨技术可成功制备出适宜直接用于热喷涂的纳米Ni60-TiBB_2结构喂料。高能球磨20 h后,纳米TiB_2增强相粒子均匀弥散地分布于Ni60粉内,其平均晶粒尺寸减少至38 nm并达到平衡状态。该球磨粉体的团聚颗粒外形呈近球状,大部分颗粒粒径在5μm以上,具有良好的流动性,稍加过筛后可直接用于HVOF喷涂。以高能球磨的纳米级粉体为原料,采用超音速火焰喷涂技术在中碳钢基体上成功制备出了高性能的纳米Ni60-TiBB_2复合涂层。该纳米复合涂层的显微组织均匀致密,平均晶粒尺寸约为45.7 nm。与同成分的常规微米复合涂层相比,纳米复合涂层具有更高的硬度和断裂韧性,其平均显微硬度和断裂韧性分别达到1102 kgf. mm和-2 3.5 MPa.m1/2左右。Ni60-TiBB_2复合涂层在600和800近似遵循抛物线规律,表明其循化氧化过程主要由扩散机制控制。但在相同的循环氧化条件下纳米
     涂层具有更优的抗循环氧化性能,这主要是由于涂层中晶粒纳米化能够增加扩散通道而提高原子扩散速度,有利于更快地形成完整致密的保护性SiO℃℃高温下都具有较好的抗循环氧化性能。与同成分微米复合涂层的氧化增重曲线相似,纳米复合涂层的氧化增重曲线也,复合2-Cr2O3膜;同时晶粒纳米化在一定程度上降低了涂层与氧化膜之间的内应力,高了涂层与氧化膜间的结合力。
     在室温和20~60 N载荷的无润滑干滑动磨损条件下,纳米Ni60-TiBB_2复合涂层具有比同成分常规微米Ni60-TiB_2B复合涂层更低的滑动摩擦系数和磨损体积损失,表明纳米复合涂层的抗滑动磨损性能更优异,这主要归因于纳米复合涂层中TiB_2增强相均匀弥散分布以及喷涂喂料中纳米特征的良好继承。纳米复合涂层在磨损过程中都呈现出粘结磨损和磨粒磨损的特征。
     纳米和常规微米复合涂层的热腐蚀行为表明,复合涂层在Na2SO4-60%V2O5(摩尔比,下同)混合盐中的抗热腐蚀性能明显优于其在Na2SO4-30%K2SO4混合盐的抗热腐蚀性能。这主要是由于Ni60-TiBB_2复合涂层在热腐蚀过程中形成的SiO2膜溶于碱性环境,而在酸性条件下则基本不溶。在Ni60-TiB_2B复合涂层的热腐蚀实验中,Na2SO4-60%V2O5混合盐为酸性盐膜,腐蚀过程中能形成完整致密的保护性Si- Cr-O膜,而Na2SO4-60% K2SO4混合盐则为碱性盐膜,初期形成的SiO2发生碱性溶解,最终表层形成一层疏松多孔的非保护性Ni-Ti-Cr-Si氧化膜。
As a potential attractive alternative to Cr3C2 and WC, titanium diboride (TiB_2) withexcellent mechanical properties, wear resistance and corrosion resistance properties, whichmakes it become a promising reinforced material for metal matrix composite coatings. Inrecent work, TiBB_2-based coatings such as Fe(Cr)-TiB_2 have been deposited and exhibitedbetter abrasive resistance than that of TiC-the conventional C-NiCr and Cr3C2-NiCrHowever,coatings.the high brittleness and low fatigue resistance for TiB_2 have become the mainrestrictions for the conventional TiB_2BB -based coatings. Nanotechnology especiallynanostructured coating can solve this problem perfectly by improving the performanceproperties such as hardness, toughness, membrane-based adhesion, fatigue resistance andwear-corrosion resistance, which is the frontier and research hotspot in thermal spraying.In this thesis, nanostructured Ni60-TiBB_2 composite coating was prepared by High VelocityOxygen Fuel (HVOF) spraying using ball milled nanocrystalline powders. The microstructureand performances of the milled powders and HVOF coatings were also studied.Nanostructured Ni60-TiB_2 B composite coating exhibited better mechanical properties andwear-corrosion resistance than that of its conventional counterpart, then the comprehensiveproperties of the nanostructured coating was greatly improved as well. This work is expectedto play an important role in the preparation and application of high performancenanostructured coating.
     The results show that nanocrystalline Ni60-TiBB_2 feedstock with qualified fluidity and particlesize distribution for thermal spraying is successfully synthesized using mechanical alloying.After 20 h mechanical alloying, nanocrystalline TiB_2B particles are evenly dispersed in the ballmilled powders and their average particle crystal size approachs a constant value of 38 nmwith equilibrium. Most of the milled powders are above 5μm and are in approximatelyspherical shape with excellent fluidity, which are suitable for preparing nanostructuredcomposite coating by HVOF spraying with sized.
     Nanostructured Ni60-TiBB_2 composite coating with excellent properties is successfullyfabricated via HVOF technique using high energy ball milled powders. The nanostructuredcomposite coating exhibits a compact and uniform structure with the average grain size of about 45.7 nm. The micro-hardness and fracture toughness of the nanostructured coating are1102 kgf. mm and 3.5 MPa.m respectively, which are much higher than those of theconventional Ni60-TiB_2-2 1/2B composite coating.
     Both conventional and nanostructured Ni60-TiBB_2 composite coating exhibt excellentcycle oxidation resistance at 600 and 800 . Their cycle oxidation kinetic behaviours allapproximately follow the parabolic law. This indicates that the oxidation processes arecontrolled by a diffusion mechanism. The nanostructured coating has better cycle oxidationresistance than that of the conventional coating under the same oxidation condition. Thereason for this improvement can be attributed to the information of the intact SiO℃℃2-Cr2O3protective layer, and the enhanced adhesion between oxide film and nanostructure coating.The sliding wear properties of HVOF-sprayed conventional and nanostructuredNi60-TiBB_2 composite coating were studied comparatively at room temperature under ambientpressure and with applied load varied from 20 to 60 N.
     nanostructured composite coating possesses lower sliding wear coefficient and smallervolume loss at all applied load than that of the conventional composite coating, whichindicate that the nanostructured coating has better sliding wear resistance. The reason for thisimprovement can be attributed to the microstructual homogenization and the well preservednanostructure characteristic of the ball milled powders. Adhesive and abrasive wears arefound to be responsible for the wear down mechanisms of the nanostructured Ni60-TiB_2The results show that theBcomposite coating.
     The results of hot corrosion behaviours indicate that the hot corrosion resistances ofcomposite coatings coated Na2SO4-60% V2O5 are much better than that of composite coatingscoated with Na2SO4-30% K2SO4. The reason is that the SiO2 layer formed during hotcorrosion tests can dissolve in Na2SO4-30% K2SO4 with alkaline environment to form aporous and non-protective Ni-Ti-Cr-Si-O oxide film, but it has excellent chemical stability inNa2SO4-60% V2O5 with acidic environment to form an intact Si-Cr-O protective film finally.
引文
[1]郑泽民.提高大型火电机组质量和可靠性的分析报告[J].热力发电, 1989, 3: 59
    [2] Uyulgan B., Dokumaci E., Celik E., et al. Wear behavior of thermal flame sprayed FeCr coatings on plain carbon steel substrate[J]. Journal of Materials Processing Technology, 2007, 190(1-3): 204-210
    [3] Lee S.H., Themelis N.J., Castaldi M.J.. High temperature corrosion in waste-to-energy boilers[J]. Journal of Thermal Spray Technology, 2007, 16(1): 104-110
    [4]徐滨士,刘世表,张伟,等.绿色再制造工程及其在我国主要机电装备领域产业化应用的前景[J].中国表面工程, 2006, 19(5): 17-21
    [5] Zanchuk W.. The use of Tafaloy 45CT, an Ni-Cr-Ti alloy, as an arc sprayed corrosion barrier in high temperature sulfurous environments[J]. Surface and Coatings Technology, 1989, 39-40: 65-69
    [6]魏琪,任春岭,崔丽,等.电弧喷涂铝基涂层耐腐蚀性能[J].焊接学报, 2006, 11(21): 5-8
    [7]王学,张晋丽,周汉湘,等.高速电弧喷涂FeCrAl涂层组织结构及抗高温氧化性能研究[J].航空材料学报, 2006, 26(3): 75-78
    [8] Liu G., Rozniatowski K., Kurzydlowski K.J.. Quantitative characteristic of FeCrAl films deposited by arc and high-velocity arc spraying[J]. Materials Characterization, 2001, 46(2-3): 99-104
    [9]崔颖,林锋,宋希建,等.热喷涂新型WC-Co耐磨涂层材料研究进展[J].有色金属(冶金部分), 2006,增刊: 65-67
    [10]邓世均.高性能陶瓷涂层[M].北京:化学工业出版社, 2004: 58-70
    [11]沃丁柱,李顺林,王兴业.复合材料大全[M].北京:化学工业出版社, 2000: 16-56
    [12]丁彰雄,王群,詹旺滨. NiCr基锅炉管道涂层材料抗氧化性能研究[J].腐蚀与防护, 2003, 4: 151-153
    [13] Mohanty M., Smith R.W., Bonte M.D., et al. Sliding wear behavior of thermally sprayed 75/25 Cr3C2 /NiCr wear resistant coatings[J]. Wear, 1996, 198(1-2): 251-266
    [14] Roy M., Pauschitz A., Bernardi J., et al. Microstructure and mechanical properties of HVOF sprayed nanocrystalline Cr3C2 -25(Ni20Cr) coating[J]. Journal of thermal spraytechnology, 2006, 15(3): 372-381
    [15] Stewart D.A., Shipway P.H., McCartney D.G.. Abrasive wear behavior of conventional and nanocomposite HVOF-sprayed WC–Co coatings[J]. Wear, 1999, 225-229: 789-798
    [16] Ding Z.X., Tu G.F.. The hot corrosion performance of NiCr-Cr3C2 cermet coating to boiler tube[J]. Journal of Wuhan University of Technology Materials Science, 2004, S1: 52-54
    [17] Wang B. Q.. Erosion-corrosion of coatings by biomass-fired boiler fly ash[J]. Wear, 1995, 188(1-2): 40-48
    [18] Bjordal M., Bardal E., Rogne T., et al. Combined erosion and corrosion of thermal sprayed WC and CrC coatings[J]. Surface and Coating Technology, 1995, 70(2-3): 215-220
    [19] Horlock A.J., McCartney D.G., Shipway P.H., et al. Thermally sprayed Ni(Cr)-TiB2 coatings using powder produced by self-propagating high temperature synthesis: Microstructure and abrasive wear behavior[J]. Materials Science and Engineering A, 2002, 336: 88-98
    [20] Jones M., Horlock A.J., Shipway P.H., et al. A comparison of the abrasive wear behavior of HVOF sprayed titanium carbide- and titanium boride-based cermet coatings[J]. Wear, 2001, 251: 1009-1016
    [21] Lotfi B., Shipway P.H., McCartney D.G., et al. Abrasive wear behavior of Ni(Cr)-TiB2 coatings deposited by HVOF spraying of SHS-derived ceramic powders[J]. Wear, 2003, 254: 340-349
    [22] Cutler R.A.. Engineered Materials Handbook: Ceramics and Glasses, vol. 4[M]. Ohio: ASM International, 1991: 787-785
    [23] Li X.M., Yang Y.Y., Shao T.M., et al. Impact wear performances of Cr3 C2-NiCr coatings by plasma and HVOF spraying[J]. Wear, 1997, 202(2): 208-214
    [24] Zhu Y.C., Yukimura K., Ding C.X., et al. Tribological properties of nanostructured and conventional WC-Co coatings deposited by plasma spraying[J]. Thin Solid Films, 2001, 388(1-2): 277-282
    [25] Zhang J.X., He J.N., Dong Y.C., et al. Microstructure and Properties of Al O - 13%TiO coatings sprayed using nanostructured powders2 3 2[J]. Rare Metals, 2007, 26(4): 391-397
    [26] Berghaus J.O., Marple B., Moreau C.. Suspension plasma spraying of nanostructured WC-12Co coatings[J]. Journal of Thermal Spray Technology, 2006, 15: 676-681
    [27] Liu S.L., Sun D.B., Fan Z.S., et al. The influence of HVAF powder feedstock characteristics on the sliding wear behavior of WC-NiCr coatings[J]. Surface and Coatings Technology, 2008, 202(20): 4893-4900
    [28] Tao K., Zhou X.L., Cui H., et al. Synthesis of nanocrystalline NiCrC alloy feedstock powders for thermal spraying by cryogenic ball milling[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(1): 77-83
    [29] Mullendore A.W., Mattox D.M., Whitley J.B., et al. Plasma-sprayed coatings for fusion reactor application[J]. Thin Solid Films, 1979, 63(2): 243-249
    [30]栗卓新,方建筠,史耀武,等.高速电弧喷涂Fe-TiB2 /Al2 O3复合涂层的组织及性能[J].中国有色金属学报, 2005, 15(11): 1800-1805
    [31]程汉池,栗卓新,安树春,等.大气等离子喷涂TiB2-316L不锈钢基复合涂层及其耐磨性能[J].焊接学报, 2008, 29(7): 64-68
    [32] Dallaire S., Levert H.. Systhesis and deposition of TiBB2-containing materials by arc spraying[J]. Surface and Coatings Technology, 1992, 50(3): 241-248
    [33] Dallaire S., Legoux J.G., Levert H.. Abrasion wear resistance of arc-sprayed Stainless steel and composite stainless steel coatings[J]. Journal of Thermal Spray Technology, 1995, 4(2): 163-168
    [34] Dallaire S.. Hard arc-sprayed coating with enhanced erosion and abrasion wear resistance [J]. Journal of Thermal Spray Technology, 2001, 10(3): 511-519
    [35] Fukubavashi H.H., Sue J.A., Tucer R.C., et al. Coated article with improved thermal emissivity[P]. USP: 4975621, 1990
    [36] Fang J.J., Li Z.X., Shi Y.W.. Microstructure and properties of TiBB2-containing coatings prepared by arc spraying[J]. Applied Surface Science, 2008, 254: 3849-3858
    [37] Davis J.R.. Handbook of Thermal Spray Technology[M]. United States of America: ASM International, 2004: 54-60
    [38] Ak N.F., Tekmen C., Ozdemir I., et al. NiCr coating on stainless by HVOF technique[J]. Surface and Coatings Technology, 2003, 174-175: 1070-1073
    [39] Kemdehoundja M., Dinhut J.F., Poussord G., et al. High temperature oxidation ofNi_(70)Cr_(30) alloy: determination of oxidation kinetics and stress evolution in chromic layers by Raman spectroscopy[J]. Materials Science and Engineering A, 2006, 435-436: 666-671
    [40] Sidhu T.S., Prakash S., Agrawal R.D.. Characterization of NiCr wire coatings on Ni- and Fe- based superalloys by the HVOF process[J]. Surface and Coatings Technology, 2006, 200: 5542
    [41] Haynes J.A., Rigney E.D., Ferber W.D., et al. Oxidation and degradation of a plasma-sprayed thermal barrier coating system[J]. Surface and Coatings Technology, 1996, 86-87: 102-108
    [42] Richer P., Yandouzi M., Beauvais L., et al. Oxidation behavior of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying[J]. Surface and Coatings Technology, 2010, 204: 3962-3974
    [43] Hirose H., Honda K., Kobayashi K.F.. Properties of in-situ nitride reinforced titanium-aluminide layers formed by reactive low pressure plasma spraying with nitrogen gas[J]. Materials Science and Engineering A, 1997, 222: 221-229
    [44] Bacci T., Bertamini L., Ferrari F., et al. Reactive plasma spraying of titanium in nitrogen containing plasma gas[J]. Materials Science and Engineering A, 2000, 283: 189-195
    [45] Feng W.R., Yan D.R., He J.N., et al. Microhardness and toughness of the TiN coating prepared by reactive plasma spraying[J]. Applied Surface Science, 2005, 243: 204-213
    [46] Wang H.T., Huang J.H., Zhu J.L., et al. Microstructure of cermet coating prepared by plasma spraying of Fe-Ti-C powder using sucrose as carbonaceous precursor[J]. Journal of Alloys and Compounds, 2009, 472: L1-L5
    [47] Jaeggi C., Frauchiger V., Eitel F., et al. The effect of surface alloying of Ti powder for vacuum plasma spraying of open porous titanium coatings[J]. Acta Materialia, 2011, 59: 717-725
    [48] Liang X.H., Zhou K.S., Liu M., et al. Microstructure and oxidation of NiCoCrAlYTa coating by low pressure plasma spraying[J]. Surface Review and Letters, 2009, 16(9): 375-380
    [49] Put A.V., Lafont M.C., Oquab D., et al. Effect of modification by Pt and manufacturing processes on the microstructure of two NiCoCrAlYTa bond coatings intended for thermal barrier system applications[J]. Surface and Coatings Technology, 2010, 205: 717-727
    [50]陶凯,崔华,周香林,等.超音速火焰(HVOF)喷涂过程中颗粒行为数值模拟的进展研究[J].材料导报, 2006, 20(4): 112-116
    [51] Zhao L.D., Zwick J., Lugscheider E.. HVOF spraying of Al O -dispersion-strengthened NiCr powders[J]. Surface and Coatings Technology, 2004, 182(1): 72-77 2 3
    [52]白春礼.纳米科学与技术[M].昆明:云南科学技术出版社, 1995: 150-166
    [53] Andres R.P.. Research opportunities on clusters and clusters-assembled materials[J]. Journal of Materials Research, 1989, 4: 704-712
    [54] Ayyub P., Multani M., Barma M., et al. Size-induced structural phase transition and hyperfine properties of microcrystalline Fe2 O3 [J]. Journal of Physics C, 1988, 21: 2229-2231
    [55] Brus L.E.. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state[J]. Journal of Chemical Physics, 1984, 80: 4403-4409
    [56] Roy M., Pauschitz A., Wernisch J., et al. The influence of temperature on the wear of Cr C -25(Ni20Cr) coating–comparison between nanocrystalline grains and convetional grains[J]. Wear, 2004, 257: 799-811 3 2
    [57]尹斌,周惠娣,陈建敏,等.等离子喷涂纳米WC-12%Co涂层与陶瓷和不锈钢配副时的摩擦磨损性能对比研究[J].摩擦学学报, 2008, 28(3): 213-218
    [58]关耀辉,徐杨,郑仲瑜,等.等离子喷涂纳米FeS涂层的摩擦磨损性能研究[J].摩擦学学报, 2006, 26(4): 320-324
    [59]李美栓.金属的高温腐蚀[M].北京:冶金工业出版社, 2001: 181-185
    [60] Wagner C.. Reaktionstypen bei der oxidation von legierungen[J]. Zeitschrift Für Elektrochemie, Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1959, 63(7): 772-782
    [61] Cao G. J., Geng L., Zheng Z. Z., et al. The oxidation of nanocrystalline Ni3Al fabricated by mechanical alloying and spark plasma sintering[J]. Intermetallics, 2007, 15, 1672-1677
    [62] Klam H.J., Hahn H., Gleiter H.. The thermal expansion of grain boundaries[J]. Acta Metallurgica, 1987, 35(8): 2101-2104.
    [63] Lee D. Y., Santella M. L., Anderson I. M., et al. Thermal aging effects on the microstructure and short-term oxidation behavior of a cast Ni3Al alloy[J]. Intermetallics, 2005, 13(2): 187-196
    [64]陈国锋,楼翰一.溅射Ni-8Cr-3.5Al纳米晶涂层的抗高温氧化行为[J].金属学报, 2000, 36(1), 59-61
    [65] Fecht J.H.. Intrinsic instability and entropy stabilization of grain boundaries[J]. Physical Review Letters, 1990, 65(5): 610-613
    [66]卢柯.金属纳米材料晶体的界面热力学特性[J].物理学报, 1995, 44(9): 1454-1460
    [67] Wanger M.. Structure and thermodynamic properties of nanocrystalline metals[J]. Physical Review B, 1992, 45(2): 635-639
    [68] Andrievski R.A.. Review stability of nanostructured materials[J]. Journal of Materials Science, 2003, 38(7): 1367-1375
    [69]卢柯,周飞.纳米晶体材料的研究现状[J].金属学报, 1997, 33(1): 99-106
    [70] Murty B.S., Datta M.K., Pabi S.K.. Structure and thermal stability of nanocrystalline materials[J]. Sadhana, 2003, 28(1-2): 23-45
    [71] Lu K.. The temperature instability of nanocrystalline Ni-P materials with different grain sizes[J]. Nanostructured Materials, 1993, 2(6): 643-652
    [72] Chen Z., Liu F., Yang W., et al. Influence of grain boundary energy on the grain size evolution in nanocrystalline material[J]. Journal of Alloys and Compounds, 2009, 475(1-2): 893-897
    [73] Li J., Wang J., Yang G.. Phase field modeling of grain boundary migration with solute drag[J]. Acta Materialia, 2009,57(7): 2108-2120
    [74] Gottstein G., Ma Y., Shvindlerman L.S.. Triple junction motion and grain microstructure evolution[J]. Acta Materialia, 2005, 53(5): 1535-1544
    [75] Moelans N., Blanpain B., Wollants P..Pinning effect of second-phase particles on grain growth in polycrystalline films studied by 3D phase field simulations[J]. Acta Materialia, 2007, 55(6): 2173-2182
    [76] Kirchheim R.. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregationⅠ. Theoretical background[J]. Acta Materialia, 2007, 55(15): 5129-5138
    [77] Kirchheim R.. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregationⅡ. Experimental evidence and consequences[J]. Acta Materialia, 2007, 55(15): 5139-5148
    [78] Estrin Y., Gottstein G., Rabkin E., et al. On the kinetics of grain growth inhibited by vacancy generation[J]. Scripta Materialia, 2000, 43(2): 141-147
    [79] Lai J.K.L., Shek C.H., Lin G.M.. Grain growth kinetics of nanocrystalline SnO2 for long-term isothermal annealing[J]. Scripta Materialia, 2003, 49(5): 441-446
    [80] Tao K., Zhang J., Cui H., et al. Fabrication of conventional and nanostructured NiCrC coatings via HVAF technique[J]. Transactions of Nonferrous Metals Society of China, 2008, 18: 262-269
    [81] Cui H., Tao K., Zhou X.L., et al. Thermal stability of nanostructured NiCrC coating prepared by HVAF spraying of cryomilled powders[J]. Rare Metals, 2008, 27(4): 418-424
    [82] Tao K., Zhou X.L., Cui H., et al. Microhardness variation in heat-treated conventional and nanostructured NiCrC coatings prepared by HVAF spraying[J]. Surface and Coatings Technology, 2009, 203: 1406-1414
    [83]刘胜林.纳米NiCr/NiCr-WC粉末与热喷涂涂层制备及其性能研究[D].北京:北京科技大学, 2008
    [84] Lee J., Zhou F., Chung K., et al. Grain growth of nanocrystalline Ni powders prepared by cryomilling[J]. Metallurgical and Materials Transaction A, 2001, 32(12): 3109-3115
    [85]杨建桥,杨保兴.热喷涂纳米结构涂层研究现状与展望[J].腐蚀与防护, 2008, 29(5): 290-294
    [86]李长青,马世宁,邓智昌.等离子喷涂纳微米结构陶瓷涂层相变及显微分析[J].机械工人(热加工), 2003, 9: 13-14
    [87]陈振华,陈鼎.机械合金化与固液反应球磨[M].北京:化学工业出版社,材料科学与工程出版中心, 2006: 66-72
    [88] Benjamin J.S.. Dispersion strengthened superalloys by mechanical alloying[J]. Metallurgical and Transaction B, 1970, 1(10): 2943-2951
    [89] Ei-Eskandarany M.S.. Mechanical alloying for fabrication of advanced engineering materials[M]. New York, USA: William Andrew publishing Norwich, 2000: 199-231
    [90] Koch C.C., Cavin O.B., Mckamey C.G., et al. Preparation of amorphous Ni60Nb40 by mechanical alloying[J]. Applied Physics Letters, 1983, 43(11): 1017-1019
    [91]张存芳,余红雅,钟喜春,等.高能球磨法制备Mn-Zn铁氧体材料的研究[J].材料导报, 2009, 23 (6): 8-10
    [92] Santos F.A., Ramos A.S., Santos C., et al. Obtaining and stability verification of superconducting phases of the Nb-Al and Nb-Sn systems by mechanical alloying and low-temperature heat treatments[J]. Journal of Alloys and Compounds, 2010, 491(1-2): 187-191
    [93] Zhu M., Gao Y., Che X.Z., et al. Hydriding kinetics of nano-phase composite hydrogen storage alloys prepared by mechanical alloying of Mg and MmNi5-x(CoAlMn)x[J]. Journal of Alloys and Compounds, 2002, 330-332: 708-713
    [94] Prokhorov V.M., Pivovarov G.I.. Detection of internal cracks and ultrasound characterization of nanostructured Bi2 Te3-based thermoelectrics via acoustic microscopy[J]. Ultrasonics, 2011, 51(6): 715-718
    [95] Sheu H.H., Hsiung L.C., Sheu J.R..Synthesis of multiphase intermetallic compounds by mechanical alloying in Ni-Al-Ti system[J]. Journal of Alloys and Compounds, 2009, 469(1-2): 483-487
    [96] Trudeau M., Huot J.Y., Schulz R., et al. Nanocrystalline Fe-(Co, Ni)-Si-B: The mechanical crystallization of amorphous alloys and the effects on electrocatalytic reactions[J]. Physical Review B, 1992, 45(9): 4626-4636
    [97] Eckert J., Holzer J.C., Krill C.E., et al. Structure and thermodynamic properties of nanocrystalline FCC metals prepared by mechanical attrition[J]. Journal of Materials Research, 1992, 7(7): 1751-1761
    [98]欧忠文,刘维民,徐滨士,等.材料表面摩擦学设计新方法-纳米结构耐磨涂层的组装[J].功能材料, 2002, 33(1): 19-21
    [99]胡海亭,胡明,吴明忠,等.球磨工艺对SiC和Al复合粉质量的影响[J].佳木斯大学学报(自然科学版), 2006, 24(2): 168-171
    [100] Sachan R., Park J.W.. Formation of nanodispersoids in Fe-Cr-Al/30%TiB2 composite system during mechanical alloying[J]. Journal of Alloys and Compounds, 2009, 485(1-2): 724-729
    [101] He J., Ice M., Lavernia E.J.. Synthesis and characterization of nanostructured Cr 3 C2 -NiCr[J]. Nanostructured Materials, 1998, 10(8): 1271-1283
    [102] Bemporad E., Pecchio C., De R.S., et al. Characterization and wear properties of industrially produced nanoscaled CrN/NbN multilayer coating[J]. Surface and coatingsTechnolgy, 2004, 188-189: 319-330
    [103] Lima R.S., Marple B.R.. Enhanced ductility in thermally sprayed titania coating synthesized using a nanostructured feedstock [J]. Materials Science and Engineering A, 2005, 395(1-2): 269-280
    [104] Tellkamp V.L., Lau M.L., Fabel A., et al. Thermal spraying of nanocrystalline inconel 718[J]. Nanostructured Materials, 1997, 9: 489-492
    [105] Lima R.S., Marple B.R.. From APS to HVOF spraying of conventional and nanostructured titania feedstock powders: A study on the enhancement of the mechanical properties[J]. Surface and coatings Technology, 2006, 200: 3428-3437
    [106] Li H., Khor K.A., Kumar R., et al. Characterization of hydroxyapatite nano-zirconia composite coatings deposited by high velocity oxyfuel (HVOF) spray process[J]. Surface and Coatings Technology, 2004, 182(2-3): 227-236
    [107]戴达煌,周克崧,袁镇海,等.现代材料表面科学技术[M].北京:冶金工业出版社, 2003: 158-159
    [108] López Cantera E., Mellor B. G.. Fracture toughness and crack morphologies in eroded WC-Co-Cr thermally sprayed coatings[J]. Materials Letters, 1998, 37(4-5): 201-210
    [109] Anstis G.R., Chantikul P., Lawn B.R., et al. A critical evaluation of indentation technique for measuring fracture toughness:Ⅰ. direct crack measurement[J]. Journal of the Amenrican Ceramic Society, 1981, 64(9): 533-538
    [110] Evans A.G., Wilshaw T.R.. Quasi-static solid particle damage in brittle solids:Ⅰ. Observations analysis and implications[J]. Acta Metallurgica, 1976, 24(10): 939-956
    [111] Fromhold A.T.. Theory of metal oxidation, vol 1, fundaments[M]. Amsterdam, New York: North-Holland publish, 1976: 212-224
    [112] Matthews S., Hyland M., James B.. Microhardness variation in relation to carbide development in heat treated Cr3 C2-NiCr thermal spray coatings[J]. Acta Materialia, 2003, 51(14): 4267-4277
    [113]张先胜,冉广.机械合金化的反应机制研究进展[J].金属热处理, 2003, 28(6): 28-31
    [114]丘利,胡玉和. X射线衍射技术及设备[M].北京:冶金工业出版社, 2001: 121-138
    [115] Hall W.H.. X-Ray line broadening in metals[J]. Proceeding of the Physical Society ofLondon, 1949, A62: 741-743
    [116]徐滨士,朱绍华,刘世表.表面工程与维修[M].北京:机械工业出版社, 1996: 40-45
    [117] Uyulgan. B, Dokumaci E., Celik E., et al. Wear behavior of thermal flame sprayed FeCr coatings on plain carbon steel substrate[J]. Journal of Materials Processing Technology, 2007, 190(1-3): 204-210
    [118] Lee S.H., Themelis N.J., Castaldi M.J.. High temperature corrosion in waste-to-energy boilers[J]. Journal of Thermal Spray Technology, 2007, 16(1): 104-110
    [119] Sampath S., Jiang X.Y., Matejicek J., et al. Substrate temperature effects on splat formation, microstructure development and properties of plasma sprayed coatings Part I :Case study for partially stabilized zirconia[J]. Materials Science and Engineering A, 1999, 272(1): 181-188
    [120] Jiang X., Matejicek J., Sampath S.. Substrate temperature effects on the splat formation, microstructure development and properties of plasma sprayed coatings Part II: case study for molybdenum[J]. Materials Science and Engineering A, 1999, 272(1): 189-198
    [121] Lima R.S., Kucuk A., Berndt C.C.. Bimodal distribution of mechanical properties on plasma sprayed nanostructured partially stabilized zirconia[J]. Materials Science and Engineering A, 2002, 327(2): 224-232
    [122] Luo H., Goberman D., Shaw L., et al. Indentation fracture behavior of plasma-sprayed nanostructured Al2O3 -13 wt.% TiO2 coatings[J]. Materials Science and Engineering A, 2003, 346(1-2): 237-245
    [123] Gell M., Jordan E.H., Sohn Y.H., et al. Development and implementation of plasma sprayed nanostructured ceramic coatings[J]. Surface and Coatings Technology, 2001, 146~147: 48-54
    [124] Zhang J.X., He J.L., Dong Y.C., et al. Microstructure characteristics of Al 2 O3-13 wt.% TiO2 coating plasma spray deposited with nanocrystalline powders[J]. Journal of Materials Processing Technology, 2008, 197(1-3): 31-35
    [125] Planche M.P., Liao H., Normand B., et al. Relationships between NiCrBSi particle characteristics and corresponding coating properties using different thermal spraying process[J]. Surface and Coating Technology, 2005, 200(7): 2465-2473
    [126]朱润生.自熔合金粉末的研究[J].粉末冶金工业, 2000, 10(2): 7-14
    [127] Stringer J.. Coatings in the electricity supply industry: past, present, and opportunities for the future[J]. Surface and coatings technology, 1998, 108-109: 1-9
    [128] Lotfi B.. Elevated temperature oxidation behavior of HVOF sprayed TiBB2 cermet coating[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(2): 243-247
    [129]陶凯.超音速火焰(HVAF)喷涂高温耐磨耐蚀纳米晶NiCrC涂层的研究[D].北京:北京科技大学, 2008
    [130] Wang F.H.. Oxidation Resistance of Sputtered Ni3(A1Cr) Nanocrystalline Coating[J]. Oxidation of Metals, 1997, 47(3-4): 247-258
    [131] Ellingham H.J.T.. Reducibility of oxides and sulfides in metallurgical processes[J]. Transactions and Communcations, Journal of Society of Chemical Industry, 1944, 63(5): 125-133
    [132]邵荷生.摩擦与磨损[M].北京:煤碳工业出版社, 1992: 10-30
    [133]董允,林晓娉,张廷森.现代表面工程技术[M].北京:机械工业出版社, 2000: 50-80
    [134] Richard C.S., Beranger G., Lu J., et al. The influences of heat treatment and interdiffusion on the adhesion of plasma-sprayed NiCrAlY coatings[J]. Surface and Coatings Technology, 1996, 82(1-2): 99-109
    [135] Tryon B., Murphy K.S., Yang J.Y., et al. Hybrid intermetallic Ru/Pt-modified bond coatings for thermal barrier systems[J]. Surface and Coatings Technology, 2007, 202(2): 349-361
    [136]冯端,师昌绪,刘志国.材料科学导论[M].北京:化学工业出版社, 2002: 44-70
    [137] Guilemany J.M., Dosta S., Miguel J.R.. The enhancement of the properties of WC-Co HVOF coatings through the use of nanostructured and microstructured feedstock powders[J]. Surface and Coatings Technology, 2006, 201(3-4): 1180-1190
    [138]张平.热喷涂材料[M].北京:国防工业出版社, 2006: 39-126
    [139] Stringer J.. Hot corrosion of high temperature alloys[J]. Annual Review of Materials Science, 1977, 7: 477-509
    [140] Pettit F.S., Meier G.H.. Oxidation and hot corrosion of superalloys[J]. Superalloys, 1984, 6(2): 651-687
    [141] Rapp R.A.. Chemistry and electrochemistry of hot corrosion of metals[J]. MaterialsScience and Engineering, 1987, 87: 319-327
    [142] Simons E.L., Browning G.V., Liebhafsky H.A. Sodium sulfate in gas turbines[J]. Corrosion, 1955, 11(2):505-514
    [143] Bornsteinet N.S., Decrescente M.A.. The role of sodium in the accelerated oxidation phenomenon sulfidation[J]. Metallurgical and Materials Transactions B, 1971, 2(10): 2875-2883
    [144] Goebel J.A., Pettit F.S., Goward G.W.. Mechanism for the hot corrosion of nickel-base alloys[J]. Metallurgical and Materials Transactions B, 1973, 4(1): 261-278
    [145] Rapp R.A., Goto K.S.. Fused salt symposiumⅡ, Ed. J. Branstein, Journal of the Electrochemical Society, Princeton, 1979
    [146]张允书.热腐蚀的盐熔机理及其局限性[J].中国腐蚀与防护学报, 1992, 12(1): 1-10
    [147] Sidhu T.S., Agrawal R.D., Prakash S.. Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings- a review[J]. Surface and coatings Technology, 2005, 198(1-3): 441-446
    [148] Luthra K.L., Shores D.A.. Mechanism of Na2SO4 induced corrosion at 600°- 900℃[J]. Journal of the Electrochemical Society, 1980, 127(10): 2202-2210
    [149]龙世宗,陈永忠,程彬,等. KCl- K2 SO4 - Na2SO4系统低温融体形成的温度范围[J].硅酸盐学报, 2006, 34(4): 504-506
    [150] Ma S.N., Liu Q., Li C.Q.. Study of hot corrosion resistance mechanisms of arc spraying coatings[J]. Acta Metallurgica Sinica (English Letters), 1999, 12(5): 1007-1013
    [151]娄世松,于凤昌,左禹.渗铝钢在Na2 SO4 - V2 O5熔盐体系中的热腐蚀行为[J].材料保护, 2005, 38(4): 1-5
    [152] Rapp R.A.. Hot corrosion of materials[J]. Pure and Applied Chemistry, 1990, 62(1): 113-122
    [153] Jacobson N.S.. Sodium sulfate: Deposition and dissolution of silica[J]. Oxidation of Metals, 1989, 31(1-2): 91-103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700