热处理和合金元素对MCrAlY(Re)粘结层材料高温氧化行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以γ/β复相MCrAlY(Re)合金为研究对象,以提高合金的抗氧化性能为主要研究内容,系统研究了该系合金的组织特征、高温氧化行为及氧化机理并实现了对服役寿命的预测。
     为了阐述热处理和合金元素对MCrAlY(Re)系列γ/β复相合金高温氧化行为的影响,本文主要借助背散射电子显微术及能谱分析技术进行研究。研究结果表明,热处理促进了富铝相的均匀化分布,均匀分布的富铝相有利于合金表面迅速形成致密化的α-Al_2O_3氧化膜,降低了氧化速率,提高了合金的抗氧化性能。
     为了阐明合金元素在高温氧化时的作用机理,本文系统研究了合金元素在合金中的分配及析出、氧化动力学、氧化产物的组成、物相转变和氧化膜/合金界面的元素分布。与单一地添加Al、Re相比,Al和Re的联合添加能够增加β相含量,在氧化过程中强化了α-(Cr,Re)相的界面析出行为,降低了氧化速率。添加3~5%wt.%Pt能够形成富Pt的β相。同原始合金相比,Pt改性的合金在高温氧化时具有较快的θ-→α-Al_2O_3相转变、较低的氧化速率和β相消耗速率,能够抑制内氧化及尖晶石氧化物的生成。微量的Dy对合金的组织无明显的影响。在氧化过程中,Dy对合金的作用效果与温度及Re的存在与否有关。对于MCrAlY合金,添加Dy能够细化氧化产物的晶粒、促进过渡相转变、显著降低了氧化速率。1100℃循环氧化时,Dy的添加有助于合金形成单一且致密的α-Al_2O_3氧化膜,抑制了MCrAlY合金表面氧化膜的开裂、剥落及内氮化。Dy对含Re合金的氧化产物的晶粒细化的作用不明显,且阻碍了过渡相的转变。在800℃氧化时,Dy对含Re合金的氧化性能无明显作用。但在较高温度下,Dy能够显著降低该合金的氧化速率,抑制尖晶石氧化物的生成,改善了合金的抗氧化性能。
     基于氧化过程中富铝β相的消耗机制建立模型并预测了合金的服役寿命。预测结果表明,添加微量Dy改进的合金的服役寿命两倍于原始合金。
The paper works at γ/β duplex-phase MCrAlY(Re) alloys, and its main part isthe improvement of the high-temperature anti-oxidation properties of these alloys.The present work studies the microstructural features, the oxidation behaviors andmechanisms of the tested alloys, and subsequently predicted the in-service lifetime ofthose alloys.
     With the help of back-scattered electron microscopy and energy-dispersiveanalysis, the present work is to study the influences of heat-treatment and alloyingelements on the high-temperature oxidation behaviors of γ/β duplex-phaseMCrAlY(Re) alloys. Heat-treatment homogenizes the distribution of Al-rich phase,which is beneficial to prompt the formation of the α-Al_2O_3protective layer, lower theoxidation rate and improve the anti-oxidation properties of alloys.
     In order to clarify the influence mechanisms of alloying elements on the testedalloys during the oxidation process, the paper conducted systematic studies on thepartition and precipition of alloying elements, the oxidation kinetics, the compostionand the phase transformation of oxides, and the element-distribution characteristics atthe scale/alloy interface. Compared with the individual addition of Al or Re, thecombined addition of Al and Re could increase the amount of β-phase; strengthen theprecipitation behaviors of α-(Cr,Re) underneath the scale/alloy interface and loweroxidation rate. Additon of3~5wt.%Pt could form a Pt-rich β-phase. By contrast withthe original alloys, the Pt-modified alloys showed the accelerated phasetransformation, lowered oxidation rate and consumption rate of β-phase. Pt couldsuppress the formation of the internal oxidation and spinels. Alloys with or withoutadding small amount of Dy showed the parellel microstructural features. The effectsof Dy on the tested alloys were sensitive to the temperature and the existence of Re.For MCrAlY alloy, addition of Dy could bring the accelerated phase transformation,the refined oxide grains and the significantly lowered oxidation rate. Under cyclicoxidation at1100℃, Dy addition formed a sole and protective α-Al_2O_3scale, which elminated the cracks and spallations of the oxide scale and internal nitrides. ForRe-containing alloy, Dy had not obvious effects on the refinement of the oxides andinhibited the phase transformation. At800℃, Dy had no influence on theanti-oxidation properties. However, Dy could greatly lower the oxidation rate;suppress the formation of spinels and improve the anti-oxidation resistance at highertemperature.
     Based on the mechanisms of the consumption of β-phase, a model was proposedto predict the in-service lifetime of the tested alloys. The prediction results revealedthe doubled lifetime of the Dy-modified alloys compared with the original alloys.
引文
[1] Padture N P, Gell M, Jordan E H. Thermal Barrier Coatings for Gas-Turbine EngineApplications. Science,2002,296:280-285.
    [2] Wright I G, Gibbons T B. Recent development in gas turbine materials and technology andtheir implications for syngas firing. International Journal of Hydrogen Energy,2007,32:3610-3621.
    [3] Wang X, Lee G, Atkinson A. Investigation of TBCs on turbine blades byphotoluminescence piezospectroscopy. Acta Materialia,2009,57(1):182-195.
    [4] Nesbitt J A. Thermal modeling of various thermal barrier coatings in a high heat fluxrocket engine. Surface and Coatings Technology,2000,130(2-3):141-151.
    [5]李美妲,胡望宇,孙晓峰,等.热障涂层的研究进展与发展趋势.材料导报,2005,19(4):41-45.
    [6]刘纯波,林锋,蒋显亮.热障涂层的研究现状与发展趋势.中国有色金属学报,2007,17(1):1-13.
    [7] Schulz U, Leyens C, Fritscher K, et al. Some recent trends in research and technology ofadvanced thermal barrier coatings. Aerospace Science and Technology,2003,7:259-264.
    [8] Toscano J, Gil A, Hüttel T. Temperature dependence of phase relationships in differenttypes MCrAlY-coatings. Surface and Coatings Technology,2007,202(4-7):603-607.
    [9] Pomeroy M J. Coatings for gas turbine materials and long term stability issues,2005,26:223-231.
    [10] Konter M, Thumann M. Materials and manufacturing of advanced industrial gas turbinecomponents. Journal of Materilas Processing Technology,2001,117:386-390.
    [11] Aygun T, Vasiliev A L, Padture N P, et al. Novel thermal barrier coatings that are resistantto high-temperature attack by glassy deposits. Acta Materialia,2007,55(20):6734-6745.
    [12] Drexler J M, Shinoda K, Ortiz A L, et al. Air-plasma-sprayed thermal barrier coatings thatare resistant to high-temperature attack by glassy deposits. Acta Materialia,2010,58(20):6835-6844.
    [13] Padture N P, Schlichting K W, Bhatia T, et al. Towards durable thermal barrier coatingswith novel microstructures deposited by solution-precursor plasma spray. Acta Materialia,2001,49(12):2251-2257.
    [14] Movchan B A, Yakovchuk K Y. Graded thermal barrier coatings, deposited by EB-PVD.Surface and Coatings Technology,2004,188-189:85-92.
    [15] Guo H B, Xu H B, Bi X F, et al. Preparation of Al2O3-YSZ composite coating by EB-PVD.Materials Science and Engineering A,2002,325(1-2):389-393.
    [16]武颖娜,柯培玲,孙超,等.爆炸喷涂制备NiCrAlY/NiAl/ZrO2-Y2O3体系热障涂层.金属学报,2004,40(5):541-545.
    [17] Iwamato H, Sumikawa T, Nishida K, et al. High temperature oxidation behavior of laserclad NiCrAlY layer. Materials Science and Engineering A,1998,241:251-258.
    [18] Richard C S, Béranger G, Lu J, et al. The influences of heat treatments and interdiffusionon the adhesion of plasma-sprayed NiCrAlY coatings. Surface and Coatings Technology,1996,82(1-2):99-109.
    [19] Zotov N, Bartsch M, Chernova L, et al. Effects of annealing on the microstructure and themechanical properties of EB-PVD thermal barrier coatings. Surface and CoatingsTechnology,2010,205(2):452-464.
    [20] Nijdam T J, Sloof W G. Microstructural evolution of a MCrAlY coating upon isothermalannealing. Materials Characterization,2008,59(12):1697-1704.
    [21] Stecura S. Effects of yttrium, aluminum and chromium concentrations in bond coatings onthe performance of zirconia-yttria thermal barriers. Thin Solid Films,1980,73(2):481-489.
    [22] Goward G W. Progress in coatings for gas turbine airfoils. Surface and CoatingsTechnology,1998,108-109:73-79.
    [23] Gurrappa I, Rao A S. Thermal barrier coatings for enhanced efficiency of gas turbineengines. Surface and Coatings Technology,2006,201(6):3016-3029.
    [24] Zhou Y C, Hashida T. Coupled effects of temperature gradient and oxidation on thermalstress in thermal barrier coating system. International Journal of Solids and Structures,2001,38(24-25):4235-4264.
    [25] Ray A K, Steinbrech R W. Crack propagation studies of thermal barrier coatings underbending. Journal of the European Ceramic Society,1999,19(12):2097-2109.
    [26] Ray A K, Roy N, Kar A, et al. Mechanical property and characterization of a NiCoCrAlYtype metallic bond coat used in turbine blade. Materials Science and Engineering A,2009,505(1-2):96-104.
    [27] Zhang Z G, Gesmundo F, Hou P Y, et al. Criteria for the formation of protective Al2O3scales on Fe-Al and Fe-Cr-Al alloys. Corrosion Science,2006,48:741-765.
    [28] Beele W, Czech N, Quadakkers W J, et al. Long-term oxidation tests on a Re-containingMCrAlY coating. Surface and Coatings Technology,1997,94-95:41-45.
    [29] Leyens C, Pint B A, Wright I G. Effect of composition on the oxidation and hot corrosionresistance of NiAl doped with precious metals. Surface and Coatings Technology,2000,133-134:15-22.
    [30] Li M J, Sun X F, Guan H R, et al. Cyclic oxidation behavior of palladium-modifiedaluminide coating. Surface and Coatings Technology,2003,167:106-111.
    [31] Czech N, Schmitz F, Stamm W. Microstructural analysis of the role of rhenium inadvanced MCrAlY coatings. Surface and Coatings Technology,1995,76-77:28-33.
    [32] Czech N, Schmitz F, Stamm W. Improvement of MCrAlY coatings by addition of rhenium.Surface and Coatings Technology,1994,68-69:17-21.
    [33] Huang L, Sun X F, Guan H R, et al. Improvement of the oxidation resistance of NiCrAlYcoatings by the addition of rhenium. Surface and Coatings Technology,2006,201:1421-1425.
    [34] Phillips M A, Gleeson B. Beneficial Effects of Rhenium Additions on the Cyclic OxidationResistance of α-Cr+β-NiAl Alloys. Oxidation of Metals,1998,50(5-6):399-429.
    [35]李美栓.金属的高温腐蚀.北京:冶金工业出版社,2001.
    [36] Han Y F, Xiao C B. Effect of yttrium on microstructure and properties of Ni3Al base alloyIC6. Intermetallics,2000,8:687-691.
    [37] Zhang Y, Zhu D, Shores D A. Effect of Yttrium on the. Oxidation behavior of Cast Ni30CrAlloy. Acta Metal. Mater,1995,43:4015-4025.
    [38] Choquet P, Mevrel R. Microstructure of alumina scales formed on NiCoCrAl alloys withand without yttrium. Materials Science and Engineering A,1989,120-121:153-159.
    [39]孙仙奇,劳远侠,梁玮. Ce对Fe-Cr-Al合金抗高温氧化性能的影响.广西大学学报,2007,32:15-18.
    [40] Wu Y, Umakoshi Y, Li X W. Isothermal Oxidation Behavior of Ti-50Al alloy with YAdditions at800and900℃. Oxidation of Metals,2006,66(5-6):321-348.
    [41]陈颖,聂祚仁,周美玲,等. La对FeCrAl合金箔材抗高温氧化性能的影响.材料保护,2002,35(8):34-36.
    [42] Zhang G Y, Zhang H, Guo J T. Improvement of cyclic oxidation resistance of a NiAl-basedalloy modified by Dy. Surface and Coatings Technology,2006,201:2270-2275.
    [43] Hou P Y. Impurity effects on alumina scale growth. Journal of the American CeramicSociety,2003,86:660-668.
    [44] Nijdam T J, Sloof W G. Effect of reactive element inclusions on the growth kinetics ofprotective oxide scales. Acta Materialia,2007,55(17):5980-5987.
    [45] Mendis B G, Livi K J T, Hemker K J. Observations of reactive element gettering of sulfurin thermally grown oxide pegs. Scripta Materialia,2006,55(7):589-592.
    [46]刘培生.钴基合金铝化物涂层的高温氧化行为.北京:冶金工业出版社,2008.
    [47] Sim C T.高温合金:宇航和工业动力用的高温材料.大连:大连理工大学出版社,1992.
    [48]李铁藩.金属高温氧化和热腐蚀.北京:化学工业出版社,2003.
    [49]何豪杰.氧活性元素对高温涂层材料性能的影响[硕士学位论文].北京:清华大学材料科学与工程系,2006.
    [50] Brumm M W, Grabke H J. The oxidation behaviour of NiAl-I. Phase transformations inthe alumina scale during oxidation of NiAl and NiAl-Cr alloys. Corrosion Science,1992,33(11):1677-1690.
    [51] Noguchi K, Nishida M, Chiba A. Transmission electron microscopy of low pressureplasma sprayed CoNiCrAlY coating. Scripta Materialia,1996,35(11):1359-1364.
    [52] Tchizhik A A, Rybnikov A I, Malashenko I S, et al. The effect of EB-PVD coatings onstructure and properties of nickel-base superalloy for gas turbine blades. Surface andCoatings Technology,1996,78:113-123.
    [53]纪艳玲,李建平,张建苏,等.发动机涡轮导向叶片热障涂层性能研究.航空制造工程,1997,3:5-7.
    [54] Wu Y N, Wang F H, Hua W G, et al. Oxidation behavior of thermal barrier coatingsobtained by detonation spraying. Surface and Coatings Technology,2003,166:189-194.
    [55] Marie-Pierre B, Benoit G, Pierre J, et al. MCrAlY coating developed via a newelectroless-like route: influence of deposition parameters. Surface and CoatingsTechnology,2003,162:248-260.
    [56] Belzunce F J, Higuera V, Poveda S. High temperature oxidation of HFPD thermal-sprayedMCrAlY coatings. Materials Science and Engineering A,2001,297:162-167.
    [57] Li S, Langlade C, Faycelle S, et al. Influence of the microstructure of plasma depositedMCrAlY coatings on their tribological behavior. Surface and Coatings Technology,1998,100/101:7-11.
    [58] Evans A G, Clarke D R, Levi C G.The influence of oxides on the performance of advancedgas turbines. Journal of European Ceramic Society,2008,28:1405-1419.
    [59] Kim J H, Kim M C, Park C G. Evaluation of functionally graded thermal barrier coatingsfabricated by detonation gun spray technique. Surface and Coatings Technology,2003,168:275-280.
    [60] Matsumoto M, Kato T, Hayakawa K, et al. The effect of pre-oxidation atmosphere on thedurability of EB-PVD thermal barrier coatings with CoNiCrAlY bond coats. Surface andCoatings Technology,2008,202(12):2743-2748.
    [61] Hesnawi A, Li H F, Zhou Z H, et al. Isothermal oxidation behaviour of EB-PVD MCrAlYbond coat. Vacuum,2007,81(8):947-952.
    [62] Schulz U, Menzabach M, Leyens C, et al. Influence of substrate material on oxidationbehavior and cyclic lifetime of EB-PVD TBC systems. Surface and Coatings Technology,2006,146-147:117-123.
    [63] Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability ofthermal barrier coatings. Progress in Materials Science,2001,46:505-555.
    [64] Wright P K, Evans A G. Mechanisms governing the performance of thermal barriercoatings. Current Opinion in Solid State and Materials Science,1999,4:255-265.
    [65] Seiler P, B ker M, R sier J. FEM simulation of oxidation induced stresses with a coupledcrack propagation in a TBC model system. Journal of Physics: Conference Series,2010,240:12-69.
    [66]马维,潘文霞,吴承康.热障涂层材料性能和失效机理研究进展.力学进展,2003,33(4):548-559.
    [67] Nesbitt J A. Numerical Modelling of High-Temperature Corrosion Processes. Oxidation ofMetals,1995,44:309-338.
    [68] Poza P, Grant P S. Microstructure evolution of vacuum plasma sprayed CoNiCrAlYcoatings after heat treatment and isothermal oxidation. Surface and Coatings Technology,2006,201:287-296.
    [69] Lee E Y, Chartier D M, Biederman R R, et al. Modelling the microstructural evolution anddegradation of MCrAlY coatings during high temperature oxidation. Surface and CoatingsTechnology,1987,32:19-39.
    [70] Krukovsky P, Kolarik V, Tadlya K, et al. Lifetime prediction for MCrAlY coatings bymeans of inverse problem solution(IPS). Surface and Coatings Technology,2004,177-178:32-36.
    [71]苗伟,陶琨.不涉及结构的多晶X射线衍射全谱拟合及相关定量分析方法.实验技术与管理,2007,24(10):40-43.
    [72] Li M H, Sun X F, Zhang Z Y et al. Effect of vacuum heat treatment on oxidation behaviorof sputtered NiCrA1Y coating. Acta Metallurgica Sinica,2002,15(1):61-66.
    [73] Prescott R, Mitchell D F, Graham M J, et al. Oxidation mechanisms of β-NiAl+Zrdetermined by SIMS. Corrosion Science,1995,37(9):1341-1364.
    [74] Pint B A, Martin J R, Hobbs L W. The oxidation mechanism of θ-Al2O3scales. Solid StateInonics,1995,78:99-107.
    [75] Gudmundsson B, Jacobson B E. Structure formation and interdiffusion in vacuum plasmasprayed CoNiCrAlY coatings on IN738LC. Materials Science and Engineering A,1988,100:207-217.
    [76] Gudmundsson B, Jacobson B E. The orientation relationship between γ (f.c.c.) and β-NiAlin vacuum-plasma-sprayed Co-Ni-Cr-Al-Y coatings. Materials Science and Engineering A,1989,108:181-187.
    [77] Gudmundsson B, Jacobson B E. The influence of substrate temperature on themicrostructure and hardness of vacuum-plasma-sprayed Co-Ni-Cr-Al-Si-Zr-Y andCo-Ni-Cr-Al-Y alloys. Materials Science and Engineering A,1989,108:105-115.
    [78] Yen F S, Lo H S, Lin H, et al. θ-to α-phase transformation subsystem induced byα-Al2O3-seeding in boehmite-derived nano-sized alumina powders. Journal of CrystalGrowth,2003,249:283-293.
    [79] Brandl W, Toma D, Grabke H J. The characteristics of alumina scales formed onHVOF-sprayed MCrAlY coatings. Surface and Coatings Technology,1998,108-109:10-15.
    [80] Brandl W, Toma D, Grabke H J. The oxidation behaviour of HVOF thermal-sprayedMCrAlY coatings. Surface and Coatings Technology,1997,94-95:21-26.
    [81] Yang Z G, Hou P Y. Wrinkling Behavior of Alumina Scales Formed during IsothermalOxidation of Fe-Al Binary Alloys. Materials Science and Engineering A,2005,391:1-9.
    [82] Venkatraman M, Nenmann J P. Binary Alloy Phase Diagrams, ASM International,1990.
    [83] Okal J. A study of effect of particle size on the oxidation of rhenium in the Re/γ-Al2O3catalysts, Applied Catalysis A: General,2005,287:214-220.
    [84] Duriez C. Rhenium Oxidation by Steam at High Temperatures. Oxidation of Metals,2004,61:49-67.
    [85] Okal J, Tylus W, epinski L K. XPS study of oxidation of rhenium metal on γ-Al2O3support.Journal of Catalysis,2004,225:498-509.
    [86] Y. Niu, Zhang X J, Wu Y, et al. The third-element effect in the oxidation ofNi-xCr-7Al(x=0,5,10,15at.%) alloys in1atm O2at900-1000℃, Corrosion Science,2006,48:4020-4036.
    [87] Narita T. Diffusion Barrier Coating System and Oxidation Behavior of Coated Alloys.Journal of Chinese Society for Corrosion and Protection,2009,29(4):312-314.
    [88] Sumoyama D, Thosin K Z, Nishimoto T, et al. Formation of a Rhenium-baseDiffusion-barrier-coating System on Ni-base Single Crystal Superalloy and its Stability at1,423K. Oxidation of Metals,2007,68:313-329.
    [89] Lang F Q, Narita T. Improvement in oxidation resistance of a Ni3Al-based superalloy IC6by rhenium-based diffusion barrier coatings. Intermetallics,2007,15:599-606.
    [90] Narita T, Lang F Q, Thosin K Z, et al. Oxidation Behavior of Nickel-Base Single-CrystalSuperalloy with Rhenium-Base Diffusion Barrier Coating System at1,423K in Air.Oxidation of Metals,2007,68:343-363.
    [91] Myoung S W, Park S H, Lee P H, et al. Phase transformation and oxidation behavior ofPt-modified MCrAlY coatings. Progress in Organic Coatings,2008,61:316-320.
    [92] Jiang C, Besser M F, Sordelet D J, et al. A combined first-principles and experimentalstudy of the lattice site preference of Pt in B2NiAl. Acta Materialia,2005,53(7):2101-2107.
    [93] Taylor T A, Bettridge D F. Development of alloyed and dispersion-strengthened MCrAlYcoatings. Surface and Coatings Technology,1996,86-87:9-13.
    [94] Haynes J A, Lance M J, Pint B A, et al. Characterization of commercial EB-PVD TBCsystems with CVD (Ni,Pt)Al bond coatings. Surface and Coatings Technology,2001,146-147:140-147.
    [95] Burtin P,Brunelle J P, Pijolat M, et al. Influence of surface area and additives on thethermal stability of transition alumina catalyst supports.I:Kinetic data. Applied Catalysis,1987,34:225-238.
    [96] Marino K A, Carter E A. The effect of platinum on Al diffusion kinetics in β-NiAl:Implications for thermal barrier coating lifetime. Acta Materialia,2010,58(7):2726-2737.
    [97] Marino K A, Carter E A. The effect of platinum on defect formation energies in β-NiAl.Acta Materialia,2008,56(14):3502-3510.
    [98] Krupp U, Christ H J. Internal Corrosion of Engineering Alloys: Experiment and ComputerSimulation. Journal of Phase Equilibria and Diffusion,2005,26(5):487-493.
    [99] Udyavar M, Young D J. Precipitate Morphologies and Growth Kinetics in the InternalCarburisation and Nitridation of Fe-Ni-Cr Alloys. Corrosion Science,2000,42:861-883.
    [100] Krupp U, Christ H J. Internal Nitridation of Nickel-Base alloys: Part II-Behavior ofQuaternary Ni-Cr-Al-Ti Alloys and Computer-Based Description. Oxidation of Metals,1999,52:299-319.
    [101] Krupp U, Christ H J. Internal Corrosion of Engineering Alloys: Experiment and ComputerSimulation. Journal of Phase Equilibria and Diffusion,2005,26(5):487-493.
    [102] Christ H J, Chang SY, Krupp U. Thermodynamic Characteristics and Numerical Modellingof Internal Nitridation of Nickel Base Alloys. Mater. Corros.,2003,54:887-894.
    [103]郭建亭,袁超,侯介山.稀土元素在NiAl合金中的作用.金属学报,2008,44(5):513-520.
    [104] Guo J T, Huai K W, Gao Q, et al. Effects of rare earth elements on the microstructure andmechanical properties of NiAl-based eutectic alloy. Intermetallics,2007,15:727-733.
    [105] Ren W L, Guo J T, Li G S, et al. Effect of Nd on microstructure and mechanical propertiesof NiAl-based intermetallic alloy. Materials Letters,2003,57:1374-1379.
    [106] Jedlinski J. General aspects of the reactive element effect. Corrosion Science,1993,35:863-869.
    [107] Zhang Y J, Sun X F, Guan H R, et al.1050℃isothermal oxidation behavior of detonationgun sprayed NiCrAlY coating. Surface and Coatings Technology,2002,161:302-305.
    [108] Hamid A U. A TEM study of the oxide scale development in Ni-Cr-Al alloys. CorrosionScience,2004,46:27-36.
    [109] Airiskallio E, Nurmi E, Heinonen M H, et al. High temperature oxidation of Fe-Al andFe-Cr-Al alloys: The role of Cr as a chemically active element. Corrosion Science,2004,52:3394-3404.
    [110] Provenzanoa V, Sadananda K, Louat N P, et al. Void formation and suppression during hightemperature oxidation of MCrAlY-type coatings. Surface and Coatings Technology,1988,36(1-2):61-67.
    [111] Strawbridge A, Evans H E. Mechanical failure of thin brittle coatings. Engineering FailureAnalysis,1995,2(2):85-103.
    [112] Pint B A. On the formation of interficial and internal voids in α-Al2O3scales.Oxidation ofMetals,1997,48:303-328.
    [113] Velon A, Yi D Q. Influence of Cr on the Oxidation of Fe3Al and Ni3Al at500°C. Oxidationof Metals,2002,57:13-31.
    [114] Meijering J L. Advances in Materials Research, New York,1971.
    [115] Stott F H, Peide Z, Grant W A, et al. The oxidation of chromium-and nickel-implantednickel at high temperatures. Corrosion Science,1982,22(4):317-320.
    [116] Han S, Young D J. Simultaneous Internal Oxidation and Nitridation of Ni-Cr-Al Alloys.Oxidation of Metals,2001,55:223-242.
    [117] Pint B A, Dwyer M J, Deacon R M. Internal Oxidation–Nitridation of Ferritic Fe(Al)Alloys in Air. Oxidation of Metals,2008,69:211-231.
    [118] Litz J, Rahmel A, Schorr M. Selective carbide oxidation and internal nitridation ofNi-based superalloys IN738LC and IN939in air. Oxidation of Metals,1988,30:95-105.
    [119] Young D J, Watson S. High-temperature corrosion in mixed gas environments. Oxidationof Metals,1995,44:239-264.
    [120] Breval E. Directed oxidation/nitridation of Al alloys: The orientation of oxides/nitridesformed adjacent to Al2O3or AlN reinforcement particles. Journal of Materials ScienceLetters,1995,14:28-30.
    [121] Lan H, Hou P Y, Yang Z G, et al. Influence of Aluminum and Rhenium on theIsothermal Oxidation Behavior of CoNiCrAlY Alloys. Oxidation of Metals,2011,75:77-92.
    [122]何豪杰,杨志刚.含铼CoNiCrAlY合金氧化层中的相转变.稀有金属材料与工程,2006,35(7):1071-1074.
    [123] Pint B A, Wright I G, Lee W Y, et al. Substrate and bond coat compositions: factorsaffecting alumina scale adhesion. Materials Science and Engineering A,1998,245:201-211.
    [124] Guo H B, Wang X Y, Li J, et al. Effects of Dy on cyclic oxidation resistance of NiAl alloy.Transactions of Nonferrous Metals Society of China,2009,19(5):1185-1189.
    [125] Zhang G Y, Zhang H, Guo J T, et al. Oxidation Behavior of NiAl-30.75Cr-3Mo-0.25HoAlloy at High Temperatures. JOURNAL OF RARE EARTHS,2006,24:97-102.
    [126] Chen W R, Wu X, Marple B R, et al. The growth and influence of thermally grown oxidein a thermal barrier coating. Surface and Coatings Technology,2006,201:1074-1079.
    [127] Shillington E A G, Clarke D R. Spalling failure of a thermal barrier coating associated withaluminum depletion in the bond coat. Acta Materialia,1999,47(4):1297-1305.
    [128] Rabiei A, Evans A G. Failure mechanisms associated with the thermally grown oxide inplasma-sprayed thermal barrier coatings. Acta Materialia,2000,48:3963-3976.
    [129] Zschau H E, Dietrich M, Renusch D, et al. Detection of hydrogen in hidden and spalledlayers of turbine blade coatings. Nuclear Instruments and Methods in Physics Research B,2006,249:381-383.
    [130] Zhang X C, Xu B S, Wang H D, et al. Effects of oxide thickness, Al2O3interlayer andinterface asperity on residual stresses in thermal barrier coatings. Materials and Design,2006,27:989-996.
    [131] Martena M, Botto D, Fino P, et al. Modelling of TBC system failure: Stress distribution asa function of TGO thickness and thermal expansion mismatch. Engineering FailureAnalysis,2006,13:409-426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700