Nb、Ta碳/硼化物及Cr、Mo元素对NiAl压缩性能的影响规律及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NiAl金属间化合物因其具有高熔点、相对较小的密度、较高的强度、较好的导热性能和较好的抗高温氧化性等优点,被视为高温结构材料极有竞争力的候选材料之一,但是由于其室温韧性较差,高温条件下的强度较低。因此,使其实际应用受到一定限制。目前,合成和制备NiAl金属间化合物及其合金的方法有很多,常见的方法有:高温熔炼、自蔓延高温合成、定向凝固、电弧熔炼等等。然而,这些方法或多或少都存在一些不足,例如,熔炼条件苛刻,生产成本高,容易造成成分偏析等。为了改善上述方法带来的缺陷,本论文利用燃烧合成+热压法合成和制备NiAl合金及其复合材料。燃烧合成+热压法是在燃烧合成反应后,样品处于高温状态时,立即对反应物施加压力。这种方法具有操作简单、成本低廉、所制得的合金晶粒细小等特点。
     本文利用Ni-Al-Nb-B_4C体系,Ni-Al-Me(Me=Mo,Cr和B)体系,通过燃烧合成+热压法合成制备NiAl合金及NiAl基复合材料,并且研究了陶瓷颗粒的种类、尺寸和合金化元素的种类、含量对NiAl合金室温压缩性能的影响规律;提出了陶瓷颗粒和合金化元素强韧化NiAl的机制。
     本文的主要研究结果如下:
     (1)发现分别采用Ni-Al、Mo/Cr-Ni-Al、Ni-Al-Nb-B_4C等体系,通过烧合成+热压一体化方法制备的纯NiAl合金,5、10、15at.%的Mo或25、30、35at.%的Cr合金化NiAl合金和5、10、15、20wt.%(NbB_2、Nb_2C、NbC)三相陶瓷颗粒增强NiAl基复合材料的NiAl基体的晶粒尺寸得到非常显著的细化,分别为60-80μm,10-20μm和10-30μm。同时,由于反应速度和凝固过程的冷却速度极快及在压力下成型,产生很大内应力,所以在铸态NiAl基体组织中具有较多位错。
     (2)提出了纯NiAl合金、Mo/Cr合金化NiAl合金和(NbB_2、Nb_2C、NbC)三相陶瓷颗粒增强NiAl基复合材料NiAl基体的晶粒细化机制。
     a)纯NiAl合金晶粒细化机制:采用Ni-Al体系燃烧合成NiAl金属间化合物在瞬间发生和完成。因此,冷却速度极快,产生很大的过冷度,使临界自发形核的核心尺寸大大减小,使形核几率显著增加,导致晶粒细化。
     b) Mo/Cr合金化NiAl合金晶粒细化机制:在Ni-Al燃烧合成体系中添加大量的高熔点第三组元Mo(熔点:2623℃)或Cr(熔点:1863℃),使体系的最高燃烧温度明显下降,导致NiAl的晶粒尺寸显著细化。
     c) Nb_2C、NbB_2和NbC颗粒增强NiAl基复合材料NiAl基体晶粒细化机制:NbB_2的(0001)面和Nb_2C的(0001)面与NiAl基体的(100)面的错配度(δ(%))分别为6.1和6.2%,为半共格关系。因此,NbB_2和Nb_2C可作为NiAl形核的有效异质核心,大幅度增加了NiAl的形核核心数量,使NiAl晶粒得到显著细化。同时,较大尺寸的NbB_2和Nb_2C颗粒陶瓷被推到固液界面前沿,最后分布在NiAl基体的晶界处,起到了阻碍NiAl生长的作用,使NiAl晶粒得到进一步细化。
     (3)揭示出纯NiAl合金、Mo/Cr合金化NiAl合金和陶瓷颗粒增强NiAl基复合材料在压缩应变速率为1.0×10~(-4)s~(-1)时具有十分优异的室温压缩力学性能和加工硬化能力。
     a)纯NiAl合金的压缩真实屈服强度、断裂强度、断裂应变、加工硬化能力和硬度分别达到419MPa、1005MPa、21.6%、1.40和360HV。
     b)在NiAl合金中添加Mo明显地提高室温压缩力学性能,随着Mo含量的提高,性能提高。在分别添加5、10和15at.%的Mo含量中,15at.%Mo的综合性能最好,其真实屈服强度、断裂强度和硬度分别达到747MPa、1619MPa和621HV,分别比纯NiAl提高328MPa、614MPa和261HV,真实断裂应变和加工硬化能力(Hc值)稍有降低,分别从21.6%和1.40降低到20.4%和1.16。
     c)在NiAl合金添加Cr,十分明显地提高室温压缩力学性能。在分别添加25、30和35at.%的Cr中30at.%Cr的综合性能最好,其真实屈服强度、断裂强度、断裂应变、加工硬化能力和硬度分别达到809MPa、1909MPa、21.4%、1.35和667HV,其中真实屈服强度、断裂强度和硬度分别比纯NiAl合金提高390MPa、904MPa和307HV,均提高将近一倍。真实断裂应变和加工硬化能力与NiAl合金相当。
     d)在(NbB_2、Nb_2C和NbC)三相,(NbB_2和NbC)、(NbB_2和Nb_2C)、(TaB_2和TaB)双相和TaC单相陶瓷颗粒增强的NiAl基复合材料中5.0wt.%三相陶瓷颗粒(NbB_2、Nb_2C和NbC)增强的NiAl基复合材料具有最佳的综合压缩力学性能,其真实断裂屈服强度、断裂强度和硬度分别达到653MPa、1497MPa和466HV,分别比纯NiAl合金提高234MPa、492MPa和106HV,真实断裂应变和加工硬化能力(Hc值)稍有下降,分别从21.6%和1.40降低到18.3%和1.29。
     (4)发现纯NiAl合金、Mo/Cr合金化NiAl合金和陶瓷颗粒增强NiAl基复合材料均具有较强的压缩应变速率敏感性。在压缩应变速率由1.25×10~(-2)s~(-1)下降到1.0×10~(-4)s~(-1)时,
     a)纯NiAl合金:真实断裂应变和加工硬化能力(Hc值)分别提高8.4%和0.62;真实屈服强度和断裂强度分别降低151MPa和15MPa。
     b)30at.%Cr合金化NiAl合金:真实断裂强度、断裂应变和加工硬化能力(Hc值)同时提高,分别提高118MPa、2.7%和0.65,尤其是加工硬化能力提高了93%;真实屈服强度下降245MPa。
     c)5.0wt.%三相陶瓷颗粒(NbB_2、Nb_2C和NbC)增强的NiAl基复合材料:真实断裂应变和加工硬化能力同时提高,分别提高6.4%和0.46;真实断裂强度变化不大;真实屈服强度下降149MPa。在压缩应变速率由1.25×10~(-2)s~(-1)下降到5.0×10~(-4)s~(-1)时,15at.%Mo合金化NiAl合金:真实屈服强度、断裂强度、断裂应变和加工硬化能力(Hc值)同时提高,分别提高了46MPa、250MPa、13.7%和0.2,尤其是断裂应变提高一倍以上。
     (5)揭示出纯NiAl合金、Mo/Cr合金化NiAl合金和(NbB_2、Nb_2C、NbC)三相陶瓷颗粒增强NiAl基复合材料的强化机制。
     a)纯NiAl合金强化机制。采用燃烧合成+热压一体化方法制备的纯NiAl合金的晶粒显著细化,大大提高了强度和断裂应变;NiAl合金存在大量的位错和晶格扭曲。压缩变形过程中位错密度明显提高,压缩前后的位错密度分别为5.08×1011cm-2,5.92×1011cm-2,提高幅度为0.84×1011cm-2,导致强度和加工硬化能力提高。因此,纯NiAl合金的强化机制为:细晶强化。
     b) Mo/Cr合金化NiAl合金强化机制:Mo、Cr在NiAl合金中的存在形式为:一部分Mo、Cr固溶到NiAl合金中,使晶格发生畸变;一部分Mo、Cr在NiAl合金基体中析出,其尺寸大约为20-30nm。Mo(170HV)和Cr(115HV)的硬度均低NiAl合金的硬度(360HV)。因此,纯Mo、Cr相为一种软相存在于基体中;一部分Mo、Cr分布在晶界处。因此,添加Mo/Cr的强化机制为:细晶强化、固溶强化和第二相强化。
     c)(NbB_2、Nb_2C、NbC)三相陶瓷颗粒增强NiAl基复合材料的强化机制:尺寸大约在1-2μm的NbB_2和Nb_2C分布在NiAl基体中,尺寸大约在40μm的NbB_2、Nb_2C和NbC分布在NiAl基体的晶界处。由于NiAl基体晶粒尺寸的显著细化和NbB_2、Nb_2C和NbC陶瓷颗粒的存在,在压缩变形过程中位错密度显著提高,压缩前后的位错密度分别为8.28×1011cm-2和1.20×1012cm-2,提高幅度为3.72×1011cm-2,导致强度和加工硬化能力提高。因此,NbB_2、Nb_2C和NbC颗粒增强的强化机制为:细晶强化和第二相强化。
     总之,本文通过燃烧合成+热压法制备NiAl,NiAl合金以及NiAl基复合材料,研究了其室温压缩性能,揭示了不同制备方法、不同合金化元素含量、不同陶瓷含量对NiAl室温压缩性能的影响规律和机制,为实现NiAl室温压缩性能的提高奠定了必要的理论基础。
Due to the desirable combination of the high melting temperature, high-temperatureoxidation resistance and low density, the NiAl intermetallic compound is regarded as one ofthe most promising candicates for high temperature applications. Howerver, the actual use ofthe NiAl alloy has been limited by the low ductility at room temperature and the inadequatecreep resistance at high temperatures. There are many methods have been developed for thiscompound, including powder processing, casting, arc melting, directional solidification andself-propagating high temperature synthesis. The methods metioned above have somedefects, such as the tough melting condition, high cost, and composition segregation. As toimproving the defects of the methods metioned above, high-temperature combustion reactionand hot press was used for fabricationg the NiAl and NiAl-matrix composite.High-temperature combustion reaction and hot press based on the combustion reaction.When the reation oucurs, a axial force is added. The characteristic of the method is easy, lowcost and the fine grains, and so on.In this paper, the Ni-Al-Nb-B_4C system and the Ni-Al-Me (Me=Mo, Cr and B) are usedfor fabricationg the NiAl matrix composite and NiAl alloys by the high-temperaturecombustion reaction and hot press method. The effect of the kind and the size of the ceramicpartuculates and the kind and the content of the alloying elements on the room-temperaturecompression properties are researched in the paper. The strengthen mechanism of theceramic particulates and the alloying elements for the NiAl was discussed.
     The main results are as follows:
     (1) Ni-Al, Mo/Cr-Ni-Al, Ni-Al-Nb-B_4C systems were used for fabricating the NiAlalloy, NiAl-xMo(x=5,10and15) alloys, NiAl-xCr(x=25,30and35) alloys andNiAl-matix composite with Nb_2C, NbB_2and NbC by the high-temperature combustion reaction and hot press. All the grains of the NiAl alloys were refined.The grain size of the alloys was about60-80μm,10-20μm and10-30μm,respectively. The alloys were formed in instant, which leads to the rapid cooling.The size of the nucleation reduced, and the alloys were refined. When the reactionoccurs, a aixl force is applied. It can produce a lot of dislocations.
     (2) The mechanism of the fine garins in the NiAl, NiAl alloys and NiAl-matrixcomposite was discussed.
     a) The mechanism of the pure NiAl: The reaction occurs and finished at one sight,and the cooling degree was very low, which can make the size of the criticalnucleation little. The probability of the nucleation improved, and the grains werefine.
     b) The mechanism of the NiAl-Mo/Cr alloys: The addition of the high meltingpoint metals Mo (2623℃) and Cr (1863℃) made the max combustion temperaturedecreased obviously, which can make the grain fine.
     c) The mechanism of the NiAl with Nb_2C, NbB_2and NbC: The misfit between the(0001) of Nb_2C and NbB_2and (100) of NiAl are6.1%and6.2%, repectively. So theceramic particulates of Nb_2C and NbB_2were regarded as the nucleation for NiAl. Theamount of the nucleation increased, and the grain became fine.
     (3) The NiAl, NiAl-Mo/Cr alloys and the NiAl-matrix composite have goodroom-temperature compression properties and high work-hardening capacity at thestrain rate of1.0×10~(-4)s~(-1).
     a) The ture yield strength, fracture strength, the fracture strain, the work-hardeningcapacity and the hardness of the NiAl are419MPa、1005MPa、21.6%、1.40and360HV, respectively.
     b) The room-temprature compression properties were improved obviously with theaddition of5,10and15at.%Mo. The compression properties of the NiAl-15Moalloy are the best, and the ture yield strength, fracture strength, and the hardness are747MPa,1619MPa and621HV, respectively. While the ture fracture strain andthe work-hardening capacity are little, lower than those of the pure NiAl.
     c) The addition of Cr can improve the compression properties of NiAl alloy.Among the NiAl-xCr alloys, the NiAl alloys with30at.%Cr has the best properties.The ture yield strength, fracture strength, the fracture strain, the work-hardeningcapacity and the hardness of the NiAl-30Cr alloy are809MPa,1909MPa,21.4%,1.35and667HV.390MPa,904MPa and307HV, respectively improve the trueyield strength, the fracture strength and the hardness. The ture fracture strain and the work-hardening capacity is as high as those of the pure NiAl alloy.
     d) The compression properties of the NiAl-matrxi composite with5wt.%Nb_2C,NbB_2and NbC are the best among the different content and kind ceramicparticulates reinforced NiAl-matrix composites. The true yield strength, fracturestrength, and the hardness of the composite are653MPa,1497MPa and466HV,repectively. The fracture strain and the work-hardening capacity decreased lightly.
     (4) It was found that the NiAl alloy, NiAl-Mo/Cr alloys have strain rate sensitivity.When the strain rate decrease from1.25×10~(-2)s~(-1)to1.0×10~(-4)s~(-1),
     a) For NiAl, the fracture strain and the work-hardening capacity are improved by8.4%and0.62, respectively.The true yield strength and the fracture strength aredecreased by151MPa and15MPa, respectively.
     b) For NiAl-30Cr alloys, the true fracture strength, fracture strain andwork-hardening capacity improved by118MPa,2.7%and0.65, especially thework-hardening capacity, which is improved by93%, while the yield strengthdecreased245MPa.
     c) For NiAl-matrix composite with5wt.%Nb_2C, NbB_2and NbC, both of thestrength and the work-haedening capacity are improved by6.4%and0.46,respectively. The true fracture strength did not changed obviously, and the yieldstrength decreased149MPa.When the compression strain rate decreased from1.25×10~(-2)s~(-1)to5.0×10~(-4)s~(-1), thetrue yield strength, the frcacture strength, the fracture strain and thework-hardening capacity of the NiAl-15Mo alloy were improved by46MPa,250MPa,13.7%and0.2.
     (5) The mechanism of the strengthening of the NiAl, NiAl-Mo/Cr, NiAl-matrixcomposite with Nb_2C, NbB_2and NbC was discussed.
     a) The mechanism for NiAl, The NiAl fabricated by the high-temperaturecombustion reaction and hot press was refined, and the strength and the fracturestrain are improved. There were many dislocations distributed in the NiAl matrix,and the lattice of the NiAl distorted. The amount of dislactions increased during thecompression processing, from5.08×1011cm-2to5.92×1011cm-2, which canimprove the work-hardening capacity. Therefore, the mechanism for NiAl isfine-grained strengthening.
     b) The mechanism of the NiAl-Mo/Cr alloys, Mo and Cr exsit in NiAl as threetypes. A proportion of Mo/Cr solutes to the NiAl, which leads to the latticedistorted. A proportion of Mo/Cr precitipitation in NiAl, and the size is about20-30 nm. As Mo and Cr is soft than NiAl, they exsit in NiAl as a soft phase. Anotherproportion of Cr/Mo distributed at the grain boundaries. The strengtheningmechanisms are fined-grain strengthening, solution strengthening and the secondphase strengthening.
     c) The mechanism of the NiAl-matrix composite with5wt.%Nb_2C, NbB_2andNbC: The size of the ceramic paticulates in the grains is about1-2μm, while thesize of the ceramic particulates at the grain boundaries is about40μm. The amountof dislactions increased during the compression processing, from8.28×1011cm-2to1.20×1012cm-2, which can improve the work-hardening capacity. Therefore, themechanism for NiAl-matrix composite with Nb_2C, NbB_2and NbC is fine-grainedstrengthening and the second phase strengthening.
     In summary, the effect of the addition of the ceramic and alloying elements on thecompression properties of NiAl was studied in this paper. It can be benifical to theimprovement for the compression properties of NiAl.
引文
[1]江垚,贺跃辉,黄伯云,袁朝晖.NiAl金属间化合物的研究进展[J].材料导报,2004,8:275-278.
    [2]陈建,张济山,张静华,唐亚俊,胡壮麟.NiAl基金属间化合物研究现状与前景[J]. ChinaAcademic Journal Electronic Publishing House.1994,12:1-4.
    [3]朱凤,吴根华,赵杰. NiAl金属间化合物的强韧化研究[J].新技术工艺,2010,5:103-106.
    [4]王为民,袁润章,闵新民. NiAl金属间化合物改性研究[J].武汉工业大学学报,1995,17:8-10.
    [5]张万明,胡壮麒,于洋,郑启,李英敖,管恒荣. NiAl金属间化合物铸造组织的研究[J].宇航材料工艺,1998,8:49-52.
    [6]侯世香,刘东雨,刘宗德,马一民. NiAl金属间化合物的研究概述[J].金属热处理,2007,32:60-64.
    [7]郭建亭.金属间化合物NiAl的研究进展[J].中南大学学报,2007,38:1013-1027.
    [8]刘午,高强,吴艳萍. NiAl基复合材料的研究进展[J].辽宁工程技术大学学报,2005,24(4):595-598.
    [9] AUSTIN C M,KELLY T J. Gamma Titanium Aluminides [M]. Warrendale,1997:21-32.
    [10]ZHONG Y, CHEN H, HU W, GOTTSTEIN G. Fiber damage and hightemperature tensile properties of Al2O3fiber reinforced NiAl-matrix composites withand without hBN-interlayer [J]. Material Science and Engineering A,2007,464:241-248.
    [11]HU W, WEIRICH T, HALLSTEDT B, CHEN H, ZHONG Y, GOTTSTEIN G.Interface structure, chemistry and properties of NiAl composites fabricated frommatrix-coated single-crystalline Al2O3fibres (sapphire) with and without an hBNinterlayer [J]. Acta Materiallia,2006,54:2473-2488.
    [12]HU W, GOTTSTEIN G. Investigation of microstructure and chemical stability incomposites of Ni3Al reinforced by alumina-silica fibers [J]. Materials Science andEngineeing A,2002,338:313-322.
    [13]BHAUMIK S K, DIVAKAR C, RANGARAJ L, SINGH A K. Reaction sinteringof NiAl and TiB2-NiAl composites under pressure [J]. Materials Science andEngineeing A,1998,257:341-348.
    [14]YEH C L, SU S H, CHANG H Y. Effects of TiC addition on combustionsynthesis of NiAl in SHS mode [J]. Journal of Alloys and Compounds,2005,398:85-93.
    [15]OZDEMIR O, ZEYTIN S, BINDAL C. A study on NiAl produced bypressure-assisted combustion synthesis [J]. Vacuum,2009,84:430-437.
    [16]郭建亭.有序金属间化合物NiAl合金.北京:科学出版社,2003.
    [17]NOEBE R D,BOWMAN R R,NATHAL M V. Physical and mechanicalproperties of the B2compound NiAl. International Material Review [J].1993,38(4):193-232.
    [18]AOKI K,IZUMI O. Improvement in room temperature ductility of the L12typeinterme boron addition [J]. Journal of the Japan Institute of Metals,1979,43(12):1190-1196.
    [19]郭建亭,任维丽,周健.NiAl合金化研究进展[J].金属学报,2002,38:667-672.
    [20]DAROLIA R. NiAl alloys for high-temperature structural applications [J].JOM,1991,43(3):44-49.
    [21] MIRACLE D B. The physical and mechanical properties of NiAl [J]. ActaMetallurgica Material,1993,41(3):649-684.
    [22] LORIA E A. Niobium-based superalloys via powder metallurgy technology.JOM,1987,39(7):22-26.
    [23]盛立远. Ho合金化、快凝工艺及强磁场处理对NiAl基共晶合金组织和性能的影响[D].沈阳,中国科学院金属研究所,2009.
    [24] SINGLETON M F,MURRY J L. Binary alloy phase diagram [M]. USA:American Society for Metals,1986:140-143.
    [25] NATHAL M V. High temperature composites. NASA Technical memorandum107127, NASA Lewis Research Center1995.
    [26] Power Diffraction File-PDF#65-3199Software PCPDWIN, version2.02,1999.
    [27]刘震云,林栋梁,黄伯云,曲选辉. NiAl金属间化合物研究现状[J].机械工程材料,1998,22(2):1-5.
    [28] TAYLAR A, DOYLE N J. Further studies on the nickel-aluminumsystemⅠβ-NiAl and δ-Ni2Al3phase fields [J]. Journal of Applied Crystallography,1972,5:201-209.
    [29] Tanner L E,Pelton A R. Premartensitic microstructure in Ni-Al ordered B2phase: Ⅰ-effects induced by cooling [J]. Scripta Metallugry,1990,24:1731-1736.
    [30]WASILEWSKI R J. Thermal vacancies in NiAl [J]. Acta Metallurgica,1967,15:1757-1769.
    [31]HANCOCK G F,MCDONNELL B R. Diffusion in the intermetallic compoundNiAl [J]. Physica Status Solidi(a),1971,4:143-150.
    [32]LLOYD C H,LORETTO H M. Dislocations in Extruded β'-NiAl [J]. PhysicaStatus Solidi(a),1970,39:163-170.
    [33]Clapp P C,Rubins M J,Charpenay S. High temperature ordered intermetallicalloys Ⅲ [J]. Materials Research Society Symposium Proceedings,1989,133:75-80.
    [34]HONG T,FREEMAN A J. Effect of antiphase boundaries on the electronicstructure and bonding character of intermetallic systems [J]. NiAl. Physic Review B.1991,43:6446-6458.
    [35]王荣国,武卫莉,谷万里.复合材料概论[M].哈尔滨工业人学出版社,1999.
    [36]殷声.自蔓延高温合成技术和材料[M].北京:冶金工业出版社,1995.
    [37]SIGL L S,MATAGA P A,DALGLEISH B J,MEECKING RM,EVANS AG.On the thoughness of brittle materials reinforced with a ductile phase [J]. ActaMetallurgica et Materialia,1988,36:945-953.
    [38] CHANG K M, DAROLIA R, LIPSITT H A. Cleavage fracture in B2aluminides [J]. Acta Metallurgica et Materialis,1992,40:2727-2737.
    [39] DAROLIA R. NiAl alloy for high-temperature structural applications [J].JOM,1991,43:44-49.
    [40]刘震云,黄伯云,林栋梁. La对富Ni的NiAl系合金组织与性能的影响[J].材料工程,1999,3:11-15.
    [41]XIE C Y,WU J S. Mechanical behavior and shape memeroy effect of an agedNiAl-Fe alloy [J]. Materials&Design,2000,21:529-532.
    [42]DAROLIA R,WALSTON W S. Effect of specimen sureface preparation onroom temperature tensile ductility of an Fe-containing NiAl single crystal alloy [J].Intermetallics,1996,4:505-516.
    [43]ALBITER A,BEDOLLA E,PEREZ R. Microstructure charazirization of theNiAl intermetallic compound with Fe, Ga and Mo additons obtained by mechanicalalloying [J]. Materials Science and Engineeing A,2002,328:80-86.
    [44]LEE S H,CHOI J W,KANG S G. Effect of Lanthanium on corrosion of NiAlin molten carbonate [J]. Journal of Power Sources,2002,108:74-85.
    [45]HE J Q,WANG Y,YAN M F,YANG Y,WANG L. First-principles study ofNiAl microalloyed with Sc, Y, La and Nd [J]. Computational Materials Science,2010,50:545-549.
    [46]曾潮流,Rizzo F C,吴维文,郭建亭.两相NiAl-Fe金属间化合物高温氧化行为研究[J].中国腐蚀与防护学报,1999,19:39-43.
    [47]PIKE L M,CHANG Y A,LIU C T. Solid-solution hardening and softening byFe additions to NiAl [J]. Intermetallics,1997,5:601-608.
    [48]PIKE LM, LIU C T, CHANG Y A. Point defect cncentrations and solid solutionhardening in NiAl with Fe additions [J]. Proceedings of the International Symposiumon Structural Intermetallics,1997:649-657.
    [49]FU C L, ZOU J. Site preference of ternary alloying additions in FeAl and NiAl byfirst-principles calculations [J]. Acta Materialia,1996,44:1471-1478.
    [50]MIRACLE D B. The physical and mechanical properties of NiAl [J]. ActaMetallurgica Materialia,1993,41:649-684.
    [51]GARCíA-GALáN S, ARáMBURO-PéREZ G, GONZáLEZ-RIVERA C,JUáREZ-ISLAS J. The effect of Cu-macroalloying on β-NiAl intermetalliccompound obtained by mechanical alloying [J]. Journal of Materials ProcessingTechnology,2003,143-144:551-554.
    [52]COLíN J, SERNA S, CAMPILLO B, FLORES O, JUáREZ-ISLAS J.Microstructural and lattice parameter study of as-cast and rapidly solidified NiAlintermetallic alloys with Cu additions [J]. Intermetallics,2008,16:847-853.
    [53]XU D S, LI D, HU Z Q. Substitution behavior in NiAl-A first principle predictionconsidering lattice relaxation [J]. Materials Research Society Symposium Proceedings,1998,538:377-381.
    [54]Zhou J,Guo J T. Effect of Ag alloying on microstructure, mechanical andelectrical properties of NiAl intermetallic compound [J]. Materials Science andEngineering A,2003,339:166-174.
    [55]Zhou J,Guo JT. Effect of Ag alloying on the microstructure of NiAl [J].Materials Letters,2002,56:178-182.
    [56] CHEN R S, GUO J T, ZHOU W L, ZHOU J Y. Brittle-to-ductile transition of amultiphase intermetallic alloy based on NiAl. Intermetallics,2000,8:663-667.
    [57] JOHNSON D R, CHEN X F, OLIVER B F. Processing and mechanicalproperties of in situ composites from the NiAl-Cr and the NiAl-(Cr, Mo) eutecticsystems [J]. Intermetallics,1995,3:99-113.
    [58]FROMMEYER G,RABLBAUER R,SCH FER H J. Elastic properties ofB2-ordered NiAl and NiAl-X (Cr, Mo, W) alloys [J]. Intermetallics,2010,18:299-305.
    [59]HASSEL A W, SMITH A J, MILENKOVIC S. Nanostructures fromdirectionally solidified NiAl-W eutectic alloys [J]. Electronchimica Acta,2006,52:1799-1804.
    [60]FOX M R, GHOSH A K. Structrure, strength and fracture resistance ofinterfaces in NiAl/Mo model laminates [J]. Materials Science and Engineering A,1999,259:261-268.
    [61]GUO J T,QI Y H,LI G S,WU W T. Tensile propeties and microstructure ofin situ NiAl-Cr(Zr) eutectic composite [J]. Composite Structures,2003,62:323-327.
    [62]DU X H,GUO J T,ZHOU B D. Superplastic behavior in pseudo-eutecticNiAl-9Mo alloy [J]. Materials Letters,2002,52:442-447.
    [63]HU L, HU W, GOTTSTEIN G, BOGNER S, HOLLAD S,BǖHRIG-POLACZEK A. Investigation into microsture and mechanical properties ofNiAl-Mo composites produced by directional solidification [J]. Materials Science andEngineering A,2012,539:211-222.
    [64]SHENG L Y,GUO J T,TIAN Y X,ZHOU L Z,YE H Q. Microstructureand mechanical properties of rapidly solidified NiAl-Cr(Mo) eutectic alloy dopedwith trace Dy [J]. Journal of Alloys and compouds,2009,475:730-734.
    [65]LIANG Y C, GUO J T, XIE Y, ZHOU L Z, HU Z Q. High temperaturecompressive properties and room temperature fracture toughness of directionallysolidified NiAl-based eutectic alloy [J]. Materials&Design,2009,30:2181-2185.
    [66]LI H T, GUO J T, HUAI K W, YE H Q. Microstructure characteriazation androom temperature deformation of a rapidly solidified NiAl-based eutectic alloycontaining trace Dy [J]. Journal of Crystal Growth,2006,290:258-265.
    [67]ZEUMAER B,SAUTHOFF G. Deformation behavior of intermetallic NiAl-Taalloys with strengthening Laves phase for high-temperature application Ⅲ. Effects ofalloying with Cr [J]. Intermetallics,1998,6:451-460.
    [68]Milenkovic S,Schneider A,Frommeyer G. Constitutional and microstructuralinvestigation of the pseudobinary NiAl-W system [J]. Intermetallics,2011,19:342-349.
    [69]JOSLIN S M, CHEN X F, OLIVER B F, NOEBE R D. Fracture behavior ofdirectionally solidified NiAl-Mo and NiAl-V eutectics [J]. Materials Science andEngineering A,1995,196:9-18.
    [70]WHITTENBERGER DANIEL J, DOROLIA R. Slow plastic compressivebehavior of NiAl-xCr single crystal at1100-1500K [J]. Materials Science andEngineering A,2004,384:361-372.
    [71]SUNDAR R S, KITAZONO K, SATO E, KURIBAYASHI K. Thermal cyclingcreep behavior of NiAl-Cr alloy [J]. Intermetallics,2001,9:279-286.
    [72]任维丽,郭建亭,周继阳.两相共晶NiAl-9Mo合金的蠕变行为[J].金属学报,2002,38(9):908-913.
    [73]RAMASUNDARAM P, BOWMAN R, SOBOYEJO W. An investigation offatigue and fracture in NiAl-Mo compositer [J]. Materials Science and Engineering A,1998,248:132-146.
    [74]DUDOVá M, KUCHAROVá K, BATáK T, BEI H, GEORGE E P, SOMSENCH, DLOUHY. Creep in directionally solidified NiAl-Mo eutectics [J]. ScriptaMaterialia,2011,65:699-702.
    [75]ZHANG J F, SHEN J, SHANG Z, FENG Z R, WANG LS, FU H Z.Microstructure and room temperature fracture toughness of directionally solidifiedNiAl-Mo eutectic in situ composites [J]. Intermetallics,2012,21:18-25.
    [76]KUHN M, SAMMYNAIKEN R, SHAM T K. Effect of alloying on electronicstructure of Au-Ta alloys: An X-ray spectroscopy study [J]. Physica B,1998,252:114-126.
    [77]DEAN J A. Lange’s handbook of chemistry12thed. NewYork: MaGraw-Hill:1979.
    [78]SHENG L Y, ZHANG W, GUO J T, YANG F, LIANG Y C, YE H Q. Effect of Auaddition on the microstructure and mechanical properties of NiAl intermetalliccompound [J]. Intermetallics,2010,18:740-744.
    [79]LI H T, WANG Q, HE J C, GUO J T, YE H Q. β-Ti(M) solid solution formationand its thermal stability in a NiAl-Cr(Mo)-(Hf, Ti) near eutectic alloy [J]. MaterialsCharacterization,2008,59:1395-1399.
    [80]LIANG Y C, GUO J T, XIE Y, SHENG L Y, ZHOU L Z, HU Z Q. Effect ofgrowth rate on the tensile properties of DS NiAl/Cr(Mo) eutectic alloy produced byliquid metal cooling technique [J]. Intermetallics,2010,18:319-323.
    [81]XIE Y, GUO J T, LIANG Y C, ZHOU L Z, YE H Q. Modification ofNiAl-Cr(Mo)-0.15Hf alloy by Sc addition [J]. Intermetallics,2009,17:400-403.
    [82]SHENG L Y, GUO J T, REN W L, ZHANG Z X, REN Z M, YE H Q. Preliminaryinvestigation on strong magnetic field treated NiAl-Cr(Mo)-Hf near eutectic alloy [J].Intermetallics,2011,19:143-148.
    [83]HAGIHARA K, SUGINO Y, UMAKOSHI Y. The effect of Ti-addition on plasticdeformation and fracture behavior of directionally solidified NiAl/Cr(Mo) eutecticalloys [J]. Intermetallics,2006,14:1326-1331.
    [84]GUO J T, XU C M, DU X H, FU H Z. The effect of solidification rate onmicrostructure and mechanical properties of an eutectic NiAl-Cr(Mo)-Hf alloy [J].Materials Letters,2004,58:3233-32236.
    [85]CUI C Y, CHEN Y X, GUO J T, LI H X, YE H Q. Preliminary investigation ofdirectionally solidified NiAl-28Cr-5.5Mo-0.5Hf composite [J]. Materials Letters,2000,43:303-308.
    [86]ZHANG G Y,ZHANG H,GUO J T,YE H Q. Oxidation behavior ofNiAl-30.75Cr-3Mo-0.25Ho alloy at high temperatures [J]. Journal of Rare Earths,2006,24:97-102.
    [87]LIU R Y, SUN Y, ZHANG J S, GUO J T, ZHU M L. Corrosion study ofNiAl-28Cr-5.8Mo-0.2Hf alloy in molten LiCl-10wt.%Li2O [J]. Materials Letters,2003,57:4433-4438.
    [88]GAO Q, GUO J T, HUAI K W. Microstructure and phase solubility extension ininjection cast NiAl-28Cr-5.7Mo-0.3Hf alloy [J]. Intermetallics,2007,15:734-737.
    [89]CUI C Y, GUO J T, YE H Q. Effects of Hf additions on high-temperaturemechanical properties of a directionally solidified NiAl/Cr(Mo) eutectic alloy [J].Journal of Alloys and compounds,2008,463(2):263-270.
    [90]CUI C Y, GUO J T. Investigation on microstructure and mechanical property ofNiAl-28Cr-5Mo-1Hf alloy [J]. Acta metallurgica Sinica,1999,35(5):477-481.
    [91]DU X H, GUO J T, WU B L. Compressive behavior of NiAl/(Cr, Mo)Hf alloyprepared by high-pressure die casting and hot isostatic pressing [J]. Transactions ofNonferrous Metals Society of China,2006, S3:2000-2003.
    [92]GUO J T, CUI C Y, CHEN Y X, LI D X, YE H Q. Microstructure, interface andmechanical property of the DS NiAl/Cr (Mo, Hf) composite [J]. Intermetallics,2001,9(4):287-297.
    [93]LI H T, GUO J T, YE H Q. Simultaneous improvement of strength and ductilityin NiAl-Cr(Mo)-Hf near eutectic alloy by small amount of Ti alloying addition [J].Materials Letters,2007,452:763-772.
    [94]HUAI K, GUO J T, REN Z R, GAO Q, YANG R. Effects of Nb on themicrostructure and mechanical properties of cast NiAl-Cr(Mo) eutectic alloy [J].Journal of Materials Science and Technology,2006,22(2):164-168.
    [95]HUAI K, GUO J T, REN Z R, GAO Q, YANG R. Microstructure and mechanicalproperties of Nb-doped NiAl-Cr(Mo) eutectic prepared by injection casting [J].Transactions of Nonferrous Metals Society of China,2005,15(S3):94-95.
    [96]TANG Z L, ZHANG Z G, LI S S, GONG S K. Mechanical behaviors ofNiAl-Cr(Mo)-based near eutectic alloy with Ti, Hf, Nb and W additions [J].Transactions of Nonferrous Metals Society of China,2010,20:212-216.
    [97]GUO J T, HUAI K W, GAO Q, REN W L, LI G S. Effects of rare earth elementson the microstructure and mechanical properties of NiAl-based eutectic alloy.Intermetallics,2007,15:727-733.
    [98]LI H T, WANG Q, HE J C, GUO J T, YE H Q. β-Ti(M) solid solution formationand its thermal stability in a NiAl-Cr(Mo)-(Hf, Ti) near eutectic alloy [J]. MaterialsCharacterization,2008,59:1395-1399.
    [99]ZEUMER B, SAUTHOFF G. Intermetallic NiAl–Ta alloys with strengtheninglaves phase for high-temperature applications. I. Basic properties [J]. Intermetallics,1997,5:563-577.
    [100] ZEUMER B, SAUTHOFF G. Deformation behaviour of intermetallicNiAl–Ta alloys with strengthening laves phase for high-temperature applications. II.Effects of alloying with Nb and other elements [J]. Intermetallics,1997,5:641-649.
    [101] ZEUMER B, SAUTHOFF G. Deformation behaviour of intermetallicNiAl–Ta alloys with strengthening laves phase for high-temperature applications. Ⅲ.Effects of alloying with Cr [J]. Intermetallics,1998,6:451-460.
    [102] ZEUMER B, SAUTHOFF G. Deformation behaviour of intermetallicNiAl–Ta alloys with strengthening laves phase for high-temperature applications. IV.Effects of processing [J]. Intermetallics,1999,7:889-899.
    [103] LIU C T, HORTON J A. Effect of refractory alloying additions onmechanical properties of near-stoichiometric NiAl [J]. Materialias Science andEngineering A,1995,192-193:170-178.
    [104] ZHAO L D,LUGSCHEIDER E. High velocity oxy-fuel spraying of aNiCoCrAlY and an intermetallic NiAlTaCr alloy [J]. Surface and Coating Technology,2002,149:230-235.
    [105] ZEUMER B, WUNNIKE-SANDERS W, SAOUTHOFF G. Mechanicalproperties and high-temperature deformation behavior of particle-strengthened NiAlalloys [J]. Materialias Science and Engineering A,1995,192-193:818-823.
    [106] NATHAL M V. Analysis of NiAlTa precipitates in β-NiAl+2at.%Ta alloy [J].Scripta Mteallurgica,1987,21:293-288.
    [107] JOHNSON D R, CHEN X F, OLIVER B F. Directional solidification andmechanical properties of NiAl/NiAlTa alloys [J]. Intermetallics,1995,3:141-152.
    [108] WAN X J, LIN J G. Microstructural evolution in mutiphase NiAl-2.5Ta-7.5Cralloy during annealing at different temparatures [J]. Rare Metal Materials andEngineering,2011,40:757-760.
    [109] PALM M,PREUHS J,SAUTHOFF G. Production scale processing of anew intermetallica NiAl-Ta-Cr alloy for high-temperature application: Part Ⅰ.Productions of master alloy remelt ingots and investment casting of combustor linermodel panels [J]. Jornal of Materials Processing Technology,2003,136:105-113.
    [110] PALM M, PREUHS J, SAUTHOFF G. Production scale processing of a newintermetallica NiAl-Ta-Cr alloy for high-temperature application: Part Ⅱ. Powdermetallurgical production of bolts by hot isostatic pressing [J]. Jornal of MaterialsProcessing Technology,2003,136:114-119.
    [111]姜肃猛,齐义辉. NiAl金属间化合物的制备技术[J].辽宁工学院学报,2004,24:43-48.
    [112]李慧,韩萍,齐义辉,佟圣旺. NiAl金属间化合物的韧化方法与机制[J].辽宁工学院学报,2006,26:394-402.
    [113]鲁玉祥,陶春虎,杨德庄,张俊善. NiAl合金基原位复合材料的反应热压制备和拉伸性能[J].航空材料学报,1999,19:35-42.
    [114]张小明,郭继红.用SHS工艺合成TiAl、TiNi、NiAl金属间化合物[J].稀有金属,1995,19:272-276.
    [115] PICKENS J W. Fabrication of intermetallic matix composites by the powdercloth process [R]. NASA,1989, TM-102060.
    [116] BOWMAN R R, MISRA A K, ARNOLD S M. Processing and mechanicalproperties of Al2O3fiber-reinforced NiAl composites [J]. Metallurgical and MaterialsTransactions A,1995,26(A):615-628.
    [117] WHITTENBERGER J D, GAYDOSH D J, KUMAR K S.1300Kcompressive properties of several dispersion strength NiAl materials [J]. Journal ofMaterials Science,1990,25:2771-2776.
    [118] JHA S C, RAY R, WHITTENBERGER J D.Carbide-dispersion-strengthened B2NiAl [J]. Material Science and Engineering A,1989,119(6):103-111.
    [119] WHITTENBERGER J D, RAY R, JHA S C, DRAPER S.1000-1300K slowstrain rate properties of NiAl containing dispersed TiB2and HfB2[J]. MaterialsScience and Engineering A,1991,38(2):83-93.
    [120] WHITTENBERGER J D. High temperature ordered intermetallic alloy Ⅵ[C]. Material Research Society Symposium Proceedings,1991,213:581-587.
    [121] WHITTENBERGER J D, RAY R, JHA S C. Influence of grain size on thecreep behavior of HfC-dispersed NiAl [J]. Materials Science and Engineering A,151(2):137-146.
    [122] TINGAUD D, NARDOU F. Influnence of non-reactive particles on themicrostructure of NiAl and NiAl-ZrO2processed by thermal explosion [J].Intermetallics,2008,16:732-737.
    [123] PENG LM, WANG JH, LI H, GONG M. Microstructure and mechanicalbehavior of NixAly-Al2O3in situ composites by pre-oxidation followed by hot-pressedreactive sintering [J]. Materials Science and Engineering A,2006,425:339-345.
    [124] LI M X, HE Y Z, YUAN X M, ZHANG S D. Microstructure of Al2O3nanocrystallin/cobalt-based alloy composite coatings by laser deposition [J]. Materials&Design,2006,27:1114-1119.
    [125] MAURICE V, FRéMY N, MARCUS P. Hydroxylation-inducedmodifications of the Al2O3/NiAl(001) surface at low water wapour pressure [J].Surface Science,2005,581:88-104.
    [126] ZHU H X, ABBASCHIAN R. Mircrostructures and properties of in-situNiAl-Al2O3functionally gradient composites [J]. Composites Part B: Engineering,2000,31:383-390.
    [127] PADMAVARDHANI D, GOMEZ A, Abbaschian R. Synthesis andmicrostructural characterization of NiAl/Al2O3functionally gradient composites [J].Intermetallics,1998,6:229-241.
    [128] MOSHKSAR M M, DOTY H, ABBASCHIAN R. Grain growth in NiAl/Al2O3in situ composites [J]. Intermetallics,1997,5:393-399.
    [129] RYU H C, SHIN M K, HONG S H. Reactive processing and mechanicalproperties of ZrO2/NiAl intermetallic matrix composite [J]. Journal of MaterialsProcessing Technolpgy,1997,63:411-416.
    [130] SEYBOLT A U. Oxide dispersion strength NiAl and FeAl [J]. Transactionsof the American Society for Metals,1966,59:860.
    [131] ZHU H X, ABBASCHIAN R. In-situ processing of NiAl-aluminacomposites by thermite reaction [J]. Materials Science and Engineering A,2000,282:1-7.
    [132] UDHAYABANU V, RAVI K R, MURTY B S. Development of in situNiAl-Al2O3nanocomposite by reactive milling and spark plasma sintering [J].Journal of Alloys and Compounds,2011,509S:223-228.
    [133] UDHAYBANU V, RAVI K R, VINOD V, MURTY B S. Synthesis of in-situNiAl-Al2O3nanocomposite by reactive milling and subsequent heat treatmeng [J].Intermetallics,2010,18:353-358.
    [134] LIN C K, HONG S S, LEE P Y. Formation of NiAl-Al2O3intermetallic-matrix composite powders by mechanical alloying technique [J].Intermetallics,2000,8:1043-1048.
    [135] Zwigl P, Dunand DC. Transformation-mismatch plasticity of NiAl/ZrO2composites-experiments and continuum modeling [J]. Materials Science andEnginerring A,2001,298:63-72.
    [136] MATSUURA K, KUDOH M. Grain refinement of combustion-synthesizedNiAl by addition ceramic particles [J]. Materials Science and Engineering A,1997,239-240:626-632.
    [137] JIANG D T, GUO J T. Preliminary investigation of in-situ multi-phasecomposite NiAl/Cr(Mo)-TiC [J]. Materials Letters,1998,36:33-37.
    [138] JIANG D T, GUO J T. Elevated temperature compressive behavior of in-situmultiphase composites NiAl/Cr(Mo)-TiC [J]. Materials Science and Engineering A,1998,255:154-161.
    [139] BURKES D E, MOORE J J. Microstructure and kinetics of a functionallygraded NiTi-TiCxcomposite produced by combustion synthesis [J]. Journal of Alloysand Compounds,2007,430:274-281.
    [140] Johnson David R. Intermetallic-based composites [J]. Current Opinion inSolid State and Materials Science,1999,4:249-263.
    [141] DURAINSELVAM M, GALUN R, SIEGMANN S, WESLING V,MORDOKE L. Liquid impact erosion characteristics of martensitic stainless steel laseclad with Ni-based intermetallic composites and matrix composites [J]. Wear,2006,261:1140-1149.
    [142] SUBRAMANIAN R,SCHNEIBEL J H. The ductile-brittle size transition ofiron aluminide ligaments in an FeAl/TiC composite [J]. Acta Materialis,1998,46:4733-4741.
    [143] SUZUKI T, MATSUMOTO H, NOMURA N, HANADA S. Microstructuresand fracture toughness of directionally solidified Mo-ZrC eutectic composites [J].Science and Technology of Advanced Materials,2002,3:137-143.
    [144] GOLBERG D, DEMURA M, HIRANO T. Structure and yield strength ofdirectionally solidified Ni3Al intermetallic premelted with MoSi2phase [J].Intermetallics,1999,7:109-114.
    [145] GAO M X, PAN Y, OLIVEIRA F J, BAPTISTA J L, VIEIRA J M.Interpenetrating microstructure and fracture mechanism of NiAl/TiC composite bypressureless melt infiltration [J]. Materials Letters,2004,58:1761-1765.
    [146] CHEN R, IWABUCHI A, SHIMIZU T, SHIN SEOP H, MIFUNE H. Thesliding wear resistance behavior of NiAl and SiC partucles reinforced aluminiumalloy matrix composites [J]. Wea,1997,213:175-184.
    [147] CHOU T C, NIEH T G. Interfacial reactions of SiC with NiAl [J]. ScripataMetallurgica et Materialia,1991,25:2059-2064.
    [148] AZARMI F. Creep properties of nickel aluminide composite materialsreinforced with SiC particulates [J]. Composites Part B:Engineering,2011,42:1779-1785.
    [149] ZHU X, ZHANG T, MORRIS V. Combustion synthesis of TiC-NiAlcomposite by induction heating [J]. Journal of the European Ceramic Society,2010,30:2781-2790.
    [150] BYSTRZYCKI J, VARIN R A. Microstructure and microtexture inpowder-extruded monolithic NiAl and NiAl/HfC alloy [J]. Intermetallics,1998,6:277-289.
    [151] PLAZANET L, TETARD D, NARDOU F. Effect of SiC and ZrO2particleson the mechanical properties of NiAl [J]. Composites Science and Technology,1999,59:537-542.
    [152] XING Z P, GUO J T, HAN Y F, YU L G. Microstructure and mechanicalbehavior of the NiAl-TiC in situ composite [J]. Metallurgical and materialstransactions A,1997,28:1079-1087.
    [153] XING Z P, GUO J T. Influence of HIP processing on the interface ofNiAl-TiC in situ composite [J]. Materials Letters,1996,28:361-363.
    [154] CHENG T Y, CANTOR B. Improvement of ductility of NiAl at roomtemperature and manufacturing of NiAl/TiB2composites by melting spinning [J].Materials Science and Engineering A,1992,153:696-699.
    [155] DAI J Y, XING Z P, WANG Y G, LI DX, GUO J T, HE L L, YE H Q. HREMstudy of TiB2/NiAl interfaces in a NiAl-TiB2in-situ composite [J]. Materials Letters,1994,20:23-27.
    [156] CHENG T Y, FLOWER H M. High temperature x-ray diffractioninvestifgation of nickel-rich NiAl and NiAl-TiB2[J]. Acta Metallurgica et Materialia,1994,42:1399-1405.
    [157] SAQID M, MEHROTRA G M, WEISS I, BECK H, LIPSITT H A. Thermalstability of TiB2particulates in an NiAl matix [J]. Scripta Metallurgica et Materialia,1990,24:1889-1894.
    [158] XING Z P, DAI J Y, GUO J T, AN G Y, HU Z O. Compression behavior andinterface of NiAl-TiB2in situ composite [J]. Scripta Metallurgica et Materialia,1994,31:1141-1144.
    [159] KUMAR K S, DAROLIA R, LAHRMAN D F, MANNAN S K. Tensilecreep response of an NiAl-TiB2particulate composite [J]. Scripta Metallurgica etMaterialia,1992,26:1001-1006.
    [160] HOU S X, LIU Z D, LIU D Y. The study of NiAl-TiB2coating prepaered byelectro-thermal explosioin ultrahigh speed spraying techonology [J]. Surface andCoating Technology,2011,205:4562-4568.
    [161] WANG L, ARSENNAULT R J. Microstructure of TiB2/NiAl [J]. MaterialsScience and Engineering A,1990,127:91-98.
    [162] GUO J T, XING Z P. Investigation of NiAl-TiB2in situ composites [J].Journal of materials research,1997,12:1083-1090.
    [163] HAWK J A, ALMAN D E. Abrasive wear behavior of NiAl and NiAl-TiB2composites [J]. Wear,1999,225:544-558.
    [164] GUO J T, JIANG D T, XING Z P, LI G S. Tensile properties andmicrostructures of NiAl-20TiB2and NiAl-20TiC in situ composites [J]. Materials&Design,1997,18:357-360.
    [165] CAO C H, LIU Z G, SHEN G J, LIU J M. Interface and precipitateinvestigation of a TiB2particle reinforced NiAl in-situ composie [J]. Intermetallics,2001,9:691-695.
    [166] SHEN G J, CAO G H, LIU Z G. Transmission electron microscopy study ofprecipitates in a NiAl-TiB2composite [J]. Materials Characteriazation,2001,47:39-42.
    [167] CAMURLU ERDEM H, MAGLIA F. Self-propagation high-temperaturesynthesis of ZrB2or TiB2reinforced Ni-Al composite powder [J]. Journal of Alloysand Compounds,2009,478:721-726.
    [168] WHITTENBERGER DANIEL J.1000-1300K slow strain rate properties ofNiAl containing dispersed TiB and HfB2[J]. Materials Science and Engineering A,1991,138:83-93.
    [169] CHOO H, NASH P, DOLLAR M. Mechanical properties of NiAl-AlN-Al2O3composites [J]. Materials Science and Enginerring A,1997,239-240:464-471.
    [170] CHOO H, BOURKE M, NASH P, DAYMOND M, SHI N. Thermal residualstresses in NiAl-AlN-Al2O3composites measured by neutron diffraction [J]. MaterialsScience and Engineering A,1999,264:108-121.
    [171] LEE D B, KIM G Y, PARK S W, UR S C. High temperature oxidation ofmechanically alloyed NiAl-Fe-AlN-Al2O3[J]. Materials Science and Engineering A,2002,329-331:718-724.
    [172] JIANG D T, LIN D T, GUO J T, SHI C X. Reaction synthesis, microstructureand mechanical behavior of in situ composite NiAl-TiC-Al2O3[J]. Metallurgical andMaterials Transactions A,2000,31(6):1692-1695.
    [173] DERCZ G,PAJAK L, FORMANEK B. Dispersion analysis ofNiAl-TiC-Al2O3composite powder ground in a high-energy attritorial mill [J].Journal of Materials Processing Technology,2006,175:334-337.
    [174] SHAN F L, GAO Z M, WANG Y M. Microhardness evaluation of Cu-Timultilayered films by X-ray diffraction line profile analysis [J]. Thin Solid Films,1998,324:162–164.
    [175] GUO H B, WANG X Y, LI J, WANG S X, GONG S K. Effects of Dy oncyclic oxidation resistance of NiAl alloy [J]. Transactions of Nonferrous MetalsSociety of China,2009,19(5):1185-1189.
    [176] QIU F, SHEN P, JIANG Z H, LIU T, JIANG Q C. Strong work-hardeningeffect in a multiphase ZrCuAlNiO alloy [J]. Applied Physic Letter,2008,92:191512.
    [177] AFRIN N, CHEN D L, CAO X, JAHAZI M. Strain hardening behavior of afriction stir welded magnesium alloy [J]. Script Materialia,2007,57:1004–1007.
    [178] SWYGENHOVEN VAN H, SPACZE R M, CARO A, FARKAS D.Competing plastic deformation mechanisms in nanophase metals [J]. Physic ReviewB,1999,60:22–25.
    [179] CHEN X H, LU L. Work hardening of ultrafine-grained copper withnanoscale twins [J]. Script Materialia,2007,57:133–136.
    [180] WANG Y M, MA E, CHEN M W. Enhanced tensile ductility and toughnessin nanostructured Cu [J]. Applied Physic Letter,2002,80:2395–2397.
    [181]秦丽元.电沉积纳米晶镍及镍钴合金的微观组织和性能研究[D].长春:吉林大学,2010.
    [182] LU L, CHEN X, HUANG X, LU K. Revealing the maximum strength innanotwinned copper [J]. Science2009,323:607-610.
    [183] WANG Y M, MA E. Three strategies to achieve uniform tensile deformationgin a nanostructured metal [J]. Acta Materiala,2004,52:1699-1709.
    [184] HALL E O. The Deformation and Ageing of Mild Steel: Ⅲ Discussion ofResulets [J]. Proceedings of the Physical Society London B1951,64:747-753.
    [185]陈平昌,朱六妹,李赞.材料成型原理[M].北京:机械工程出版社,2001.
    [186] LIAN J S, GU C D, JIANG Q, JIANG Z H. Strain rate sensitivity offace-centered-cubic nanocrystalline materials based on dislocation deformation [J].Journal of Applied Phaysics,2006,99:076103.
    [187] ASARO R J, SURESH S. Mechanistic models for the activation volume andrate sensitivity in metals with nanocrystalline grains and nano-scale twins [J]. ActaMaterialia2005,53:3369–3382.
    [188] BRAMFITT B L. The effect of carbide and nitride additions on theheterogeneous nucleation behavior of liquid iron [J]. Metallurgical Transaction,1970,(1):1987-1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700