氮化物/钽多层膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气相沉积薄膜赋予材料表面特殊的物理、化学和机械性能,在航天航空、微电子、机械制造等领域有着重要的应用,特别是在金属切削加工刀具的性能提高方面,具有举足轻重的作用。气相沉积的多层膜往往具有基体和单层膜难以达到的特殊性能,是当前薄膜材料理论与技术的研究热点之一。已有的关于氮化物/金属多层膜的研究成果,预示着气相沉积多层膜技术有着良好的发展前景。
     钽是一种硬度高、韧性好、熔点高的过渡金属元素,经常用于提高合金的抗高温氧化性能。将钽与氮化物制成多层膜,有可能提高薄膜力学性能及热稳定性。但是,由于全球钽资源不太丰富,相关研究尚少见报道。我国钽资源较丰富,工业储量达3.984万吨,位居世界第二。研究含钽多层膜有助于开创具有自主知识产权的薄膜技术。
     本文以提高数控机床车削涂层刀具性能为对象,侧重研究TiN/Ta多层膜和TiAlN/Ta多层膜相关理论与技术。采用离子束辅助沉积方法制备不同调制比和调制周期的TiN/Ta多层膜和TiAlN/Ta多层膜,优化多层膜结构;开发适用于氮化物/钽多层膜工业化制备的多弧离子镀和磁控溅射复合镀膜设备及其工艺装备;通过车削和物理化学性能研究,优化硬质合金刀具TiAlN/Ta多层膜制备工艺;通过工业化批量制备的涂层刀具的工厂车削加工实验,确认TiAlN/Ta多层膜提高车削加工性能和刀具使用寿命的效果。同时,研究了涂层缺陷以及表面微织构对刀具性能的影响。
     不同调制比和调制周期的TiN/Ta多层膜和TiAlN/Ta多层膜的硬度、膜/基结合强度、热稳定温度实验研究结果表明,调制周期和调制比对TiN/Ta多层膜、TiAlN/Ta多层膜性能的影响显著。
     调制周期5.6nm和调制比1:1的TiN/Ta多层膜具有优异的强度性能,硬度值达到23GPa,膜/基结合力为75mN,与TiN单层膜比较,分别提高约21%和44%;TiN/Ta多层膜的热稳定性较TiN单层膜明显提高,调制周期5.6nm和调制比1:1的TiN/Ta多层膜热稳定温度达到770℃,比TiN单层膜高340℃。
     调制比为25:1的TiAlN/Ta多层膜硬度达到29GPa,比TiAlN单层膜提高21%;TiAlN/Ta多层膜的膜/基结合力72mN,是TiAlN单层膜膜/基结合力的2.4倍。综合热分析的结果表明,TiAlN/Ta多层膜的热稳定性温度为935℃左右,比TiAlN单层膜高75℃。
     为了实现多层膜技术在涂层刀具的工业应用,设计并制备了多弧离子镀和磁控溅射相结合的薄膜沉积设备及专用样品架,通过可编程逻辑控制器(PLC)控制实现了设备的半自动化控制。实现了可转位刀片、钻头等刀具的多功能镀膜,为TiAlN/Ta多层膜刀具的工业规模批量化生产奠定了设备基础。
     通过正交试验确定了采用研制的多弧离子镀和磁控溅射相结合薄膜沉积设备沉积TiAlN薄膜的主要影响因素及最佳沉积工艺参数。TiAlN薄膜的最佳沉积工艺参数为:脉冲电压为-200V,电弧电流为60A,氮气分压0.5Pa,基体温度为400℃。所制备的TiAlN/Ta刀具涂层硬度为30.3GPa,膜/基结合力为89N。
     对TiAlN/Ta涂层刀具进行了车削性能测试及产品切削实验。基于三向力分析的车削性能测试表明,TiAlN/Ta涂层刀具的切削力小,摩擦系数低,磨损轻微。TiAlN/Ta涂层刀具用于精车调质45钢活塞杆工件时,被加工件的表面粗糙度为1.445μm~1.667μm,可以实现以车代磨。最优的切削工艺参数为:主轴转速2000r/min,进给量0.1mm/r,背吃刀量0.1mm。
     采用聚焦离子束等技术探讨了涂层表面状态对切削加工性能的影响。研究表明,涂层沉积过程中形成的“大颗粒”会降低涂层刀具的切削性能。通过聚焦离子束在涂层刀具表面加工微织构可以提高其切削性能,其中,加工条形微织构可以获得更好的切削性能。
Because of itsexcellentphysical, chemical and mechanical properties, filmsdeposited by vapor deposition were widely used in aerospace, microelectronic,mechanical manufacture and so on. Filmsdeposited by vapor depositionoften showedmajor impact on the cutting performance of cutting tools when they wereused.Multilayer film has been a hot area of film materials reasearch for several yearsbecause it had better properties than monolayer film and substrate.Results of researcheson nitrides/metal multilayer films indicatedthat the technology of multilayer films has agood prospect.
     Tantalum has excellent physical and chemical properties such as highhardness,good ductility and high melting point. Itusually was used in many super-alloys toimprove the oxidation resistance. By introducing tantalum to nitrides films, goodmechanical properties and thermal stability may obtainedfrom nitrides/tantalummultilayer films.But, due to tantalum resource is not very rich, there was few relatedreports onnitrides/tantalum multilayer films. The tantalum resource in China is thesecond in the world, and industrial reserve of tantalum is39840tons. So, research onnitrides/tantalum multilayer films will contribute to develop new film technology withindependent intellectual property rights.
     In order to improvecutting performance of coated cutting tools, researches ofproperties and application of TiN/Ta multilayer film and TiAlN/Ta multilayer film weredone in this paper. First, Modulation structures of the TiN/Ta multilayer film and theTiAlN/Ta multilayer film deposited by ion beam assisted deposition were optimized viahardness test. Then, a film depositonsystem and a special sample holder suitable formassproduction ofnitrides/tantalum multilayer filmscoated carbidetools weredesigned.Depositionparameters of the TiAlN/Ta multilayer film used for carbidetoolswas optimaizedvia turning experiment and testing of properties.Cutting perfomanceand service lifeof the TiAlN/Ta multilayer film coated carbide toolswere studied. Effectof defects and mico-textures on cutting performance were studied, too.
     Results of hardness, bonding strength of the film/substrate, and thermal stabilityshowed that modulation period and modulation ratiohad a significant effect onproperties of the TiN/Ta multilayer film and the TiAlN/Ta multilayer film.
     Mechanical properties, microstructure, and thermal stability of the TiN/Tamultilayer filmsand the TiAlN/Ta multilayer filmswere investigated. Hardness andbonding strength of the TiN/Ta multilayer filmwith modulation period of5.6nm andmodulation ratio of1:1were23GPa and75mN,21%and44%higher than that of theTiN monolayer film. Results of differential scanning calorimetric and thermogravimetryanalysis indicated that the TiN/Ta multilayer film hadanexothermic peak whichrepresent thermal stability at around770°C,370°C above that of the TiN monolayerfilm.
     Hardness of the TiAlN/Ta multilayer film with modulation ratio of25:1was29GPa, which was29%higher than that of the TiAlN monolayer film. Nano-scratch testwas performed to study the bonding strength of the film/substrate. The critical fractureload of72mN for the TiAlN/Ta multilayer film was achieved,2.4times higher than thatof the monolayer TiAlN film. Results of differential scanning calorimetricanalysisindicated that the TiAlN/Ta multilayer film had an exothermic peak at around935°C,75°C above that for the TiAlN monolayer film.
     In order to achieve the mass production of the TiAlN/Ta multilayer film coatedcutting tools, a film deposition system and a special sample holder were designed. Thefilm deposition system was combined multi-arc ion plating and magnetron sputtering atthe same time.Semi-automatic control of the film deposition system was accomplishedby programmable logic controller (PLC). Multi-functional coating on blades, drill bitsand other cutting toolswas realized by the film deposition system.It also laid afoundation for themass production of the TiAlN/Ta multilayer film coated cutting tools.
     Orthogonal experimental design was used to discuss the influence of depositionparameters on nano hardness of TiAlN film deposited by the film deposition system.Results showed that TiAlN film had the highest hardness when the pulse bias was-200V,the arc current60A, the nitrogen pressure0.5Pa and the substrate temperature400℃.Based on results, mass production of the TiAlN/Ta multilayer film coatedcutting tools was achieved. Hardness of the TiAlN/Ta multilayer film coated cutting toolwas30.3GPa, and bonding strength was89N.
     Three-axis force analysis and cutting experiment for the TiAlN/Ta multilayer filmcoated cutting tools were done. Results of three-axis force analysis showed that cuttingforce and friction coefficient the TiAlN/Ta multilayer film coated cutting tool was thelowest. No wear or slight wear was found after cutting experiment. It came true that finishing turning took the place of grinding by the TiAlN/Ta multilayer film coatedcutting tool. When used for finish turning of45hardened and tempered steel, surfaceroughness of the workpiece was1.445μm~1.667μm.Optimal cutting parametersachieved when the spindle speed2000r/min, the depth of cut was0.1mm/r and the feedrate0.1mm.
     Effect of surface states on cutting performance were studied by focused ion beamand other technology. Results showed that droplets created during the deposition canruduce the cutting performance of coated cutting tools. Micro-textures were prepared onthe surface of coated cutting tools by focused ion beam. Cutting performance of coatedcutting tools with mico-textures were improved. Cutting experiments showed that coatedcutting tools with bar micro-texture had better cutting performance than that withcircular micro-texture.
引文
[1] J. S. Koehler. Attempt to design a strong solid[J]. Phys. Rev. B.1970,2:547-551.
    [2]康昌鹤,杨树人.半导体超晶格材料及其应用[M].国防工业出版社,北京,1995.
    [3] S. A. Barnett, M. Shinn. Plastic and elastic properties of compositionally modulated thinfilm[J]. Annu. Rev. Mater. Sci..1994,24:48-51.
    [4] J. Y. Zhang, J. J. Niu, X. Zhang, et al. Tailoring nanostructured Cu/Cr multilayer filmswith enhanced hardness and tunable modulus[J]. Mater. Sci. Eng. A.2012,543:139-144.
    [5] J. P. Chu, Y. C. Wang. Sputter-deposited Cu/Cu(O) multilayers exhibiting enhancedstrength and tunable modulus[J]. Acta Mater..2010,58:6371-6378.
    [6] J. W. Yan, G. P. Zhang, X. F. Zhu, et al. Microstructures and strengthening mechanisms ofCu/Ni/W nanolayered composites[J]. Philos. Mag..2013,93:434-448.
    [7] W. M. Yang, T. Tsakalakos, J. E. Hilliard. Enhanced elastic modulus incomposition-modulated gold-nickel and copper-palladium foils[J]. J. Appl. Phys..1977,48:876-879.
    [8] G. E. Henein, J. E. Hilliard. Elastic modulus in composition-modulated silver-palladiumand copper-gold foils[J]. J. Appl. Phys..1983,54:728-733.
    [9] T. Tsakalakos, J. E. Hilliard. Elastic modulus in composition-modulated copper-nickelfoils[J]. J. Appl. Phys..1983,54:734-737.
    [10] P. C.Yashar, W. D. Sproul. Nanometer scale multilayered hard coating[J]. Vac..1999,55:179-190.
    [11] S. J. Lloyd, J. M. Molina-Aldareguia.Multilayered materials: a palette for the materialsartist[J]. Phil. Trans. R. Soc. Lond. A.2003,361:2931-2949.
    [12] Misra, H. Kung, J. D. Embury. Preface to the viewpoint set on: deformation and stabilityof nanoscale metallic multilayers[J]. Scripta Mater..2004,50:707-710.
    [13] S. P. Dey, S. C. Deevi. Single layer and multilayer wear resistant coatings of (Ti,Al)N: areview[J]. Mater. Sci. Eng. A.2003,342:58-79.
    [14] G. S. Was, T. Foecke. Deformation and fracture in microlaminates[J]. Thin Solid Films.1996,286:1-31.
    [15] P. C. Yashar, W. D. Sproul. Nanometer scale multilayered hard coating[J]. Vac.1999,55:179-190.
    [16] S. Zhang, D. Sun, Y. Q. Fu, et al. Recent advances of superhard nanocomposite coatings:a review[J]. Surf. Coat. Technol.2003,167:113-119.
    [17] X. Chu, S. A. Barnett, M. S. Wong, et al. Reactive unbalanced magnetron sputterdeposition of polycrystalline TiN/NbN superlattice coatings[J]. Surf. Coat. Technol.1993,57:13-18.
    [18] M. Shinn, L. Hultman, S. A. Barnett. Growth, structure, and microhardness of epitaxialTiN/NbN superlattices[J]. J. Mater. Res..1992,7:901-911.
    [19] D. Tench, J. White. Enhanced tensile strength for electrodeposited nickel-coppermultilayer composites[J]. Metall. Mater. Trans. A.1984,15:2039-2040.
    [20] S. Menezes, D. P. Anderson. Wavelength-property correlation in electrodepositedultrastructured Cu Ni multilayers[J]. J. Electrochem. Soc..1990,137:440-444.
    [21] J. A. Rudd, T. R. Jervis, F. Spaepen. Nanoindentation of Ag/Ni multilayered thin films[J].J. Appl. Phys..1994,75:4969-4974.
    [22] S. Tixier, P. B ni, H. V. Swygenhoven. Hardness enhancement of sputtered Ni3Al/Nimultilayers[J]. Thin Solid Films.1999,342:188-193.
    [23]李振明.纳米铜/镍多层膜的耐磨性研究[J].材料开发与应用.1999,14:17-19.
    [24] O. Knotek, F. Loeffler, G. Kraemer. Multicomponent and multilayer physically vapourdeposited coatings for cutting tools[J]. Surf. Coat. Technol..1992,54-55:241-248.
    [25] E. Martínez, J. Romero, A. Lousa, et al. Wear behavior of nanometric CrN/Crmultilayers[J]. Surf. Coat. Technol..2003,163-164:571-577.
    [26] L. A. Donahue, J. Cawley, D. B. Lewis, et a1. Investigation of superlattice coatingsdeposited by a combined steered arc evaporation and unbalanced magnetron sputteringtechnique[J]. Surf. Coat. Technol..1995,76-77:149.
    [27] G. E. Dieter. Mechanical metallurgy[M]. New York, Mc Graw-Hill Inc..1986.
    [28] P. M. Anderson, C. Li. Hall-petch relations for multilayered materials[J]. NanostructureMater..1995,5:349-353.
    [29] P. M. Anderson, T. Foeckw, P. M. Hazzledine. Dislocation-based deformationmechanisms in metallic Nanolaminates[J]. MRS Bulletin.1999,24,27-33.
    [30] G. Y. Li, Z. H. Han, J. W. Tian, et al. Alternating stress and superhardness effect inTiN/NbN superlattice films[J]. J. Vac. Sci. Technol. A.2002,20:674-677.
    [31] M. A. Grinfeld, P. M. Hazzledine, B. Shoykhet, et al. Coherency stresses in lamellarTi-Al[J]. Matall. Mater. Trans. A.1998,29A:937-942.
    [32] D. Lebouvier, P. Gilormini, E. Felder. A kinematic model for plastic indentation of abilayer[J]. Thin Solid Films..1989,172:227-231.
    [33] M. Setoyama, A. Nakayama, M. Tanaka. Formation of cubic AlN in TiN/AlNsuperlattice[J]. Surf. Coat. Technol..1996,86-87:225-230.
    [34]乌晓燕,孔明,赵文济,等.Si3N4在h-AlN上的晶体化与AlN/Si3N4纳米多层膜的超硬效应[J].物理学报.2009,58:2654-2659.
    [35] S. R. Dong, L. H. Yu, A. J. Xue, et al. Microstructure and properties of TiAlN/CrAlNnanostructured multilayer films[J]. Trans. Mater. Heat Treat..2010,31:122-126.
    [36] G. Q. Li, Y. G. Li, G. Y. Li. Crystallization of amorphous Si3N4and superhardness effectin HfC/Si3N4nanomultilayers[J]. App. Surf. Sci..2011,257:5799-5802.
    [37] G. Q. Li, Y. G. Li, G. Y. Li. Coherent growth and superhardness effect in VC/Si3N4nanomultilayers[J]. Surf. Coat. Technol..2011,205:3881-3884.
    [38] A.F. Jankowski. Measurement of lattice strain in Au-Ni multilayer and correlationwithbiaxial modulus effect[J]. J. Appl. Phys..1992,71:1782-1789.
    [39] J.H. Xu, M. Kamiko, Y.M. Zhou. Superhardness effects of heterstructureNbN/TaNnanostructured multilayers[J]. J.Appl.Phys..2001,89:3674-3679.
    [40] G.E. Henein, J.E. Hilliard. Elastic modulus in composition-modulated copper-nickelandcopper-gold foils[J]. J. Appl. Phys..1983,54:728-733.
    [41] D. Chandrasekaran. Solid solution hardening-a comparison of two models[J]. Mater.Sci.Eng. A.2001,309-310:184-189.
    [42] M.Volker. Orowan process controlled dislocation glide in materials containingincoherentparticle[J]. Mater. Sci. Eng. A.2001,309-310:265-269.
    [43] S. L. Lehoczky. Strength enhancement in thin-layered Al-Cu laminates[J]. J. Appl. Phys..1978,49:5479-5485.
    [44] R. C. Cammarata, T. E. Schlesinger, C. Kim, et al. Nanoindentation study of themechanical properties of copper-nickel multilayered thin films[J]. Appl. Phys. Lett..1990,56:1862-1864.
    [45] C. Kim, S. B. Qadri, M. R. Scanlon, et al. Low-dimension structural properties andmicroindentation studies of ion-beam-sputtered multilayers of Ag/Al films[J]. ThinSolid Films.1994,240:52-55.
    [46] G. Y. Li, J. H. Xu, L. Q. Zhang, et al. Growth, microstructure, and microhardness ofW/Mo nanostructured multilayers[J]. J. Vac. Sci. Technol. B.2001,19:94-97.
    [47] K. K. Shih, D. B. Dove. Ti/TiN, Hf/HfN and W/WN multilayer milms with highmechanical hardness[J]. Appl. Phys. Lett..1992,61:654-656.
    [48] S. J. Bull, A. M. Jones. Multilayer coatings for improved performance[J]. Surf. Coat.Technol..1996,78:173-184.
    [49] E. Kusanno, M. Kitagawa, A. Satoh, et al. Hardness of compositionally nano-modulatedTiN films[J]. Nanostruct. Mater..1999,12:807-810.
    [50] N. Kikuchi, M. Kitagawa, A. Sato, et al. Elastic and plastic energies in sputteredmultilayered Ti/TiN films estimated by nanoindentation[J]. Surf. Coat. Technol..2000,126:131-135.
    [51] M. B. Daia, P. Aubert, S. Labdi, et al. Nanoindentation investigation of Ti/TiNmultilayered films[J]. J. Appl. Phys..2000,87:7753-7757.
    [52] Z. N. Farhat, Y. Ding, D. O. Northwood, et al. Nanoindentation and friction studies onTi-based nanolaminated films[J]. Surf. Coat. Technol..1997,89:24-30.
    [53] A. Duck, N. Gamer, W. Gesatzke, et al. Ti/TiN multilayered coatings: Depositiontechnique, characterization and mechanical properties[J]. Surf. Coat. Technol..2001,142-144:579-584.
    [54] T. S. Li, H. Li, F. Pan, et al. Microstructure and nanoindentation hardness of Ti/TiNmultilayered films[J]. Surf. Coat. Technol..2001,137:225-229.
    [55]顾颖波,黄建斌,王从曾,等.多弧离子镀TiN/Cu多层复合纳米膜研究[J].第六届全国表面工程学术会议(兰州).2006,8:377-380.
    [56]穆静静,王从曾,马捷,等.多弧离子镀TiN/Cu纳米复合多层膜致硬机理的探讨[J].热加工工艺.2008,37:15-17,21.
    [57]龚海飞.TiN/Ti多层膜热稳定性及摩擦学特性研究[D].北京:清华大学精密仪器与机械学系,2009.
    [58] Y. Kang, C. Lee, J. Lee. Effects of processing pariables on the mechanical properties ofTa/TaN multilayer coatings[J]. Mater. Sci. Eng. B.2000,75:17-23.
    [59] J. Wang, W. Z. Li, H. D. Li. Mechanical properties of nanoscaled TiC/Fe multilayersdeposited by ion beam sputtering technique[J]. Thin Solid Films.2001,382:190-193.
    [60] T. C. Chou, T. G. Nieh, S. D. McAdams, et al. Mechanical properties andmicrostruceures of metal/ceramic microlaminates: part1.Nb/MoSi2systems[J]. J. Mater.Res..1992,7:2774-2784.
    [61]李戈扬,张流强,吴亮,等.W/SiC纳米多层膜的界面微结构研究[J].电子显微学报.1997,17:107-108.
    [62] U. Helmersson, S. Todorova, S. A. Barnett, et al. Growth of single-crystal TiN/VNstained-lay superlattice with extremely high mechanical hardness[J]. J. Appl. Phys..1987,62:481-484.
    [63] H. Ljungcrantz, C. Engstrom, L. Hultman, et al. Nanoindentation hardness, abrasivewear, and microstructure of TiN/NbN polycrystalline nanostructured multilayer filmsgrown by reactive magnetron sputtering[J]. J. Vac. Sci. Tehnol. A.1998,16:3104-3113.
    [64] P. B. Mirkarimi, L. Hultman, S. A. Barnett. Enhanced hardness in lattice-matchedsingle-Crystal TiN/V0.6Nb0.4N superlattices[J]. Appl. Phys. Lett..1990,57:2654-2656.
    [65] K. M. Hubbard, T. R. Jervis, P. B. Mirkarimi, et al. Mechanical properties of epitaxialTiN/(V0.6Nb0.4)N superlattices measured by nanoindentation[J]. J. Appl. Phys..1992,72:4466-4468.
    [66] P. B. Mirkarimi, S. A. Barnett, K. M. Hubbard, et al. Structure and mechanical propertiesof epitaxial TiN/V0.3Nb0.7N(100) superlattice[J]. J. Mater. Res..1994,9:1456-1467.
    [67] M. Shinn, S. A. Barnett. Effect of superlattice layer elastic module on hardness[J]. Appl.Phys. Lett..1994,64:61-63.
    [68] X. Chu, S. A. Barnett. Model of superlattice yield stress and hardness enhancements[J]. J.Appl. Phys..1995,77:4403-4411.
    [69] L. A. Donahue, J. Cawley, D. B. Lewis, et a1. Investigation of superlattice coatingsdeposited by a combined steered arc evaporation and unbalanced magnetron sputteringtechnique[J]. Surf. Coat. Technol..1995,76-77:149.
    [70] D. G. Kim, T. Y. Seong. Effects of annealing on the microstructures and mechanicalproperties of TiN/AlN nano-multilayer films prepared by ion-beam assisteddeposition[J]. Surf. Coat. Technol..2002,153:79-83.
    [71] N. J. M. Carvalho, J. Th. M. De Hosson. Deformation mechanisms in TiN/(Ti,Al)Nmultilayers under depth-sensing indentation[J]. Acta Mater..2006,54:1857-1862.
    [72] H. C. Barshilia, K. S. Rajama, A. Jain, et al. A comparative study on the structure andproperties of nanolayered TiN/NbN and TiAlN/TiN multilayer coatings prepared byreactive direct current magnetron sputtering[J]. Thin Solid Films.2006,503:158-166.
    [73] A. Kovalev, D.Wainstein,G. Fox-Rabinovich et al. Features of self-organization innanostructuring PVD coatings on a base of polyvalent metal nitrides under severetribological conditions[J]. Surf. Interface Anal..2008,40:881-884.
    [74] J. K. Lee, G. S. Yang. Preparation of TiAlN/ZrN and TiCrN/ZrN multilayers by RFmagnetron sputtering[J]. Trans. Nonferrous Met. Soc. China..2009,19:795-799.
    [75] J. C. Caicedo, C. Amaya, G. Cabrera, et al. Corrosion surface protection by usingtitanium carbon nitride/titanium–niobium carbon nitride multilayered system[J]. ThinSolid Films.2011,519:6362-6368.
    [76] C.J. Tavares, L. Rebouta, B. Almeida, et al.Deposition and characterization ofmultilayered TiN/ZrN coatings[J].Thin Solid Films..1998,317:124-128.
    [77] P.C. Yashar, W. D. Sproul. Nanometer scale multilayered hard coatings[J].Vacuum.1999,55:179-190.
    [78] W.D. Sproul.New routes in the preparation of mechanically hard films[J].Science.1996,273:889-892.
    [79] H.C. Barshilia, A. Jain, K. S. Rajam.Structure, hardness and thermal stability ofnanolayered TiN/CrN multilayer coatings[J].Vacuum.2003,72:241-248.
    [80] K.J. Martin, A. Madan, D. Hoffman, et al.Mechanical properties and thermal stability ofTiN/TiB2nanolayered thin films[J].J. Vac. Sci. Technol. A.2005,23:90-98.
    [81] S.H. Yao, Y.L. Su, W.H. Kao, et al.Tribology and oxidation behavior of TiN/AlNnano-multilayer films[J]. Tribol. Int..2006,39:332-341.
    [82] N. Saoula, S. Djerourou, K. Yahiaoui, et al.Study of the deposition of Ti/TiN multilayersby magnetron sputtering[J].Surf. Interface Anal..2010,42:1176-1179.
    [83] Y.H. Cheng, T. Browne, B. Heckerman, et al.Mechanical and tribological properties ofnanocomposite TiSiN coatings[J].Surf. Coat. Technol..2010,205:146-151.
    [84] P.L. Sun, C.Y. Su, T.P. Liou, et al.Mechanical behavior of TiN/CrN nano-multilayer thinfilm deposited by unbalanced magnetron sputter process[J]. J. Alloys Compd..2011,509:3197-3201.
    [85] S.H. Zhang, F. Cai, M.X. Li.The nanostructured phase transition and thermal stability ofsuperhard f-TiN/h-AlSiN films[J].Surf. Coat. Technol..2012,206:3572-3579.
    [86] Saoula N, Henda K, Kesri R. Influence of Nitrogen content on the structural andmechanical properties of tin thin films[J]. J. Plasma Fusion Res.2009,8:1403-1407.
    [87] H.F. Gong, T.M. Shao.Influence of toughness on tribological performance ofTiN/Timultilayer coatings[J]. J. Mater. Eng..2009,10:26-31.
    [88] N. Saoula, S. Djerourou, K. Yahiaoui, et al.Study of the deposition of Ti/TiN multilayersby magnetron sputtering[J].Surf. Interface Anal..2010,42:1176-1179.
    [89] B. Subramanian, R. Ananthakumar, M. Jayachandran.Structural and tribologicalproperties of DC reactive magnetron sputtered titanium/titanium nitride (Ti/TiN)multilayered coatings[J].Surf. Coat. Technol..2011,205:3485-3492.
    [90] B. Subramanian, R. Ananthakumar, V.S. Vidhya. Influence of substrate temperature onthe materials properties of reactive DCmagnetron sputtered Ti/TiN multilayered thinfilms[J]. Mater. Sci. Eng. B.2011,176:1-7.
    [91] O. V. Sobol, A. A. Andreev, S. N. Grigoriev, et al. Vacuum-arc multilayer nanostructuredTiN/Ti coatings: structure, stress state, sroperties[J]. Met. Sci. Heat Treat..2012,54:28-33.
    [92] G. Abadias, Y.Y. Tse, A. Michel, et al.Nanoscaled composite TiN/Cu multilayer thinfilms deposited by dual ion beam sputtering: growth and structuralcharacterisation[J].Thin Solid Films.2003,433:166-173.
    [93] Y. Y. Tse, D. Babonneau, A. Michel, et al.Nanometer-scale multilayer coatingscombining a soft metallic phase and a hard nitride phase: study of the interface structureand morphology[J]. Surf. Coat. Technol..2004,180/181:470-477.
    [94] X. Chu, M. S. Wong, W. D. Sproul, et al. Mechanical properties and microstructures ofpolycrystalline ceramic/metal superlattices: TiN/Ni and TiN/Ni0.9Cr0.1[J].Surf.Coat.Technol..1993,61:251-256.
    [95] M. Irie, H. Ohara, M. Tsujioka, et al. The production and properties of TiN-Ninanostructure films by filtered vacuum arc deposition[J].Mater. Chem. Phys..1998,54,317-320.
    [96] X. X. Ma, X. D. Li, Y. Sun, et al. Preparation of TirN and Ag/TiN multilayers by plasmabased ion implantation with multi-targets unbalanced magnetronsputtering[J]. Mater.Lett..2000,44:170-174.
    [97] S.H. Yao, Y.L. Su, W.H. Kao, et al.A wear-resistant coating-oxidized graded multilayerTiN/W coating[J].Mater. Lett..2010,64:99-101.
    [98] J. L. He, W. Z. Li, H. D. Li. Simulation of nacre with TiN/Pt multilayers and a study oftheir hardness [J]. J. Mater. Res..1997,12:3140-3145.
    [99] B. Borawski, J. A. Todd, J. Singh, et al. The influnce of ductile interlayer material on theparticle erosion resistance of multilayered TiN based coatings[J]. Wear.2011,271:2890-2898.
    [100] D.F. Bahr, J.W. Hoehn, N.R. Moody, et al.Adhesion and acoustic emission analysis offailures in nitride films with a metal interlayer[J].Acta Mater..1997,45:5163-5175.
    [101] D. T. Quinto, G. J. Wolfe, P. C. Jindal. High Temperature microhardness of hardcoatings produced by physical and chemical vapor deposition[J].Thin SolidFilms.1987,153:19-36.
    [102] O. Knorek, F. Loeffler, G. Kraemer. Process and advantage of multicomponent andmultilayer PVD coatings[J].Surf. Coat. Technol..1993,59:14-20.
    [103] P.C. Jindal, A.T. Santhanam, U. Schleinkofer, et al. Performance of PVD TiN, TiCN,and TiAlN coated cemented carbide tools in turning[J]. Int. J. Refact. Met. H..1999,17:163-170.
    [104] M.C. Kang, I. Park, K.H. Kim. Performance evaluation of AIP-TiAlN coated tool forhigh speed machining[J]. Surf. Coat. Technol..2003,163-164:734-738.
    [105] A. H rling, L. Hultman, M. Odén, et al. Mechanical properties and machiningperformance of Ti1xAlxN-coated cutting tools[J]. Surf. Coat. Technol..2005,191:384-392.
    [106] L. Chen, M. Moser, Y. Du, et al. Compositional and structural evolution of sputteredTi-Al-N[J]. Thin Solid Films.2009,517:6635-6641.
    [107] G.S. Su, Z.Q. Liu. Wear characteristics of nano TiAlN-coated carbide tools inultra-high speed machining of AerMet100[J]. Wear.2012,289:124-131.
    [108] C. T. Huang, J. G. Duh. Deposition of (Ti,Al)N films on A2tool steel by reactive r.f.magnetron sputtering[J]. Surf. Coat. Technol..1995,71:259-266.
    [109]夏侯良.TiAlN薄膜的制备及其性能研究[D].重庆:西南交通大学,2007.
    [110] M. Zhou, Y. Makino, M. Nose, et al. Phase transition and properties of Ti-Al-N thinfilms prepared by r.f.-plasma assisted magnetron sputtering[J]. Thin SolidFilms.1999,339:203-208.
    [111] T. Ikeda, H. Satoh. Phase formation and characterization of hard coatings in the Ti-Al-Nsystem prepared by cathodicarc ion plating method[J]. Thin SolidFilms.1991,195:99-110.
    [112] W. Tillmann, E. Vogli. Multilayers design for the electromagnetic sheet metal formingdie[J]. Adv. Eng. Mater..2008,10:79-84.
    [113] W. Tillmann, E. Vogli, M. Gathen, et al. Development of wear resistant pressing mouldsfor the production of diamond composites[J]. J. Mater. Proc. Technol..2009,209:4268-4273.
    [114] W. Tillmann, E. Vogli, S. Momeni. Mechanical and tribological properties of Ti/TiAlNduplex coatings on high and low alloy tool steels[J]. Vacuum.2010,84:387-392.
    [115] E. Voglia, W. Tillmann, U. Selvadurai-Lassl, et al. Influence of Ti/TiAlN-multilayerdesigns on their residual stresses and mechanical properties[J]. Appl. Surf. Sci..2011,257:8550-8557.
    [116] C.J. Tavares, L. Rebouta, J.P. Rivière, et al. Transmission electron microscopy analysisof the interfaces of TiAlN/Mo multilayers[J]. Microsc. Microanal..2008,14:1-4.
    [117] A. Kovalev, D. Wainstein, A. Rashkovskiy. Investigation of anomalous physicalproperties of multilayer nanolaminate (TiAl)N/Cu coatings by electron spectroscopytechnique[J]. Surf. Interface Anal..2010,42:1361-1363.
    [118] M. S. Leu, S. C. Lo, J. B. Wu, et al. Microstructure and physical properties of arc ionplated TiAlN/Cu thin film[J]. Surf. Coat. Technol..2006,201:3982-3986.
    [119] D.W. Matson, E.D. McClanahan, S.L. Lee, et al.Properties of thick sputtered Ta usedfor protective gun tube coatings[J].Surf. Coat. Technol..2001,146-147:344-350.
    [120] G. R. Duckwrth. Tantalum thin films resistors[J]. Thin Solid Films.1972,10:337-353.
    [121] A. Razborsek, F. Schwager. Thin film systems for low TCR resistors[J].Vacuum.1998,38:689-692.
    [122] G. Golan, A. A xelevitch, R. Margolin, et al. Novel approach to sputtered tantalumfilmresistors with controlled pre-defined resistance[J]. J. Microelectron..2001,32:61-67.
    [123] N. D. Cuong, D. J. Kim, B. D. Kang, et al. Structural and electrical characterizationoftantalum nitride thin film resistors deposited on AlN substrates for π-typeattenuatorapplications[J]. Mater. Sci. Eng. B.2006,135:162-165.
    [124] M. S. Kang, G. S. Yoon, J. S.Suh, et al. Control of electrical resistivity of TaNthin filmsby reactive sputtering for embedded passive resistors[J]. Thin Solid Films.2008,516:3568-3571.
    [125] H. C. Jiang, C. J. Wang, W. L. Zhang, et al. Influences of film thicknesson the electricalproperties of TaNxthin films deposited by reactive DCmagnetron sputtering[J]. J. Mater.Sci. Technol..2010,26:597-600.
    [126] J.R. White.A physical vapor deposition technique for plating gun tubes[J].J. Vac. Sci.Technol. A.1986,4:2855-2856.
    [127] D.W. Matson, M.D. Merz, E.D. McClannahan.High rate sputter deposition of wearresistant tantalum coatings[J].J. Vac. Sci. Technol. A1992,10:1791-1796.
    [128] D.W. Matson, E.D. McClanahan, J.P. Rice, et al.Effect of sputtering parameters on Tacoatings for gun bore applications[J].Surf. Coat. Technol..2000,133-134:411-416.
    [129] S.M. Maeng, L. Axe, T. A. Tyson, et al.Corrosion behavior of magnetron sputtered α-Tacoatings on smooth and rough steel substrates[J]. Surf. Coat. Technol..2006,200:5717-5724.
    [130] F. Vaz, L. Rebouta, M. Andritschky, et al. Thermal oxidation of Ti1-xAlxN coatings inair[J]. J. Eur. Ceram. Soc..1997,17:1971-1977.
    [131] M. Pfeiler, G. A. Fontalvo, J.Wagner, et al. Arc evaporation of Ti-Al-Ta-N coatings: theeffect of bias voltage and Ta on high-temperature tribological properties[J]. Tribol. Lett..2008,30:91–97.
    [132] M. M oser, P. H. Mayrhofer, H. Clemens. On the influence of coating and oxidation onthe mechanical properties of a γ-TiAl based alloy[J]. Intermetallics.2008,16:1206–1211.
    [133] M. Pfeiler, C. Scheu, H. H utter, et al. On the effect of Ta on improved oxidationresistance of Ti-Al-Ta-N coatings[J]. J. Vac. Sci. Technol. A.2009,27:554-560.
    [134] R. R achbauer, D. Holec, P. H. Mayrhofer. Phase stability and decomposition productsof Ti-Al-Ta-N thin films[J]. Appl. Phys. Lett..2010,97:151901-151901-3.
    [135] R. R achbauer, D. Holec, P. H. Mayrhofer. Increased thermal stability of Ti-Al-N thinfilms by Ta alloying[J]. Surf. Coat. Technol..2012,211:98-103.
    [136] C. H. Liu, W. Liu, Y. H. Wang, et al.Interface stability and microstructure of anultrathin a-Ta/graded Ta(N)/TaNmultilayer diffusion barrier[J]. Microelectron. Eng..2012,98:80-84.
    [137] Y.K. Kang, C.M. Lee, J. Lee.Effects of processing variables on the mechanicalproperties of Ta/TaN multilayer coatings[J].Mater. Sci. Eng. B.2000,75:17-23.
    [138] J. Perez-Mariano, K. H. Lau, E. Alvarez, et al. Multilayer coatings for corrosionprtection of coal gasifier components[J]. Mater. Chem. Phy..2008,112:180-185.
    [139] D. M. Mattox. Fundamentals of ion plating[J].J. Vac. Sci. Technol..1973,10:47-51.
    [140]田文波,刘德令.薄膜科学与技术手册[M].北京:机械出版社,1991.
    [141]王晖.磁控溅射和多弧离子镀方法合成ZrB2/AlN、CrN/AlN纳米多层膜的研究[D].天津.天津师范大学,2009.
    [142]李金丽.(Ti,Cr)N薄膜的多弧离子镀工艺、显微结构及力学性能研究[D].北京.中国地质大学,2006.
    [143]吴玉广.离子镀膜中的弧电流对膜层质量的影响[J].真空科学与技术.1999,19:392-394.
    [144] C.J. Shute, J.B. Cohen. Determination of yielding and debinding in Al–Cu thin filmsfrom residualstress measurements via diffraction[J]. J. Mater. Res..1991;6:950-956.
    [145] G.G. Stoney. The tension of metallic films depositedby electolysis[J].Proc. R. Soc.Lond. Ser. A.1909,82:172-175.
    [146]喻利花,董师润,许俊华,等. TaN/TiN和NbN/TiN纳米结构多层膜超硬效应及超硬机理研究[J].物理学报.2008,57:7063-7068.
    [147]幸良佐.钽铌冶金[M].北京:冶金工业出版社,1982.
    [148]余永宁.金属学原理[M].北京:冶金工业出版社,2000.
    [149] A. K. Head. The interaction of dislocations and buoudaries[J]. Phil. Mag..1953,44:92-94.
    [150] M. Kato, T. Mori, L. H. Schwartz. Hardening by spinodal modulated structure[J]. ActaMetal..1980,28:285-290.
    [151] D. Sharma, R. V. Ramanujan, G. P. Twari. Instability mechanisms in lamellarmicrostructures[J]. Acta Mater..2000,48:875-889.
    [152] A. Misra, R. C. Hoagland, H. Kung. Thermal stability of self-supported nanolayeredCu/Nb films[J]. Phil. Mag..2004,84:1021-1028.
    [153]庞丽君.金属切削原理[M].北京:国防工业出版社,2009,157.
    [154]陈政文.PVD硬质合金涂层刀具切削和摩擦学性能研究[D].武汉:武汉材料保护研究所,2012.
    [155] P. Panjan, M. Cekada, M. Panjan, et al. Growth defects in PVD hard coatings[J].Vacuum.2010,84:209-214.
    [156] R. A.Meister, A. R. Meister, A. A. Bezrukikh. Multi-arc surface with coatedelectrodes[J]. Weld. Int..2010,61:21-23.
    [157] P. Panjan, M. Cekada, M. Panjan, et al. Surface desity of growth defects in differentPVD hard coatings prepared by sputtering[J]. Vacuum.2012,86:794-798.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700