乙型肝炎病毒慢性感染小鼠模型的建立及初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.构建中国地区流行的B基因型HBV可复制性克隆,验证其在体内和体外的复制能力,为HBV复制相关研究及建立细胞和动物模型奠定基础。
     2.将具有良好复制能力的B基因型中国株HBV可复制性克隆亚克隆到腺相关病毒载体内,建立HBV慢性感染小鼠模型,同时建立A基因型HBV慢性感染小鼠模型。
     3.通过高压尾静脉注射的方法将逆转录病毒和非病毒shRNA表达载体导入到小鼠体内,比较其抗HBV的时效,以期获得较长期的HBV抑制效果。
     方法:
     1.以一例中国HBV B基因型感染患者来源的全基因克隆为母板,使用SapⅠ将HBV基因组切下后在体外自身环化。使用环化后的基因组为模板分两段分别扩增HBV1.3倍基因组片段,依次将其连接到克隆载体pBluescriptⅡKS(+)上获得含HBV1.3基因组的克隆。通过转染Huh7细胞系和高压尾静脉注射BAL B/cJ小鼠建立体外和体内HBV复制模型,采用ELISA、Southern Blot、Northern Blot以及免疫组织化学染色等方法检测HBV抗原分泌、复制中间体、转录子、抗原肝细胞内表达等情况,评价构建克隆的复制能力。
     2.将复制能力良好的HBV1.3倍基因组亚克隆到腺相关病毒载体pAAV-MCS内构建pAAV-HBV1.3质粒,体外转染Huh7细胞,检测其复制能力。采用高压尾静脉注射的方式将pAAV-HBV1.3克隆导入到C57 BL/6小鼠肝脏内,定期采血、取肝组织标本通过ELISA、Southern Blot、RT-PCR以及免疫组织化学染色等方法检测HBV抗原分泌、抗体产生、复制中间体、转录子、抗原肝细胞内表达等情况。同时使用Huang LR等报导的pAAV-HBV1.2克隆高压注射以建立A基因型的慢性感染小鼠模型。
     3.根据所构建的B基因型HBV可复制性克隆X区序列设计RNAi靶点,构建shRNA表达逆转录病毒载体,同pAAV-HBV1.3体外共转染Huh7细胞,筛选对HBV复制抑制效果较好的干扰靶点shRNA表达载体,并据此构建非病毒shRNA表达载体。将逆转录病毒及非病毒shRNA表达载体高压尾静脉注射导入小鼠肝脏,观察其抗HBV效果。
     结果:
     1.所构建的HBV1.3倍基因组克隆在Huh7细胞内和在BAL B/cJ小鼠可以正常分泌HBsAg和HBeAg,检测到复制中间体和转录子的产生。小鼠血清中可以检测到高滴度HBV DNA并随注射时间出现动态变化,小鼠肝细胞内可以检出呈胞浆型和胞膜型表达的HBcAg。
     2.pAAV-HBV1.3和AAV-HBV1.2两种克隆均可在C57 BL/6小鼠体内形成慢性HBV复制状态。在注射后的252天(A)/340天(QS)仍可在血清HBsAg阳性小鼠肝组织内检测到HBV复制中间体及HBV转录子的存在,肝细胞内有HBcAg表达,而HBsAg阴性的小鼠则无法检出。小鼠血清HBV DNA含量可维持在10~5-10~7 copies/mL水平,A组血清HBV DNA含量较QS组约高0.6-1.6log。但病毒血症持续时间不及QS组长,慢性化比例也低于QS组,注射24周时A组阳性率14.3%;QS组44.4%。
     3.非病毒shRNA表达载体干预组小鼠血清HBsAg阳性率、HBsAg含量、血清病毒滴度的有效抑制时间为1周以内。逆转录病毒shRNA表达载体干预组HBV抑制时间可持续4-6周,HBsAg阳性率在注射后前4周均保持在较低水平(18.2-27.3%),HBsAg含量下降第2周仍可达81.0%,血清病毒滴度下降1.619-2.758log,小鼠肝组织内HBcAg阳性细胞数目明显减少。两组的抑制效果均随着注射时间的延长而逐渐下降。
     结论:
     1.成功构建了B基因型HBV可复制性克隆,在体内外均具有良好的复制能力。
     2.建立了B基因型和A基因型的HBV慢性感染小鼠模型。
     3.直接高压尾静脉注射逆转录病毒shRNA表达载体可以有效延长RNAi作用时间,有效抑制时间可持续至少4周。
     本课题的创新点:
     1.首次构建了同我国流行情况相符合的B基因型HBV可复制性克隆,并建立了HBV慢性感染小鼠模型。
     2.证实通过高压尾静脉注射方式导入逆转录病毒shRNA载体可以有效抑制HBV复制持续达4周以上。
     本课题研究的意义:
     1.构建B基因型HBV可复制性克隆为研究B基因型HBV相关病毒变异、复制能力等HBV生物学研究提供了良好的基础。
     2.建立的B基因型和A基因型的慢性HBV感染小鼠模型,具有易获取、制备简单、费用低廉、具有正常的机体免疫功能等优点。为研究抗病毒治疗、HBV复制机制、HBV感染慢性化机制、免疫发病机制、免疫调节等基础和应用研究提供了良好的小动物模型。
     3.高压尾静脉直接将逆转录病毒shRNA载体导入体内即可达到较长期抑制靶基因表达,具有无需包装病毒、安全、有效、时程长、操作简便等优点。为特定基因功能研究、导入特定外源基因至体内表达、肝脏靶向性治疗等方面研究奠定基础。
Objects:
     1. In order to get a HBV replication competent clone of B genotype which is epidemic in Chinese, a plasmid that contain HBV 1.3 copies genome was constructed. It can provide a useful tool to study HBV biology, establish HBV replication cell model and animal model.
     2. Based on the genotype B HBV repliation competent clone, the HBV 1.3 copies genome was subcloned to a adenovirus associated virus vector, pAAV-MCS, expecting to establish a immunocompetent HBV chronically infected murine model by hydrodynamic injection the pAAV-HBV1.3 plasmid into tail vein. Meanwhile, pAAV-HBV1.2 plasmid which Huang LR had established genotype A HBV chronic infection in mice was employed as control.
     3. The shRNA expression retroviral vector and nonviral vector which targeting HBV X gene were hydrodynamic injected into murine tail vein directly, to verify if retroviral vector based RNAi could supress HBV replication in longer period. So it gived some light on the study method about specific gene's function in a simple way.
     Methods:
     1. The two corresponding sequences of HBV genome were amplified separately, than the target sequences were ligated in vitro. After the plasmid was verified by enzyme digestion, it was transfected into Huh7 cell line. The HBsAg and HBeAg concentration in culture supernatant were quantified. The transcript and replication intermediate of HBV were detected by Northern Blot and Southern Blot separately. On the other hand, the plasmid was hydrodynamic injected into BALB/cJ mice. Then the sera HBV DNA was quantified by real-time PCR, HBcAg in liver tissue was detected by immunohistochemistry staining.
     2. The HBV 1.3 copies genome DNA sequence was ampified by PCR, Then the PCR product was digested by Not I restriction enzyme and subcloned into pAAV-MCS vector. It was verified to be replicable by transfecting Huh7 cell in vitro. Then the pAAV- HBV1.3 plasmid was hydrodynamic injected into tail vein of C57 BL/6 mice. Mice sera and liver tissues were collected at indicated time point in the following 48 weeks or more. The samples were detected by ELISA, southern blot, real-time quantified PCR, reverse transcriptional PCR and et al. At the same time, the pAAV-HBV1.2 plasmid, which Huang et al used to establish HBV chronic infection mice model, was employed in parallel.
     3. The HBV X gene specific RNA interference target sequences were desigened. Then the corresponding shRNA expression retroviral vectors were constructed. These vectors were cotransfected into Huh7 cell line with pAAV-HBV1.3 plasmid we constructed and the best RNAi target expression vector was selected. The HBx 285nt specific shRNA expression nonviral vector was also constructed. Both retroviral and noviral HBx285 shRNA expression vectors were injected into C57 BL/6 mice with same quantity pAAV-HBV1.3 plasmid to study if retroviral vector in this transduction way can be functional in a longer period than nonviral vector.
     Results:
     1. After be transfected into Huh7 cell line, the HBsAg and HBeAg can be secreted in culture supernatant, and the transcript and replication intermediate of HBV also can be detected. The HBV DNA was detected with high titer in mice sera and HBcAg was expressed in hepatocytes of mice.
     2. Both pAAV-HBV1.3 and pAAV-HBV1.2 plasmid can be used to establish HBV chronic infection in mice. The pAAV-HBV1.2 treated mice can sustain sera HBsAg postive at least 48 weeks. The HBsAg can be postive until 36 weeks postinjection in mice hydrodynamic injected with pAAV-HBV1.3 we constructed, but the viral load was higher than the pAAV-HBV1.2 mice in 0.6-1.6log value, sustaining in 10~5-10~7copies/mL level. The HBsAg postive percentage were 14.3% and 44.4% in pAAV-HBV1.3 and pAAV-HBV1.2 injected mice at 24 weeks postinjection. The serum HBsAg positive sustaining time of pAAV-HBV1.2 injected mice was longer than pAAV-HBV1.3 counterparts.
     3. The retroviral vector can enlong its shRNA antiviral effect time than nonviral vector. Sera HBsAg positive percentage, HBsAg quantity, serum HBV DNA concentration and HBcAg positive hepatocytes number can lowered significantly at least 4 weeks after retroviral vector injected mice versus about almost 1 week in nonviral vector mice.
     Conclusions:
     1. The replication competent HBV clone of genotype B we constructed can replicate in vitro and in vivo.
     2. The genotype B and A HBV chronically infected murine models are successfully established.
     3. The retroviral shRNA expression vector can prolong the time of HBV replication supression by RNAi in hydrodynamic tail vein injection.
引文
1. Liaw YF, Chu CM. Hepatitis B virus infection. Lancet. 2009; 373: 582-92.
    2. Zanetti AR, Van Damme P, Shouval D.The global impact of vaccination against hepatitis B: a historical overview.Vaccine. 2008;26(49):6266-73.
    3. Locarnini S. The Control of Chronic Hepatitis B: The Role for Chemoprevention.Semin Liver Dis. 2006:26:85-86.
    4. Shepard CW, Simard EP, Finelli L, et al. Hepatitis B virus infection: epidemiology and vaccination. Epidemiol Rev. 2006;28:112-25.
    5. Schuppan D, Afdhal NH. Liver cirrhosis. Lancet. 2008; 371(9615):838-51.
    6. Beck J, Nassal M. Hepatitis B virus replication. World J Gastroenterol 2007; 13(1):48-64.
    7. Locarnini S. Molecular Virology of Hepatitis B Virus. Semin Liver Dis 2004;24(S1):3-10.
    8. Mahtab MA, Rahman S, Khan M, et al. Hepatitis B virus genotypes: an overview.Hepatobiliary Pancreat Dis Int. 2008; 7(5):457-64.
    9. Liu CJ, Kao JH. Genetic variability of hepatitis B virus and response to antiviral therapy. Antivir Ther 2008;13(5):613-24.
    10. Palumbo E. Hepatitis B genotypes and response to antiviral therapy: a review. Am J Ther. 2007;14(3):306-9.
    11. G(?)nther S. Genetic variation in HBV infection: genotypes and mutants. J Clin Virol.2006;36 Suppl1:S3-S11.
    12. Dandri M, Volz TK, L(?)tgehetmann M, et al. Animal models for the study of HBV replication and its variants. J Clin Virol. 2005;34 Supp11:S54-62.
    13. Dandri M, Lutgehetmann M, Volz T, et al. Small animal model systems for studying hepatitis B virus replication and pathogenesis. Semin Liver Dis. 2006;26(2): 181-91.
    14. Iannacone M, Sitia G, Ruggeri ZM, et al. HBV pathogenesis in animal models: recent advances on the role of platelets. J Hepatol. 2007;46(4):719-26.
    15. Schultz U, Grgacic E, Nassal M. Duck hepatitis B virus: an invaluable model system for HBV infection. Adv Virus Res. 2004;63:l-70.
    16. Chen Y, Cheng G, Mahato RI. RNAi for treating hepatitis B viral infection. Pharm Res. 2008;25(l):72-86.
    17. Arbuthnot P, Carmona S, Ely A. Exploiting the RNA interference pathway to counter hepatitis B virus replication. Liver Int. 2005;25(1):9-15.
    18. Arbuthnot P, Longshaw V, Naidoo T, et al. Opportunities for treating chronic hepatitis B and C virus infection using RNA interference. J Viral Hepat.2007;14(7):447-59.
    1. Zhang JM, Xin Y, Wang YX, et al. High replicative full-length lamivudine-resistant hepatitis B virus isolated during acute exacerbations. J Med Virol. 2005;77(2):203-8.
    2. Yang PL, Althage A, Chung J, et al. Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection.Proc Natl Acad Sci U S A,2002;99(21): 13825-30.
    3. Huang LR, Wu HL, Chen PJ, et al. An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proc Natl Acad Sci U S A.2006; 103(47):17862-7.
    4. Guidotti LG, Matzke B, Schaller H, et al. High-level hepatitis B virus replication in transgenic mice. J Virol. 1995;69(10):6158-69.
    5. Chisari FV, Pinkert CA, Milich DR, et al. A transgenic mouse model of the chronic hepatitis B surface antigen carrier state. Science. 1985; 230(4730):1157-60.
    6. Chisari FV. Hepatitis B virus transgenic mice: models of viral immunobiology and pathogenesis. Curr Top Microbiol Immunol. 1996;206:149-73.
    7. Dubois MF, Pourcel C, Rousset S, et al. Excretion of hepatitis B surface antigen particles from mouse cells transformed with cloned viral DNA. Proc Natl Acad Sci U S A. 1980;77(8):4549-53.
    8. Farza H, Hadchouel M, Scotto J, et al. Replication and gene expression of hepatitis B virus in a transgenic mouse that contains the complete viral genome. J Virol.1988;62(11):4144-52.
    9.雷延昌,王宝菊,田拥军等.IFN-a诱导Huh7细胞固有免疫分子APOBEC3G的表达.中华微生物学和免疫学杂志,2007;27(1):61-64.
    10.雷延昌,马涛,郝友华等.载脂蛋白B mRNA编辑酶催化多肽3G抑制乙型肝炎病毒和鸭乙型肝炎病毒复制.中华肝脏病杂志,2006;14(10):738-741.
    11.张正茂,田拥军,杨燕等.pRNA介导的RNA干扰抑制HBV表达和复制的研究.中 国病毒学.2006;21(6):599-603.
    12.孟忠吉,李磊,李新宇等.乙型肝炎病毒急性感染小鼠模型的建立.中国病毒学.2006,20(6):565-569.
    13. Tseng TC, Kao JH. HBV genotype and clinical outcome of chronic hepatitis B: facts and puzzles.Gastroenterology, 2008;134(4):1272-3.
    14. Liu CJ, Kao JH. Genetic variability of hepatitis B virus and response to antiviral therapy. Antivir Ther. 2008;13(5):613-24.
    15. Palumbo E. Hepatitis B genotypes and response to antiviral therapy: a review. Am J Ther. 2007;14(3):306-9.
    16. G(u丨¨)nther S. Genetic variation in HBV infection: genotypes and mutants. J Clin Virol.2006;36 Suppl 1:S3-S11.
    17. Huang YH, Zhou B, Wang ZH, et al. Distribution of hepatitis B virus genotype B subgenotype in China. Chinese Journal of Experimental and Clinical Virology,2007,21:111-113.
    18. Zeng G, Wang Z, Wen S, et al.Geographic distribution, virologic and clinical characteristics of hepatitis B virus genotypes in China. J Viral Hepat,2005; 12(6):609-17.
    19. Kao JH, Chen PJ, Lai MY, et al. Hepatitis B genotypes correlate its clinical outcomes in patients with chronic hepatitis B. Gastroenterology, 2000;118:554-559.
    20. Yuan J, Zhou B, Tanaka Y, et al. Hepatitis B virus (HBV) genotypes/subgenotypes in China: mutations in core promoter and precore/core and their clinical implications. J Clin Virol, 2007;39:87-93.
    1. Liaw YF, Chu CM. Hepatitis B virus infection. Lancet. 2009; 373: 582-92.
    2. Dienstag JL. Hepatitis B virus infection. N Engl J Med. 2008;359(14):1486-500.
    3. Hoofnagle JH, Doo E, Liang TJ, et al. Management of epatitis B: Summary of a Clinical Research Workshop.hepatology. 2007;45:1056-1075.
    4. Zanetti AR, Van Damme P, Shouval D.The global impact of vaccination against hepatitis B: a historical overview.Vaccine. 2008;26(49):6266-73.
    5. Dandri M, Lutgehetmann M, Volz T, et al. Small Animal Model Systems for Studying Hepatitis B Virus Replication and Pathogenesis.seminars in liver disease.2006;2:181-191.
    6. Huang LR, Wu HL, Chen PJ, et al. An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proc Natl Acad Sci U S A.2006;103(47):17862-7.
    7. Desmyter J, Liu WT, de Somer P, et al. Primates as model for human viral hepatitis:transmission of infection by human hepatitis B virus. Vox Sang. 1973; 24:S:17-26.
    8. Ulrich PP, Bhat RA, Seto B, et al. Enzymatic amplification of hepatitis B virus DNA in serum compared with infectivity testing in chimpanzees. J Infect Dis. 1989;160(1):37-43.
    9. Guidotti LG, Rochford R, Chung J, et al. Viral clearance without destruction of infected cells during acute HBV infection.Science. 1999;284(5415):825-9.
    10. Mason WS, Seal G, Summers J. Virus of Pekin ducks with structural and biological relatedness to human hepatitis B virus. J Virol. 1980; 36(3):829-36.62.
    11. Mason WS, Cullen J, Saputelli J, et al. Characterization of the antiviral effects of 2' carbodeoxyguanosine in ducks chronically infected with duck hepatitis B virus.Hepatology. 1994; 19(2):398-411.
    12. Luscombe C, Pedersen J, Uren E, et al. Long-term ganciclovir chemotherapy for congenital duck hepatitis B virus infection in vivo: effect on intrahepatic-viral DNA,RNA, and protein expression. Hepatology. 1996; 24(4):766-73.
    13. Offensperger WB, Offensperger S, Keppler-Hafkemeyer A, et al. Antiviral activities of penciclovir and famciclovir on duck hepatitis B virus in vitro and in vivo. Antivir Ther.1996; l(3):141-6.
    14. Sprengel R, Kaleta EF, Will H. Isolation and characterization of a hepatitis B virus endemic in herons. J Virol. 1988;62:3832-3839.
    15. Chang SF, Netter HJ, Bruns M, et al. A new avian hepadnavirus infecting Snow geese (Anser caerulescens) produces a significant fraction of virions containing single-stranded DNA. Virology. 1999;262:39-54
    16. Pult I, Netter HJ, Bruns M, et al. Identification and analysis of a new hepadnavirus in white storks. Virology, 2001 ;289:114-128
    17. Summers J, Smolec JM, Snyder RA. virus similar to human hepatitis B virus associated with hepatitis and hepatoma in woodchucks. Proc Natl Acad Sci U S A. 1978;75(9):4533-7.
    18. Marion PL, Oshiro LS, Regnery DC, et al. A virus in Beeckey ground squirrels that is related to hepatitis B virus of humans. Proc Natl Acad Sci U S A. 1980;77(5):2941-5
    19. Testut P, Renard CA, Terradillos O, et al. A new hepadnavirus endemic in arctic ground squirrels in Alaska. J.Virol. 1996;70(7):4210-4219
    20. Landford RE, Chavez D, Brasky KM, et al. Isolation of a hepadnavirus from the woolly monkey, a New World primate. Proc Natl Acad Sci U S A. 1998;95(10):5757-61.
    21. Larkin J, Clayton M, Sun B, et al. Hepatitis B virus transgenic mouse model of chronic liver disease. Nat Med. 1999;5(8):907-12.
    22. I1an E, Burakova T, Dagan S, et al. The hepatitis B virus-trimera mouse: a model for human HBV infection and evaluation of anti-HBV therapeutic agents. Hepatology. 1999;29(2): 553-62.
    23. Yang PL, Althage A, Chung J, et al. Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc Natl Acad Sci U S A. 2002; 99(21):13825-30.
    24. Tseng TC, Kao JH. HBV genotype and clinical outcome of chronic hepatitis B: facts and puzzles.Gastroenterology. 2008;134(4):1272-3.
    25. Huang YH, Zhou B, Wang ZH, et al. Distribution of hepatitis B virus genotype B subgenotype in China. Chinese Journal of Experimental and Clinical Virology.2007;21:111-113.
    26. Zeng G, Wang Z, Wen S, et al.Geographic distribution, virologic and clinical characteristics of hepatitis B virus genotypes in China. J Viral Hepat. 2005;12(6):609-17.
    27. Kao JH, Chen PJ, Lai MY, et al. Hepatitis B genotypes correlate its clinical outcomes in patients with chronic hepatitis B. Gastroenterology. 2000; 118:554-559.
    28. Yuan J, Zhou B, Tanaka Y, et al. Hepatitis B virus (HBV) genotypes/subgenotypes in China: mutations in core promoter and precore/core and their clinical implications. J Clin Virol. 2007;39:87-93
    29. Donsante A, Miller DG, Li Y, et al. AAV vector integration sites in mouse hepatocellular carcinoma.Science. 2007;317(5837):477.
    30. Xiao WD, Berta SC, Lu MM, et al. Adeno-Associated Virus as a Vector for Liver-Directed Gene Therapy. J Virol. 1998; 72(12): 10222-10226.
    31. Choi VW, Samulski RJ, McCarty DM. Effects of adeno-associated virus DNA hairpin structure on recombination. J Virol. 2005;79(l l):6801-7.
    32. Schnepp BC, Jensen RL, Clark KR, et al. Infectious molecular clones of adeno-associated virus isolated directly from human tissues. J Virol. 2009;83(3): 1456-64.
    33. Yan Z, Zak R, Zhang Y, et al. Inverted terminal repeat sequences are important for intermolecular recombination and circularization of adeno-associated virus genomes. J Virol. 2005;79(l):364-79.
    34. Guidotti LG, Matzke B, Schaller H, et al. High-level hepatitis B virus replication in transgenic mice. J Virol. 1995;69(10):6158-69.
    35. Fukai K, Takada S, Yokosuka O, et al. Characterization of a specific region in the hepatitis B virus enhancer I for the efficient expression of X gene in the hepatic cell. Virology. 1997;236(2):279-87.
    36. Doitsh G, Shaul Y. Enhancer I predominance in hepatitis B virus gene expression. Mol Cell Biol. 2004 ;24(4): 1799-808.
    37. Su H, Yee JK. Regulation of hepatitis B virus gene expression by its two enhancers.Proc Natl Acad Sci U S A. 1992;89(7):2708-12.
    1. Shin D, Kim SI, Kim M, et al. Efficient inhibition of hepatitis B virus replication by small interfering RNAs targeted to the viral X gene in mice. Virus Res. 2006; 119(2): 146-53.
    2. Schuppan D, Afdhal NH. Liver cirrhosis. Lancet. 2008;371(9615):838-51.
    3. Liaw YF, Chu CM. Hepatitis B virus infection.Lancet. 2009; 373: 582-92.
    4. Zoulim F.Antiviral therapy of chronic hepatitis B. Antiviral Research. 2006; 71:206-215.
    5. Tong MJ, Hsien C, Hsu L, et al. Treatment Recommendations for Chronic Hepatitis B:An Evaluation of Current Guidelines Based on a Natural History Study in the United States.Hepatology. 2008;48(4): 1070-8.
    6. Tillmann HL. Antiviral therapy and resistance with hepatitis B virus infection. World J Gastroenterol. 2007; 13(l):125-140
    7. Tang N, Huang AL. Progress in silencing HBV gene expression by RNAi technology.Chin J Hepatol. 2006; 14(4):318-320.
    8. Carmona S, Jorgensen MR, Kolli S, et al.Controlling HBV Replication in Vivo by Intravenous Administration of Triggered PEGylated siRNA-Nanoparticles.Mol Pharm.2009 Jan 21. [Epub ahead of print]
    9. Jenke AC, Wilhelm AD, Orth V, et al.Long-term suppression of hepatitis B virus replication by short hairpin RNA expression using the scaffold/matrix attachment region-based replicating vector system pEPI-1. Antimicrob Agents Chemother.2008;52(7):2355-9.
    10. Chen CC, Sun CP, Ma HI, et al. Comparative study of anti-hepatitis B virus RNA interference by double-stranded adeno-associated virus serotypes 7, 8, and 9. Mol Ther.2009;17(2):352-9.
    11. Crowther C, Ely A, Hornby J, et al. efficient inhibition of hepatitis b virus replication in vivo using peg-modified adenovirus vectors. Hum Gene Ther. 2008 Aug 21. [Epub ahead of print]
    12. Chen Y, Cheng G, Mahato RI. RNAi for treating hepatitis B viral infection. Pharm Res. 2008;25(l):72-86.
    13. Arbuthnot P, Longshaw V, Naidoo T, et al. Opportunities for treating chronic hepatitis B and C virus infection using RNA interference. J Viral Hepat. 2007 ;14(7):447-59.
    14. Nicholson LJ, Philippe M, Paine AJ, et al. RNA interference mediated in human primary cells via recombinant baculoviral vectors. Mol Ther. 2005;11(4):638-44.
    15. Yang Z, Zhang J, Cong H,et al. A retrovirus-based system to stably silence GDF-8 expression and enhance myogenic differentiation in human rhabdomyosarcoma cells. J Gene Med. 2008 ;10(8):825-33.
    16. Zamore PD, Tuschl T, Sharp PA, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000; 101(1):25-33
    17. Baer M, Nilsen TW, Costigan C, et al. Structure and transcription of a human gene for H1 RNA, the RNA component of human RNase P. Nucleic Acids Res. 1990; 18(1): 97-103.
    18. Brummelkamp TR, Bernards R, Agami R. A System for Stable Expression of Short Interfering RNAs in Mammalian Cells. Science. 2002;19;296(5567):550-3.
    19. MacVinish LJ, Cope G, Ropenga A, et al. Chloride transporting capability of Calu-3 epithelia following persistent knockdown of the cystic fibrosis transmembrane conductance regulator, CFTR. Br J Pharmacol. 2007; 150(8): 1055-65.
    20. Ozturk N, Erdal E, Mumcuoglu M, et al. Reprogramming of replicative senescence in hepatocellular carcinoma-derived cells.Proc Natl Acad Sci U S A. 2006;103(7):2178-83.
    21. Strillacci A, Griffoni C, Spisni E, et al. RNA interference as a key to knockdown overexpressed cyclooxygenase-2 gene in tumour cells. Br J Cancer. 2006; 94(9): 1300-10.
    22. Ying C, De Clercq E, Neyts J. Selective inhibition of hepatitis B virus replication by RNA interference. Biochem Biophys Res Commun. 2003 19;309(2):482-4.
    23. Chan DW, Ng IO. Knock-down of hepatitis B virus X protein reduces the tumorigenicity of hepatocellular carcinoma cells. J Pathol. 2006;208(3):372-80.
    24. Kim YH, Lee JH, Paik NW, et al. RNAi-based knockdown of HBx mRNA in HBx-transformed and HBV-producing human liver cells. DNA Cell Biol. 2006; 25(7):412-7.
    25. Jiao J, Cao H, Chen XW, et al. Downregulation of HBx in RNA in HepG2.2.15 cells by small interfering RNA. Eur J Gastroenterol Hepatol. 2007; 19(12): 1114-8.
    26. Bouchard MJ, Schneider RJ. The enigmatic X gene of hepatitis B virus. J Virol 2004;78:12725-12734.
    27. Tang H, Oishi N, Kaneko S, et al. Molecular functions and biological roles of hepatitis B virus x protein. Cancer Sci 2006;97:977-983.
    28. Bouchard MJ, Schneider RJ. The enigmatic X gene of hepatitis B virus. J Virol. 2004; 78:12725-12734.
    29. Cougot D, Neuveut C, Buendia MA. HBV induced carcinogenesis. J Clin Virol 2005;34(suppl 1):S75-S78.
    30. Chiu CM, Yeh SH, Chen PJ, et al. Hepatitis B virus X protein enhances androgen receptor-responsive gene expression depending on androgen level. Proc Natl Acad Sci U S A. 2007;104(8):2571-8.
    31. Heemers HV, Tindall DJ. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev.2007 ;28(7):778-808.
    32. Zheng Y, Chen WL, Ma WL, et al.Enhancement of gene transactivation activity of androgen receptor by hepatitis B virus X protein. Virology. 2007;363(2):454-61.
    33. Yang WJ, Chang CJ, Yeh SH, et al. Hepatitis B virus X protein enhances the transcriptional activity of the androgen receptor through c-Src and glycogen synthase kinase-3beta kinase pathways. Hepatology. 2009 Feb 4.
    34. Yang PL, Althage A, Chung J, et al. Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection.Proc Natl Acad Sci U S A, 2002; 99(21):13825-30.
    35. Huang LR, Wu HL, Chen PJ, et al. An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proc Natl Acad Sci U S A. 2006; 103(47):17862-7.
    36. McCaffrey AP, Nakai H, Pandey K, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol. 2003;21(6):629-30.
    37. Giladi H, Ketzinel-Gilad M, Rivkin L, et al. Small interfering RNA inhibits hepatitis B virus replication in mice. Mol Ther. 2003;8(5):769-76.
    38. Ying RS, Zhu C, Fan XG, et al. Hepatitis B virus is inhibited by RNA interference in cell culture and in mice. Antiviral Res. 2007;73(1):24-30.
    1. Chen M, Sallberg M, Hughes J, et al. Immune tolerance split between hepatitis B virus precore and core proteins. J Virol. 2005;79:3016-3027.
    2. Brechot C. Pathogenesis of hepatitis B virus-related hepatocellular carcinoma: old and new paradigms. Gastroenterology. 2004;127(suppl 1):S56-S61.
    3. Schulze-Bergkamen H, Untergasser A, Dax A, et al. Primary human hepatocytes-a valuable tool for investigation of apoptosis and hepatitis B virus infection. J Hepatol .2003;38:736-744.
    4. Gripon P, Rumin S, Urban S, et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A. 2002;99:15655-15660.
    5. Jaeschke H. Are cultured liver cells the right tool to investigate mechanisms of liver disease or hepatotoxicity. Hepatology. 2003;38:1053-1055.
    6. Baumert TF, Yang C, Schurmann P, et al. Hepatitis B virus mutations associated with fulminant hepatitis induce apoptosis in primary Tupaia hepatocytes. Hepatology. 2005;41:247-256.
    7. von Weizsacker F, Kock J, MacNelly S, et al. The tupaia model for the study of hepatitis B virus: direct infection and HBV genome transduction of primary tupaia hepatocytes.Methods Mol Med. 2004;96:153-161.
    8. Korba BE, Cote PJ, Menne S, et al. Clevudine therapy with vaccine inhibits progression of chronic hepatitis and delays onset of hepatocellular carcinoma in chronic woodchuck hepatitis virus infection. Antivir Ther. 2004;9:937-952.
    9. Foster WK, Miller DS, Scougall CA, et al. Effect of antiviral treatment with entecavir on age- and dose-related outcomes of duck hepatitis B virus infection. J Virol.2005;79:5819-5832.
    10. Chisari FV, Pinkert CA, Milich DR, et al. A transgenic mouse model of the chronic hepatitis B surface antigen carrier state. Science. 1985;230:l 157-1160.
    11. Araki K, Miyazaki J, Hino O, et al. Expression and replication of hepatitis B virus genome in transgenic mice. Proc Natl Acad Sci U S A. 1989;86:207-211.
    12. Kim CM, Koike K, Saito I, et al. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature. 1991;351:317-320
    13. Guidotti LG, Rochford R, Chung J, et al. Viral clearance without destruction of infected cells during acute HBV infection. Science. 1999;284:825-829.
    14. Julander JG, Colonno RJ, SidwellRW, et al. Characterization of antiviral activity of entecavir in transgenic mice expressing hepatitis B virus. Antiviral Res.2003;59:155-161.
    15. Julander JG, Sidwell RW, Morrey JD. Characterizing antiviral activity of adefovir dipivoxil in transgenic mice expressing hepatitis B virus. Antiviral Res. 2002;55:27-40.
    16. Weber O, Schlemmer KH, Hartmann E, et al. Inhibition of human hepatitis B virus (HBV) by a novel non-nucleosidic compound in a transgenic mouse model. Antiviral Res.2002;54:69-78.
    17. Kimura K, Kakimi K, Wieland S, et al. Interleukin-18 inhibits hepatitis B virus replication in the livers of transgenic mice. J Virol. 2002;76:10702-10707.
    18. Kakimi K, Lane TE, Wieland S, et al. Blocking chemokine responsive to gamma-2/interferon (IFN)-gamma inducible protein and monokine induced by IFN-gamma activity in vivo reduces the pathogenetic but not the antiviral potential of hepatitis B virus-specific cytotoxic T lymphocytes. J Exp Med. 2001 ;194:1755-1766.
    19. Uprichard SL, Boyd B, Althage A, et al. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs. Proc Natl Acad Sci U S A. 2005; 102:773-778.
    20. Chang J, Taylor JM. Susceptibility of human hepatitis delta virus RNAs to small interfering RNA action. J Virol. 2003;77:9728-9731.
    21. Shlomai A, Shaul Y. RNA interference: small RNAs effectively fight viral hepatitis.Liver Int. 2004;24:526-531.
    22. Shlomai A, Shaul Y. Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology. 2003;37:764-770.
    23. Wieland SF, Vega RG, Muller R, et al. Searching for interferon-induced genes that inhibit hepatitis B virus replication in transgenic mouse hepatocytes. J Virol. 2003;77:1227-1236.
    24. Sitia G, Isogawa M, Iannacone M, et al. MMPs are required for recruitment of antigennonspecific mononuclear cells into the liver by CTLs. J Clin Invest. 2004;113:1158-1167
    25. Larkin J, ClaytonM, Sun B, et al. Hepatitis B virus transgenic mouse model of chronic liver disease. Nat Med.l999;5:907-912.
    26. Baron JL, Gardiner L, Nishimura S, et al. Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity. 2002;16:583-594.
    27. Dandri M, Burda MR, Burkle A, et al. Increase in de novo HBV DNA integrations in response to oxidative DNA damage or inhibition of poly(ADP-ribosyl)ation. Hepatology.2002;3 5:217-223.
    28. Chisari FV, Filippi P, Buras J, et al. Structural and pathological effects of synthesis of hepatitis B virus large envelope polypeptide in transgenic mice. Proc Natl Acad Sci U S A 1987;84:6909-6913.
    29. Bouchard MJ, Schneider RJ. The enigmatic X gene of hepatitis B virus. J Virol 2004;78:12725-12734.
    30. Koike K, Moriya K, Iino S, et al. High-level expression of hepatitis B virus HBx gene and hepatocarcinogenesis in transgenic mice. Hepatology 1994; 19:810-819.
    31. Halverscheid L, Marines NK, Weth R, et al. Transgenic mice replicating hepatitis B virus but lacking expression of the major HBsAg. J Med Virol. 2008;80(4):583-90.
    32. Ilan E, Burakova T, Dagan S, et al. The hepatitis B virus trimera mouse: a model for human HBV infection and evaluation of anti-HBV therapeutic agents. Hepatology.1999;29: 553-562.
    33. Eren R, Ilan E, Nussbaum O, et al. Preclinical evaluation of two human anti-hepatitis B virus (HBV) monoclonal antibodies in the HBV-trimera mouse model and in HBV chronic carrier chimpanzees. Hepatology.2000;32:588-59.
    34. Bocher WO, Galun E, Marcus H, et al. Reduced hepatitis B virus surface antigen-specific Thl helper cell frequency of chronic HBV carriers is associated with a failure to produce antigen-specific antibodies in the trimera mouse. Hepatology 2000;31:480-487.
    35. Bocher WO, Dekel B, SchwerinW, et al. Induction of strong hepatitis B virus (HBV) specific T helper cell and cytotoxic T lymphocyte responses by therapeutic vaccination in the trimera mouse model of chronic HBV infection. Eur J Immunol. 2001 ;31:2071-2079.
    36. Ohashi K, Marion PL, Nakai H, et al. Sustained survival of human hepatocytes in mice: a model for in vivo infection with human hepatitis B and hepatitis delta viruses. Nat Med 2000;6:327-331.
    37. Brown JJ, Parashar B, Moshage H, et al. A long-term hepatitis B viremia model generated by transplanting nontumorigenic immortalized human hepatocytes in Rag-2-deficient mice. Hepatology 2000;31:173-181.
    38. Gupta S, Bhargava KK, Novikoff PM. Mechanisms of cell engraftment during liver repopulation with hepatocyte transplantation. Semin Liver Dis 1999; 19:15-26.
    39. Dandri M, Burda MR, Torok E, et al. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology 2001 ;33:981-988.
    40. Meuleman P, Libbrecht L, De Vos R, et al. Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera. Hepatology. 2005; 41:847-856.
    41. Tateno C, Yoshizane Y, Saito N, et al. Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am J Pathol. 2004;165:901-912.
    42. Tsuge M, Hiraga N, Takaishi H, et al. Infection of human hepatocyte chimeric mouse with genetically engineered hepatitis B virus. Hepatology. 2005;42:1046-1054.
    43. Dandri M, Burda MR, Zuckerman DM, et al. Chronic infection with hepatitis B viruses and antiviral drug evaluation in uPA mice after liver repopulation with tupaia hepatocytes.J Hepatol. 2005;42:54-60.
    44. Sprinzl MF, Oberwinkler H, Schaller H, et al. Transfer of hepatitis B virus genome by adenovirus vectors into cultured cells and mice: crossing the species barrier. J Virol.2001;75:5108-5118.
    45. Ren S, Nassal M. Hepatitis B virus (HBV) virion and covalently closed circular DNA formation in primary tupaia hepatocytes and human hepatoma cell lines upon HBV genome transduction with replication-defective adenovirus vectors. J Virol.2001;75:l 104-1116.
    46. Isogawa M, Kakimi K, Kamamoto H, et al. Differential dynamics of the peripheral and intrahepatic cytotoxic T lymphocyte response to hepatitis B surface antigen. Virology.2005;333:293-300.
    47. Yang PL, Althage A, Chung J, et al. Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc Natl Acad Sci U S A 2002;99:13825-13830.
    48. Klein C, Bock CT, Wedemeyer H, et al. Inhibition of hepatitis B virus replication in vivo by nucleoside analogues and siRNA. Gastroenterology. 2003; 125:9-18.
    49. McCaffrey AP, Nakai H, Pandey K, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol. 2003;21:639-644.
    50. Giladi H, Ketzinel-GiladM, Rivkin L, et al. Small interfering RNA inhibits hepatitis B virus replication in mice. Mol Ther. 2003;8:769-776.
    51. Morrissey DV, Lockridge JA, Shaw L, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol. 2005;23:1002-1007.
    52. Huang LR, Wu HL, Chen PJ, et al. An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proc Natl Acad Sci U S A. 2006;103(47): 17862-7.
    53. Ying RS, Zhu C, Fan XG, et al. Hepatitis B virus is inhibited by RNA interference in cell culture and in mice. Antiviral Res. 2007; 73(l):24-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700