HBV与HCV融合基因免疫的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在病毒性肝炎中,乙型病毒性肝炎和丙型病毒性肝炎对人类健康危害最
    为严重,二者均可通过输血、伤口、及密切接触传播,引起急性和慢性肝炎。
    我国每年死于肝病的患者达20万人,其中70%以上与乙型病毒性肝炎和丙型
    病毒性肝炎相关。两者的发病有一定的相似性及重叠性,HBsAg(HBV表面抗
    原)阳性的肝细胞癌患者HCV阳性率高达20%~30%,而且HCV与HBV可协同
    作用而导致更为严重的肝损害,其预后比单纯的HBV或HCV感染更差,HBV
    和HCV重叠感染引起的肝硬变发生肝细胞癌(HCC)机率(48%)比非这些
    病毒引起肝硬变者发生HCC的机率(13%)要高得多。目前虽有乙型肝炎疫
    苗使用,但还着存在免疫保护维持时间短及部分病人对疫苗免疫反应水平低
    下等缺点。丙型肝炎病毒型别多,包膜糖蛋白高度变异,目前尚未研制出蛋
    白疫苗。因此构建能同时预防HBV与HCV感染的新型疫苗,将有特别意义。
     近年来发展起来的基因免疫为预防HBV和HCV感染带来了新的希望。基
    因免疫又称核酸免疫,是指将含有目的基因编码序列的真核表达质粒,直接
    导入宿主体内,以诱导宿主免疫系统对目的基因所表达的外源蛋白发生特异
    性免疫应答,达到免疫的目的。与传统蛋白疫苗相比,基因免疫具有易制备、
    操作简便、不需纯化抗原蛋白并能同时诱导体液免疫和细胞免疫应答等优
    势。基因疫苗研究中发现,仅有病毒核心抗原的编码基因虽可产生抗体应答,
    但一般不能产生具有中和作用的抗体应答,所以近年都采用核心抗原基因与
    
    
     第口旱匡大学协士学位论文
     一
     iM抗原基因或与llBV表面抗原基因相触合,以讪同时获得抗HCV和HBV的体
     液免疫和细胞兔疫。
     HBV为嗜肝洲A病毒,其编码的包膜蛋白山 HBsAs、PreSIAs和 "res 耶s
     组成,中和表位位于S区,是目前应用的乙肝疫苗的主要成份。PreslAg和
     preSZAg分别含有不同于HBsAs抗原的B细胞表位和T细胞表位。目前对于
     preSIAg和/或PreSZAe是否可改进现用疫苗的保护性尚无定论,然而有些研
     究结果提示 preslAg和/或 preSZAg可提供促进产生抗 HBs的 Th细胞作用,
     从而使遗传性的低反应或无反应机体产生抗体。HCV为单股正链RNA病毒,
     其疫苗的研究主要集中在核心蛋白C区和包膜蛋白【区。在HCV基因组中,
     C区是最为保守的区域,并且含有至少5个重要的T细胞和B细胞表位,该
     区所表达的核心蛋白虽不能诱导中和抗体,却是机体特异性CTL的重要靶抗
     原,具有极强的兔疫原性。因此包含C区的HCV核酸疫苗可能诱导高水平特
     异性抗体应答及CTL活性,其中又以CTL活性在HCV核酸疫苗免疫应答作用
     中最有意义。CTL在HCV的感染过程中可发挥其细胞毒作用并最终清除感染
     细胞,这将有助于克服HCV的高变异性及机体对HCV蛋白质疫苗的无应答性。
     有鉴于此,我们构建了HBV与HCV的融合基因疫苗,并对其诱导的体液
     免疫与细胞免疫应答进行了研究,主要内容包括:
     1.应用分子克隆技术,构建了同时或分别含HBV S… 6或
     preSZ侣)基因与 HCV C区基因的真核表达质粒:CSpcDNA3.1、CSlpCDNA3.1、
     CSZpcDNA3.1、CpcDNA3.l和SpcDNA3.1。
     2.将真核表达质粒CSpcDNA3.l用电穿孔法转染与Balb/c .J’鼠基因型
     相同的 PS 15细胞。转染细胞经 G4筛选后,再经有限稀释法克隆筛选,获
     得了能同时表达HBV表面抗原与HCV核心蛋白的稳定细胞系。
     3.比较CSP。DNA3.1、CSIPCDNA3.l、CSZPCDNA3.1三种融合重组质粒的
     免疫效果。结果发现,两次免疫后,全部小鼠均产生了抗HBS和抗HCV,且
     ·4·
    
     第回罩巨大学协士学位论文
     一
     抗 HCV的产生水平高于抗HBs;CSlpcDNA3.l和 CSZpcDNA3.1翩免疫小鼠,
     产生抗HBS的水平低于CSpCDNA3.l,说明pr妨基因对抗HBS的产生有负调
     控作用;CSZpcDNA3.l和CSpcDNA3.l质粒免疫的小鼠,产生的抗HCV水平高
     于CSlpcDNA3.l,说明presl基因对抗HCV的产生也存在着负调控作用。
     4.研究了不同注射剂量,不同免疫次数、脂质体包裹、HBsAg和HCcAg
     (HCV核心抗原)加强注射等条件下,对CSPCDNA3.1质粒免疫效果的影响。
     结果发现,在一定范围内,DNA兔疫应答强度与剂量和接种次数呈相关性,
     1mg和3次免疫分别为最佳剂量和次数:脂质体对抗册s和抗*V的阳转
     率无明显影响,但能提高应答强度;HBSAg和HCCAg蛋白抗原?
Hepatitis B and hepatitis C are major diseases in virus hepatitis. Both of
     them can be transmitted by transfusion, wound and nearly touch. Hepatitis B and
     hepatitis C include acute and chronic hepatitis. Over 200 thousand peoples cued
     of liver diseases every year and 70 percent of them was correlative with hepa~tis
     B and hepatitis C. Peoples can be infected by overlapped hepatitis B virus and
     hepatitis C virus. Anti-HCV is 20 to 30 percent in hepatocellar carcinoma(HCC)
     with HBsAg. In hepaocirrhosis, the rate of HCC with overlaping infection is
     much higher than that of non-B and non-C. HBV and HCV can interact and result
     in servious liver damage. The prognosis is worst than HBV or HCV infection.
     Though HBV vaccine has been used over the world, the protetion period of HBV
     infection is not enough long and the immune response is weak in some peoples.
     No vaccine has been used until now because of the high gene mutant in HCV. So
     it is important to contruct chimeric genetic vaccine of HBV and HCV.
    
     Genetic immunization (nucleic acid immunization) has emerged recently and
     has brought new hope for HBV and HCV infection. It is a promising novel
     strategy that naked DNA encoding spcific antigens and the regulatory elements
     are introduced directly into niamnialian tissue, and subsequently induce specific
     humoral and cellular immune responses to the expressed antigen. It抯
     significantly cheaper to manufacture than recombinant polypeptide. The
     considerable costs involved in producing and purifying protein antigens would be
     avoided. It is found that only including virus core protein can induce antibody
    
     .6-
    
    
    
    
    
    
    
    
    
     after immunization but has no neutralization . So recently chimric HI3V envelope
     and HCV core gene contructs is generally used.
    
     HBV belongs to DNA virus known as hepadna viridae. The envelope open
     reading frame contains three in-phase translation start condons that divide the
     gene into three coding regions known as preS I, preS2 and 5, in which the major
     neutralizing antigen epitope locates. The commercially available hepatitis B
     vaccines presently used have mainly consisted of the S protein. It has shown that
     the B and T cell epitopes in preS 1 and preS2 are different from S antigen. It is not
     sure whether the preS 1 and preS2 antigens can improve protection of present
     vaccines. However, some researches suggest that they can enchance helper T cell
     to produce antibody. HCV belongs to single positive-strand RNA virus. Vaccine
     reearches has concentrated on HCV eore(C) protein and envelope(E)
     glycoproteins. The core gene shows greater sequence conservation among HCV
     strains and the core protein includes at least 5 epitopes of B and T cell. The
     immunogenicity of core protein is the strongest among the structural proteins and
     it is the most important target antigen for Cytotoxic T lyphocyte (CTL). So, the
     genetic immunization including C gene offers the potential advantage of inducing
     cellar immune responses. Morever, these cellar immune responses may also have
     the benefit of eradicating persistent viral infection from the host and help to
     overcome the low response to HCV protein vaccine because of the high mutant.
    
     On the basis of all these study, we contructed the chimeric genetic vaccine of
     HBV and HCV and investigated the humoral and cellular immune responses after
     genetic immunization.
    
     The stuidies consisted of:
    
     1. Five recombinant eukaryotic expression plasmids were construc
引文
1. Donnelly JJ, Ulmer JB. DNA vaccines for viral diseases. Braz J Med Biol Res. 1999;32(2) : 215-222
    2. Wolfgang W, Han Ying, Nicholas P. DNA and RNA-based vaccines: principles, progress and prospects. Vaccine. 2000; 18:765-777
    3. Lewis PJ, Babiuk LA. DNA vaccines: a review. Adv Virus Res. 1999;54:129-188
    4. Johnston SA, Barry MA. Genetic to genomic vaccination.Vaccine. 1997; 15(8) : 808-809
    5. Ulmer JB, Deck RR, DeWitt CM.et al. Protective immunity by intramuscular injection of low doses of influenza virus DNA vaccines; Vaccine. 1994 ; 12(16) : 1541-1544
    6. Facio VM. Naked DNA transfer technoiogy for genetic vaccination against infectious diseases. Res Virol.l997;148:101-106
    7. Ugen KE, Nyland SB, Boyer JD, et al. DNA vaccination with HIV-1 expressing constructs elicits immune responses in humans. Vaccine. 1998;16(19) :1818-1821.
    8. Le TP, Coonan KM, Hedstrom RC, et al. Safety, tolerability and humoral immune responses after intramuscular administration of a malaria DNA vaccine to healthy adult volunteers. Vaccine. 2000;18(18) :1893-1901
    9. Lowerie DB, Silva CL, Colston MJ, et al. Protection against tuberculosis by a plasmid DNA vaccine. Vaccine. 1997;15(8) :834-838.
    10. Wolff JA, Mallone RW, Willimams P, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247:1465-1469
    11. Fynan EF, Webster RG, Fuller DH, et al. DNA vaccine: protective immunizations by parenteral, mucosal and gene-gun inoculations. Proc Natl Sci USA, 1993;90:11478-11482
    12. Wolff JA, Ludtke JJ, Acsadi G. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet. 1992; 1(6) : 363-369
    13. Wolff JA, Dowty ME, Jiao S, et al. Expression of naked plasmids by cultured myotubes and entry of plasmids into T tubules and caveolae of mammalian skeletal muscle.J Cell Sci. 1992; 103 ( Pt 4) : 1249-1259
    14. Tang DC, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature. 1992;356(6365) :152-154
    15. Ulmer JB, Donnelly, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 1993;259(5102) : 1745-1749.
    16. Robinson HL, HuntLA, Webster RG. Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA. Vaccine. 1993;11(9) :957-60.
    17. Barry MA, Johnston SA. Biological features of genetic immunization. Vaccine. 1997; 15
    
     (8) :788-791
    18. Feltquate DM. DNA vaccines: vector design, delivery, and antigen presentation. J Cell Biochem Suppl. 1998;30-31:304-311.
    19. Gumbleton M, Abulrob AC, Campbell L. Caveolae: an alternative membrane transport compartment. Pharm Res. 2000 (9) : 1035-1048.
    20. Johnston SA, Tang DC. Gene gun transfection of animal cells and genetic immunization. Methods Cell Biol. 1994; 43 Pt A: 353-365
    21. Tanelian DL, Barry MA, Johnston SA.et al. Controlled gene gun delivery and expression of DNA within the cornea. Biotechniques. 1997; 23(3) : 484-488
    22. Donnelly JJ, Ulmer JB, Shiver JW .DNA vaccines. Annu Rev Immunol. 1997; 15: 617-648
    23. Davis HL, Whalen RG, Demeneix BA, et al. Direct gene transfer into skeletal muscle in vivo: factors affecting efficiency of transfer and stability of expression. Hum Gene Ther. 1993; 4(2) : 151-159
    24. Cox WI, tartaglia J.Paoletti E. Induction of cytotoxic T lymphocytes by recombinant canarypox (ALVAC) and attenuated vaccinia (NYVAC) viruses expressing the H1V-1 envelope glycoprotein. Virology. 1993;195(2) :845-850.
    25. Raz E, Carson DA, Parker SE, et al. Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses.Proc Natl Acad Sci USA. 1994;91(20) :9519-9523.
    26. Hoffman SL, Doolan DL, Sedegah M, et al. Strategy for development of a pre-erythrocytic Plasmodium falciparum DNA vaccine for human use. Vaccine. 1997;15(8) :842-845.
    27. Cohen J. Naked DNA points way to vaccines. Science. 1993;259(5102) : 1691-1692.
    28. Okada E, Sasaki S, Ishii N, et al. Intranasal immunization of a DNA vaccine with IL-12-and granulocyte-macrophage colony-stimulating factor (GM-CSF)-expressing plasasids in liposomes induces strong mucosal and cell-mediated immune responses against HIV-1 antigens.J Immunol. 1997;159
    29. Livingston JB, Lu s, Robison H, et al. Immunization of the female genital tract with a DNA-based vaccine. Infect Immun. 1998;66(1) :322-329
    30. Shedlock, DJ, Weiner DB. DNA vaccination: antigen presentation and the induction of immunity. J Leukoc Biol. 2000;68(6) :793-806.
    31. Tripathy SK, Svensson EC, Black HB, et al. Long-term expression of erythropoietin in the systemic circulation of mice after intramuscular injection of a plasmid DNA vector. Proc Natl Acad Sci USA. 1996;93(20) : 10876-10880.
    32. Zhang G, Budker V, Wolff JA. High levels of foreign gene expression in hepatcytes after tail vein injections of naked plasmid DNA. Hum Gene Then 1999; 10(10) : 1735-1737
    
    
    33. Iwasaki A, torres CAT, Ohashi PS, et al. The dominant role of bone marrow derived cells in CTL induction following plasmid DNA immunization at different sites. J Immunol. 1997;159:11-14
    34. Condon C, Watkins SC, Celluzzi CM, et al. DNA-based immunization by in vivo transfection of dendritic cells. Nature Med. 1996;2:1122-1128
    35. CorrM, Lee DJ, Carson Da, et al. Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J Exp Med. 1996; 184:1555-1560
    36. Doe B, Selby M, Barenett S, et al. Induction of cytotoxic T lymphocytes by intramuscular immunization with plasmid DNA is facillicated by bone marrow derived cells. PNAS USA. 1996;93:8578-8583
    37. Ulmer JB, Deck RR, DeWitt CM, et al. Generation of MHC class I-restricted cytotoxic T lymphocyte by expression of a viral protein in muscle cells: Antigen presentation by non-muscle cells. Immunology. 1996;89:59-67
    38. Torres CA, Iwasaki A, Barber BH, et al. Differential dependence on target site tissue for gene gun and intramuscular DNA immunizations. J Immunol. 1997; 158:4529-4532
    39. Casasres S, Inaba K, Brumeanu TD, et al. Antigen presentation by dendritic cells after immunization with DNA encoding a major histocompatobolity complex class II-restricted viral epitope. J Exp Med. 1997;186:1481-1486
    40. Xiang ZQ, He Z, Wang Y, et al. The effect of interferon on genetic immunization. Vaccine. 1997; 15:896-898
    41. Davis HL, Michel ML, Mancini M, et al. Direct gene transfer in skeletal muscle: plasmid DNA-based immunization against the hepatitis B virus surface antigen.Vaccine. 1994; 12(16) : 1503-1509
    42. Kuhober A, Pudollek HP, Reifenberg K,et al. DNA immunization induces antibody and cytotoxic T cell responses to hepatitis B core antigen in H-2b mice. J Immunol. 1996; 156(10) : 3687-3695
    43. Schirmbeck R, Melber K, Mertens, et al. Selective stimulation of murine cytotoxic T cell and antibody responses by particulate or monomeric hepatitis B virus surface (S) antigen. Eur J Immunol. 1994;24(5) :1088-1096.
    44. Schirmbeck R, Melber K, Kuhrober A, et al. Immunization with soluble hepatitis B virus surface protein elicits murine H-2 class I-restricted CD8+ cytotoxic T lymphocyte responses in vivo. J Immunol. 1994 Feb 1;152(3) : 1110-9.
    45. Zarozinski CC, Welsh RM. Minimal bystander activation of CD8 T cells during the virus-induced polyclonal T cell response. J Exp Med. 1997 May 5; 185(9) : 1629-39.
    46. Zarozinski CC, Fynan EF, Selin LK, et al. Protective CTL-dependent immunity and enhanced immunopathology in mice immunized by particle bombardment with DNA encoding an internal virion protein. J Immunol. 1995 Apr 15;154(8) :4010-7.
    47. Paliard X, Doe B, Selby MJ, et al. Induction of Herpes Simplex Virus gB-Specific
    
    Cytotoxic T Lymphocytes in TAP1-Deficient Mice by Genetic Immunization but Not HSV Infection. Virology. 2001;282(1):56~64.
    48. Cardoso AI, Blixenkrone-Moller M, Fayolle J, et al. Immunization with plasmid DNA encoding for the measles virus hemagglutinin and nucleoprotein leads to humoral and cell-mediated immunity. Virology. 1996;225(2):293~299.
    49. Cardoso AI, Gerlier D, Wild TF, et al. The ectodomain of measles virus envelope glycoprotein does not gain access to the cytosol and MHC class Ⅰ presentation pathway following virus-cell fusion. J Gen Virol. 1996;77(Pt11):2695~2699.
    50. Martins LP, Lau LL, Asano MS, et al. DNA vaccination against persistent viral infection. J Virol. 1995;69(4):2574~2582.
    51. Schirmbeck R, Wild J, Reimann J. Similar as well as distinct MHC class Ⅰ-binding peptides are generated by exogenous and endogenous processing of hepatitis B virus surface antigen. Eur J Immunol. 1998;28(12):4149~4161.
    52. Mancini M, Hadchouel M, Tiollais P, et al. Induction of anti-hepatitis B surface antigen (HBsAg) antibodies in HBsAg producing transgenic mice: a possible way of circumventing "nonresponse" to HBsAg. J Med Virol. 1993 Jan;39(1):67-74.
    53. Mancini M, Hadchouel M, Tiollais P, et al. Regulation of hepatitis B virus mRNA expression in a hepatitis B surface antigen transgenic mouse model by IFN-gamma-secreting T cells after DNA-based immunization. J Immunol. 1998;161(10):5564~5570
    54. Davis HL, Michel ML, Whalen RG. DNA-based immunization induces continuous secretion of hepatitis B surface antigen and high levels of circulating antibody. Hum Mol Genet. 1993;2(11):1847~1851
    55. Davis HL, McCluskie MJ, Gerin JL, et al. DNA vaccine for hepatitis B: evidence for immunogenicity in chimpanzees and comparison with other vaccines. Proc Natl Acad Sci USA. 1996;93(14):7213~7218
    56. Geissler M, Bruss V, Michalak S, et al. Intracellular retention of hepatitis B virus surface proteins reduces interleukin-2 augmentation after genetic immunizations. J Virol. 1999;73(5):4284~4292
    57.梁雨,田淑芳,刘文军.核酸免疫可特异地诱发小鼠乙型肝炎病毒表面抗原S+preS1的免疫反应.中华肝脏病杂志.1999;7(2):98~100
    58.邓涛 ,陈乃玲,陈天宝.乙肝病毒基因免疫小鼠初步研究.中国公共卫生学报.1998;17(1):13~15
    59. Wild J, Gruner B, Metzger K, et al. Polyvalent vaccination against hepatitis B surface and core antigen using a dicistronic expression plasmid. Vaccine. 1998;16(4):353~360.
    60. Lobell A, Weissert R, Eltayeb S, et al. Presence of CpG DNA and the local cytokine milieu determine the efficacy of suppressive DNA vaccination in experimental autoimmune encephalomyelitis. J Immunol. 1999;163(9):4754~4762.
    
    
    61. Tighe H, Takabayashi K, Schwartz D, et al. Conjugation of inimunostimulatory DNA to the short ragweed allergen amb a 1 enhances its immunogenicity and reduces its allergenicity. J Allergy Clin Immunol. 2000 ;106(1 Pt 1) :124-134.
    62. Davis HL. DNA-based immunization against hepatitis B: experience with animal models. Curr Top Microbiol Immunol. 1998; 226: 57-68
    63. Davis HL. DNA vaccines for prophylactic or therapeutic immunization against hepatitis B virus. Mt Sinai J Med. 1999;66(2) : 84-90
    64. Chow YH, Chiang BL, Lee YL.et al. Development of Th1 and Th2 populations and the nature of immune responses to hepatitis B virus DNA vaccines can be modulated by codelivery of various cytokine genes.J Immunol. 1998; 160(3) : 1320-1329
    65. Michel ML. Prospects for active immunotherapies for hepatitis B virus chronic carriers. Res Virol. 1997; 148(2) : 95-99
    66. Howard CR, Gray L, Dmello F, et al. Nucleic acid vaccines against hepatitis viruses. Dev Biol Stand. 1998;92:157-162.
    67. Pancholi P, Lee DH, Liu Q, et al. DNA prime/canarypox boost-based immunotherapy of chronic hepatitis B virus infection in a chimpanzee.Hepatology. 2001;33(2) :448-454.
    68. Davis HL, McCluskie MJ, Gerin JL, et al. DNA vaccine for hepatitis B: evidence for immunogenicity in chimpanzees and comparison with other vaccines. Proc Natl Acad Sci USA. 1996;93(14) :7213-7218.
    69. Davis HI, Schirmbeck R, Reimann J, et al. DNA-mediated immunization in mice induces a potent MHC class I-restricted cytotoxic T lymphocyte response to the hepatitis B envelope protein.Hum Gene Ther. 1995 (11) : 1447-1456.
    70. Ramsay AJ, Kent SJ, Strugnell RA, et al. Genetic vaccination strategies for enhanced cellular, humoral and mucosal immunity.Immunol Rev. 1999; 171:27-44.
    71. Gursel M, Tunca S, OZZkan M, et al. Immunoadjuvant action of plasmid DNA in liposomes. Vaccine. 1999 Mar 17;17(11-12) :1376-1383.
    72. Weiss wr, Ishii K.J, Hedstrom RC, et al. A plasmid encoding murine granulocyte-macrophage colony-stimulating factor increases protection conferred by a malaria DNA vaccine. J Immunol. 1998;161(5) :2325-2332.
    73. Gheradi MM, Ramirez JC, Esteban M. Interleukin-12 (IL-12) enhancement of the cellular immune response against human immunodeficiency virus type 1 env antigen in a DNA prime/vaccinia virus boost vaccine regimen is time and dose dependent: suppressive effects of IL-12 boost are mediated by nitric oxide. J Virol. 2000;74(14) :6278-6286.
    74. Xin KQ, Hamajima K, Sasaki S, et al. Intranasal co-inoculation of IL-2 expression plasmid with AIDS DNA vaccine enchances cell-mediated immunity against HIC-1. Immunology. 1998;94:438-444
    
    
    
    75. Okamura H, Nagata K, Komatsu T, et al. Cloning of a new cytokine that induce IFN-gamma production by T cells, Nature. 1995;378:88
    76. Davis HL, Brazolot Millan CL, Mancini M, et al. DNA-based immunization against hepatitis B surface antigen (HBsAg) in nor mal and HBsAg-transgenic mice. Vacolne. 1997;15(8):849~852.
    77. Chow YH, Huang WL, Chi WK, et al. Improvement of hepatitis B virus DNA vaccines by plasmids coexpressing hepatitis B surface antigen and interleukin-2. J Virol. 1997;71(1):169~178
    78. Lagging LM, Meyer K, Hoft D, ET AL. Immune responses to plasmid DNA encoding the hepatitis C virus core protein. J Virol. 1995;69(9):5859~5863.
    79. Tokushige K, Wakita T, Pachuk C, et al. Expression and immune response to hepatitls C virus core DNA-based vaccine constructs. Hepatology. 1996;24(1):14~20
    80. Hitomi Y, McDonnell WM, Baker JR, ET AL. High efficiency prokaryotic expresaion and purification of a portion of the hepatitis C core protein and analysis of the immune response to recombinant protein in Balb/c mice. Viral Immunol. 1995;8(2):109~119.
    81. Hitomi Y, McDonnell WM, Killeen AA, et al. Sequence analysis of the hepatitis C virus (HCV) core gene suggests the core protein as an appropriate target for HCV va(?)ine strategies. J Viral Hepat. 1995;2(5):235~241.
    82. Nakano I, Maertens G, Major ME, et al. Immunization with plasmid DNA encoding hepatitis C virus envelope E2 antigenic domains induces antibodies whose immune reactivity is linked to the injection mode. J Virol. 1997;71(9):7101~7109.
    83. Nakano I, Fukuda Y, Katano Y, et al. Conformational epitopes detected by cross-reactive antibodies to envelope 2 glycoprotein of the hepatitis C virus. J Infect Dis. 1999;180(4):1328~1333.
    84. 窦骏,刘克洲,陈智等.丙型肝炎病毒基因重组体免疫诱发小鼠产生抗体的研究.上海免疫学杂志.1999;19(2):71~74
    85. Hu GJ, Wang RY, Han DS, et al. Characterization of the humoral and cellular immune responses against hepatitis C virus core induced by DNA-based immunization. Vaccine. 1999;17(23-24):3160~3170
    86. Lee SW, Cho JH, Lee KJ, et al. Hepatitis C virus envelope DNA-based immuniz(?)tion elicits humoral and cellular immune responses. Mol Cells, 1998;8(4):444~451
    87. Inchauspe G, Major ME, Nakano I, et al. DNA vaccination for the induction of immune responses against hepatitis C virus proteins. Vaccine. 1997;15(8):853~856
    88. Papa S, Rinaldi M, Mangia A, et al. Development of a multigenic plasmid vector for HCV DNA immunization. Res Virol. 1998;149(5):315~319
    89. Encke J, Zu Putlitz J, Geissler M, et al. Genetic immunization generates cellular and humoral immune responses against the nonstructural proteins of the hepatitis C virus in a murine model. J Immunol. 1998;161(9):4917-4923
    
    
    90. Tokushige K, Moradpour D, Wakita T, et al. Comparison between cytomegalovirus promoter and elongation factor-1 alpha promoter-driven constructs in the establishment of cell lines expressing hepatitis C virus core protein. J Virol Methods. 1997;64(1):73~80.
    91. Howard CR, Gray L, D'Mello F, et al. Nucleic acid vaccines against hepatitis viruses. Dev Biol Stand, 1998,92:157~162
    92. Saito T, Sherman GJ, Kurokohchi K, et al. Plasmid DNA-based immunization for hepatitis C virus structural proteins: immune response in mice. Gastroenterology, 1997,112(4):1321~1330
    93. Major ME, Vitvitski L, Mink MA, et al. DNA-based immunization with chimeric vectors for the induction of immune responses against the hepatitis C virus nucleocapsid. J Virol, 1995,69(9):5798~5805
    94. Inchause G, Major ME, Nakano I, et al. Immune responses against hepatitis C virus structural proteins following genetic immunizations. Dev Biol Stand, 1998,92:163~168
    95. Geissler M, Katsutosh T, Takaji W, et al. Differential cellular and humoral immune responses to HCV core and HBV envelope proteins after genetic immunizations using chimeric constructs. Vaccine, 1998,16(8):857~867
    96. 杨莉,刘晶,孔玉英,等.HCV核心区与HBV核心区融合基因的DNA免疫.中国科学(C辑).1999,29(3):246~251
    97. Fomsgaard A, Nielsen HV, Bryder K, et al. Improved humoral and cellular immune responses against the gp120 V3 loop of HIV-1 following genetic immunization with a chimeric DNA vaccine encoding the V3 inserted into the hepatitis B surface antigen. Scand J Immunol. 1998,47(4):289~295
    98. Sylvie LG, Maryline M, Roger LG, et al. In vivo induction of specific ccytotoxic T lymphocytes in mice and rhesus macaques immunized with DNA vector encoding an HIV epitope fused with hepatitis B surface antigen. Virology. 1998,240:304~315
    99. Bryder K, Sbai H, Nielsen HV, et al. Improved immunogenicity of HIV-1 epitopes in HBsAg chimeric DNA vaccine plasmids by structural mutations of HBsAg. DNA Cell Biol, 1999,18(3):219~225
    100. Vitiello A, Sette A, Yuan L, et al. Comparison of cytotoxic T lymphocyte responses induced by peptide or DNA immunization: implications on immunogenicity and immunodominance. Eur J Immunol. 1997;27(3):671~678
    101. Encke J, Putlitz J, Wands JR. DNA vaccines. Intervirology, 1999,42(2-3):117~124
    102. Mast EE, Alter MJ, Margolis HS. Strategies to prevent and control hepatitis B and C virus infections: a global perspective. Vaccine, 1999,17(13-14):1730~1733
    103. Lewis PJ, Babiuk LA. DNA vaccines: a review. Adv Virus Res. 1999;54:129~188
    104. Barry MA, Johnston SA. Biological features of genetic immunization. Vaccine. 1997;15(8):788~791.
    
    
    105. Song W, Tong Y, Carpenter H, et al. Persistent, antigen-specific, therapeutic antitumor immunity by dendritic cells genetically modified with an adenoviral vector to express a model tumor antigen. Gene Ther. 2000;7(24):2080~2086
    106. Clarke NJ, Hissey P, Buchan K, et al. pPV: a novel IRES-containing vector to facilitate plasmid immunization and antibody response characterization. Immunotechnology. 1997 Jun;3(2):145-53.
    107.林锋,陈智.干扰素治疗病毒性肝炎的分子机理及展望.国外医学流行病学传染病学分册.1998;25(3):102~106
    108.姚光弼.干扰素治疗丙性肝炎的现状与展望,国外医学内科学分册,1998;25(10):415~417
    109. Geissler M, Tokushige K, Chante CC, et al. Cellular and humoral immune response to hepatitis B virus structural proteins in mice after DNA-based immunization. Gastroenterology. 1997;112(4):1307~1320
    110. Prange R, Werr M. DNA-mediated immunization to hepatitis B virus envelope proteins: preS antigen secretion enhances the humoral response. Vaccine. 1999;17(7-8):617~623
    111. Michel ML, Davis HL, Schlee M, et al. DNA-mediated immunization to the hepatitis B surface antigen in mice: aspects of the humoral response mimic hepatitis B viral infection in humans. Proc Natl Acad Sci U S A. 1995;92(12):5307~5311.
    112. Cerny A, McHutchinson JG, Pasquinelli C, et al. Cytotoxic T lymphocyte response to hepatitis C virus derived peptides containg the HLA binding motif, J Clin Invest, 1995;95:521~530
    113. Koziel MJ, Dudley D, Afdhal N, et al. Hepatitis C virus(HCV) specific cytotoxic T lymphocyte recognize epitopes in the core and envelope proteins of HCV. J Virol. 1993;67:7522~7532
    114.曹武奎,朱理珉.组合干扰素(CIFN)治疗丙性肝炎.国外医学病毒学分册.1998;5(4):117~119
    115. Bertoletti A, Maini MK. Protection or damage: a dual role for the virus-specific cytotoxic T lymphocyte response in hepatitis B and C infection? Curr Opin Microbiol. 2000;3(4):387
    116. Bohm W, Kuhrober A, Pair T, et al. DNA vector constructs that prime hepatitis B surface antigen specific cytotoxic T lymphocyte and antibody responses in mice after intramuscular injection. J Immunol Meth, 1996;193:29
    117. Encke J, Putlitz J, Wands JR. DNA vaccines. Intervirology, 1999;42(2-3):117
    118. Frederick A, Roger B, Robert E, et al. Molecular Biology. American. 1997;1:9.3.1
    119.金伯泉.医学基础免疫学实验指导.1993;47(内部参考用书)
    120. Shouval D, llan Y, Adler R. Improved immunogenicity in mice of a mammalian cell derived recombinant hepatitis B vaccine containing preS1 and preS2 antigens as compared with conventional yeast derived vaccines. Vaccine, 1994,12:1453~1459
    
    
    121.谢尧,陶其敏.基因免疫中HBV preS对HCV E2蛋白免疫原性的调控。中华微生物学和免疫学杂志.1999;19(3):222~223
    122. Michael G, Katsutosh T, Takaji W, et al. Differential cellular and humoral immune responses to HCV core and HBV envelope proteins after genetic immunizations using chimeric constructs. Vaccine, 1998,16(8):857~867
    123. Rothel JS, Waterkeyn JG, Strugnell PA, et al. Nucleic acid vaccination of sheep: Use in combination with a conventional adjuvanted vaccine against Taenia ovis. Immunol Cell Biol. 1997 Feb; 75(1):41~46.
    124. Encke J, Putlitz J, Wands JR. DNA vaccines. Intervirology, 1999;42(2-3):117
    125. Geissler M, Tokushige K, Chante CC, et al. Cellular and humoral immune response to hepatitis B virus structural proteins in mice after DNA-based immunization. Gastroenterology. 1997;112(4):1307~1320
    126. Forns X, Emerson SU, Tobin GJ et al. DNA immunization of mice and macaques with plasmids encoding hepatitis C virus envelope E2 protein expressed intracellularly and on the cell surface. Vaccine. 1999;17(15-16):1992~2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700