折叠内插模数转换器的高精度设计研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究和发展高速、高精度、低功耗的模数转换器对于应用于无线通讯系统和高清数字视频设备等数字信号处理的系统级芯片设计来说,具有非常重要的意义。基于非线性模拟预处理的折叠技术显著减少了比较器的数目,同时保留了快闪型结构的速度优势,但由于工艺失配和非线性的影响,其精度仍限制于6-8位。折叠内插模数转换器的高精度实现成为近年来的一个研究热点。
     基于折叠内插转换器的传输特性,采用MATLAB构造了10位折叠内插模数转换器的整体模型。针对折叠带宽限制、折叠增益失配、内插增益误差和比较器失调等非理想效应所带来的转换器动态性能退化分别进行了行为级仿真、分析和讨论。针对10位转换目标,设计了两种直接折叠内插的两级转换结构。基于折叠内插的精度限制,采用将折叠结构与子区间结构相结合的方法设计实现了高精度三级流水折叠转换结构,并以此为基础提出了如下精度优化设计技术:
     采用单位增益采样结构、增益提高的折叠共源共栅运算放大器和轨到轨的输入级设计实现了高精度的输入级采样保持电路,有利于克服低电源电压下共模电压降低对模数转换器的影响。
     提出了并联和级联混合的折叠结构设计,以减小折叠非线性影响,抑制倍频效应所带来的带宽限制;采用级间分布式采样保持电路实现了流水折叠工作模式,缓解了每级折叠建立时间的要求,抑制高频折叠电压平移的误差。
     提出了一种失调抵消预放大器电路,采用中和技术减小了回踢噪声,失调存储抵消的时序逻辑与流水折叠结构的级间采样保持完全兼容,有效地减小了预放大器的失调电压。
     提出了级联内插电阻平均结构,将高精度所需的高倍内插系数分散到每级转换和折叠间进行,有效地提高了过零点的线性度的同时也避免由高倍内插引起的插值误差。采用梅比斯环平均网络消除了边界效应。
     采用将子区间转换与内插技术相结合,设计实现了子区间选择交叠内插的方式,既扩大了插值范围,有利于将内插误差最小化,又提高了插值网络的利用率,节约面积,降低功耗。
     采用奇偶校验算法实现了位同步校正技术,将三级转换结果校正后同步输出,避免了因分级转换不同步造成输出误差。
     基于上述结构和电路的精度优化设计,采用SMIC0.18μm1P6M CMOS工艺设计实现了一种10位100MS/s折叠内插模数转换器。测试结果如下:INL和DNL的峰值分别为±0.48LSB和±0.33LSB。1.8V电源电压下,功耗仅为95mW,输入电压范围VP-P为1.0V,芯片面积2.29mm2。在100MS/s采样速率,20MHz输入信号下,ENOB为9.59位,SNDR为59.5dB,SFDR为82.49dB,FOM为1.23pJ/Conv,已达到同类设计的优秀水平。
The research and development of analog-to-digital converters (ADCs) with highspeed, high precision and low power consumption are very significant in the design ofSOC applied in DSP such as wireless communication system and high-definition digitalvideo display. Based on nonlinear analog signal preprocessing, the folding techniquegreatly reduces the number of comparators and keeps such high speed as flash structure,but its resolution is limited to usually6-8bits due to process mismatch and nonlinearity.The folding and interpolating ADC with high resolution become a hot research in recentyears.
     Based on the transfer characteristics of the folding and interpolating circuits, abehavioral model of a10-bit folding and interpolating ADC is built in MATLAB.Performance degradation due to the nonideal effects such as limited bandwidth, gainmismatch, interpolation gain error and comparator offset are simulated and analyzed.Two two-stage-conversion architectures are designed for10-bit object. Consideringresolution limitation of folding and interpolation, a three-stage-conversion architecturewith pipelined folding is realized by the combination of folding and subranging. Themain contributions of precision optimization are followed:
     A high-performance sample-and-hold circuit is designed by unity-gain-samplestructure, a gain-enhance folded-cascode operational amplifier and rail-to-rail input toimprove the common-mode input range at low supply.
     A combined topology of parallel and cascaded folding is designed to reducenonlinearity and restrain the frequency-multiplier effect. Distributed interstagetrack/hold circuits realize the pipeline folding, relieve the settling requirement of eachstage, and make suitable folded signals without dc level shifting at high frequency.
     A offset-cancellation preamplifier eliminates the input offset voltage. Its kickbacknoise is alleviated effectually by neutralization technique. Its control logic is compatiblewith distributed interstage track/holds for pipelined folding.
     A cascaded resistive averaging interpolation is proposed to disperse highinterpolating rate to every stage for converting and folding. The linearity is improved,and the interpolating error of high rate is avoided. The boundary effect is eliminated byMoebius-band averaging network.
     A subraging-selected-crossing interpolation is designed. It extend the interpolatingrange, minimize interpolating error and use interpolating network more effectually for saving area and power.
     A bit-synchronized correction is implemented by odd-even parity algorithm. Thecorrected three-stage converted results output to avoid the error for multi-stageconversion.
     Based on above designs, a10-bit100-MS/s folding and interpolating ADC isrealized in SMIC0.18μm1P6M CMOS. The measured result is: the peak INL and DNLare±0.48LSB and±0.33LSB, respectively. The dissipation power is only95mW at1.8V power supply. Input range is1.0VP-Pwith2.29mm~2active area. At20MHzinput@100MS/s,9.59ENOB,59.5dB of SNDR and82.49dB of SFDR are achieved.A superior FOM of1.23pJ/Conv is acquired, which is the advanced level in thisdirection.
引文
[1] Razavi B. Design of Analog CMOS Integrated Circuits. International Edition2005. McGraw-Hill Higher Eucation.2005:1-3.
    [2] Sophocles J. Orfanidis. Intruduction to Signal Processing. First Edition.北京:清华大学出版社,1999:1-2.
    [3]陈贵灿,邵志标,程军,等. CMOS集成电路设计.西安:西安交通大学出版社出版,1999.1-5.
    [4] Gregorian R, Temes G C. Analog MOS Integrated Circuits for Signal Processing.New York:Jotn Wiley and Sons,1986.2-3.
    [5] Hammerschmied C M. CMOS A/D Converters Using MOSFET-Only R-2RLadders. PhD Thesis, Swiss Federal Institute of Technology, Zurich.2000.1-6.
    [6] Mikael G, Wikner J J, Nianxiong N T. CMOS Data Converters forCommunications. Kaluwer Academic Publishers.2002.1-8.
    [7] Cho T. Low-power, Low-Voltage Analog-to Digital Conversion Techniques usingPipelined Architecture. PhD Thesis, University of California, Berkeley.1995.2-5.
    [8]杨银堂,朱樟明,朱臻.高速CMOS数据转换器.北京:科学出版社出版,2006.3-7.
    [9] Stephen H L, Fetterman H S, George F G, et al. A10-b20-Msample/sAnalog-to-Digital Converter. IEEE J. Solid-State Circuits.1992,27(3).351-358.
    [10] Nishida Y. An8-bit200MS/s500mW BiCMOS ADC. IEEE Proc. CICC1995.1995.207—210.
    [11] Wang B, He L, Morris J. A Low Input Low-power Dissipation CMOS ADC.ISQED2006.2006.386-389.
    [12] Jaesik L, Weiner J, Chen Y K, et al. A20-GS/s5-b SiGe ADC for40-Gb/sCoherent Optical Links. IEEE Trans. Circuits and Systems I.2010,57(10).2665–2674.
    [13] Naber J, Singh H P, Sadler R, et al. Low-power High-speed4-bit GaAs ADC and5-bit DAC. GaAs IC Symposium1989.1989.333–336.
    [14] Analog Devices.2.5MSPS24-Bit100dB Sigma-Delta ADC. Norwood MA,USA, Aug.2011. http://www. analog.com/static/imported-files/data_sheets/AD7760.pdf
    [15] Texas Instruments.16-Channel24-Bit Analog-to-Digital Converter. Texas of USA,Oct2007. http://www.ti.com/cn/lit/gpn/ads1258.
    [16] Huang C C, Wang C Y, Wu J T. A CMOS6-Bit16-GS/s Time-Interleaved ADCUsing Digital Background Calibration Techniques. IEEE J. Solid-State Circuits.2010,46(4).848–858.
    [17] Ahmed M A, Morgan A, Dillon C, et al. A16-bit250-MS/s IF Sampling PipelinedADC With Background Calibration. IEEE J. Solid-State Circuits.2010,45(12).2602–2612.
    [18] Analog Devices.16-Bit200-MSPS/250-MSPS Analog-to-Digital Converter.Norwood MA, USA, Sep2011. http://www.analog.com/static/imported-files/data_sheets/AD9467.pdf
    [19] Murmann B, Boser B E. A12-bit75-MS/s Pipelined ADC Using Open-loopResidue Amplification. IEEE J. Solid-State Circuits.2003,38(12).2040-2050
    [20] El-Sankary K, Kassem A, Chebli R, et al. Low power low voltage10-bit50MSPSPipeline ADC Dedicated for Front-end Ultrasonic Receivers. IEEE ICM2002.2002.219–222
    [21] Liang S Q, Yin Y S, Deng H H, et al. A Low Power Consumption High SpeedOp-amp for a10-bit100MSPS Parallel Pipeline ADC. IEEE APCCAS2008.2008.818-821
    [22] Li J, Zheng XY, Xie L, et al. A1.8-V22-mW10-bit30-MS/s Pipelined CMOSADC for Low-Power Subsampling Applications. IEEE J. Solid-State Circuits.2008,43(2).321-329.
    [23] Liu M H, Liu S I. An8-bit10-MS/s Folding and Interpolating ADC Using theContinuous-time Auto-zero Technique. IEEE J. Solid-State Circuits.2001,36(1).122-128.
    [24] Chen C, Wang Z, Ren J. An Embedded200-Ms/s8-bit177mW Folding andInterpolating CMOS ADC in0.25-mm2. IEEE ICASIC2003.2003.661–664.
    [25] Ahmadi H R, Shoaei,O, Azizi M Y. An8-bit150-MS/s Folding and InterpolatingADC in0.25-μm CMOS with Resistive Averaging. IEEE ISSCS2003.2003,2.373-376.
    [26] Chen Y H, Huang Q T, Burger T. A1.2V200-MS/s10-bit Folding andInterpolating ADC in0.13-μm CMOS. IEEE ISSCC2007.2007.155-158.
    [27] Byungil K, Daeyun K, Jooho H, et al.12-bit80MSPS DoubleFolding/Interpolation A/D Converter. IEEE ISOCC2008.2008. III-1-III-2.
    [28] Junbum H, Donggwi C, Kyungtae K, et al. A10-b500-MS/s CMOS CascadedFolding A/D Converter with a Hybrid Calibration and a Prevision ErrorCorrection Logic. IEEE INEWCAS2011.2011.313–316.
    [29] Taft R C, Francese P A, Tursi M R, et al. A1.8-V1.0-GS/s10-b Self-CalibratingUnified-Folding-Interpolating ADC With9.1-ENOB at Nyquist Frequency. IEEEJ. Solid-State Circuits.2009,44(12).3294–3304.
    [30] Lu Y, Lin L, Xia J, et al. An8-b300MS/s Folding and Interpolating ADC forEmbedded Applications. Journal of Semiconductors.2010,31(6).065015.
    [31] Murmanm B. A/D Converter Trends: Power Dissipation, Scaling and DigitallyAssisted Architectures. San Jose of USA: CICC2008. Sept2008.105-112.
    [32] Lee H Y, Liu S I. A10-bit100-MS/s Pipelined ADC in0.18μm CMOSTechnology. IEEE ISOCC2007.2007.3-6.
    [33] Van R J, Plassche D. Integrated Analog-to-Digital and Digital-to-AnalogConverters. Kluwer Academic Publishers.1994.20-55.
    [34] Allen P E, Holberg D R. CMOS Analog Circuit Design. Second Edition.北京电子工业出版社,2002.652-653.
    [35] Li X J, Yang Y T, Zhu Z M. A CMOS8-bit two-step A/D converter with lowpower consumption. IEEE International Workshop on VLSI Design and VideoTechnology,2005. May2005.44-47.
    [36] Jiang X C, Wang Y, Willson A N. A200-MHz6-bit Folding and InterpolatingADC in0.5-μm CMOS. IEEE ISCAS1998.1998.5-8.
    [37] Guo X W, Cheng C, Ren J Y. An8-bit125MHz Folding and InterpolatingAnalog-to-Digital Converter. IEEE ASICP2001.2001.293–295.
    [38] Yu P C, Lee H S. A2.5-V12-b5-MSample/s Pipelined CMOS ADC. IEEE JSolid-State Circuits.1996,31(12).1854-1861.
    [39] Lin J F, Chang S J, Liu C C, et al. A10-bit60-MS/s Low-power Pipelined ADCwith Split-capacitor CDS Technique. IEEE Trans. Circuits and Systems II.2010,57(3).163-167.
    [40] Hiremath V, Ren S. A6-bit low power folding and interpolating ADC. IEEEInstrumentation and Measurement Technology Conf2011.2011.1-6.
    [41] van de Plassche R Y, Baltus P. An8-bit100-MHz Full-Nyquist Analog-to-DigitalConverter. IEEE J. Solid-State Circuits.1988,23(6).1334-1344.
    [42] Pan H, Asad A A. Signal folding in A/D converters. IEEE Trans on Circuits andSystems I.2004,51(1):3-13.
    [43] Roovers R, Steyaert M. Design of CMOS A/D Converters with Folding and/orInterpolating Techniques. IEEE AADCTA1994.1994.76-81.
    [44] Lin J, Haroun B. An Embedded0.8-V/480-μW6-B/22-MHz Flash ADC in0.13-μm Digital CMOS Process Using a Nonlinear Double InterpolationTechnique. IEEE J. Solid-State Circuits.2002,(37).1610-1617.
    [45] Mehr I, Singer L. A55-mW10-bit40-Msample/s Nyquits-Rate CMOS ADC.IEEE J. Solid-State Circuits.2000.35(3):318-325.
    [46] Wang Z Y. A600-MS/s8-bit ADC in0.18-μm CMOS. PhD Thesis, University ofCalifornia, Los Angeles.2004.33-52.
    [47] Pace P E, Styer D, Akin I A. A Folding ADC Preprocessing ArchitectureEmploying a Robust Symmetrical Number System with Gray-code Properties.IEEE Trans. Circuits and Systems II.2000,47(5).462–467.
    [48] Oz S, Devashrayee N M. Low Voltage, Low Power Folding Amplifier for Folding&Interpolating ADC. International Conf. ACE2010.2010.54-58.
    [49] Hwang J, Lee D, Park S, et al. A1.8-V200-mW8-bit1-GSPS CMOS A/DConverter with a Cascaded-Folding and an Interpolation. IEEE ICICDT2009.2009.241-244
    [50] Yin J L, Wang Y, Jia S. Low Power Folding/Interpolating ADC with a NovelDynamic Encoder Based on ROM Theory. ICSICT2008.2008.1969-1972.
    [51] Limotyrakis S, Nam K Y, Wooley B A. Analysis and Simulation of Distortion inFolding and Interpolating A/D Converters. IEEE Trans. Circuits and Systems II.2002,49(3).161-169.
    [52] Venes A, van de Plassche R. An80-MHz80-mW8-b CMOS Folding A/DConverter with Distributed T/H Preprocessing. IEEE ISSCC1996.1996.318-319.
    [53] Vorenkamp P, Roovers R. A12-b60-MS/s Cascaded Folding and InterpolatingADC. IEEE J. Solid-State Circuits.1997,32(12).1876-1886.
    [54] Kokozidis C, Bouras S, Arapoyanni A. Building Blocks for a100MS/s,10-b,1.8-V CMOS Cascaded Folding&Interpolating A/D Converter. IEEE ICECS2003. Dec2003.794–797.
    [55] Li X J, Yang Y T, Zhu Z M. A10-bit100MS/s Pipelined Folding A/D Converter.Journal of Semiconductors.2011.32(11).115008-7.
    [56] Yu Y H, Ni W N, Zhu X B, et al. An8-b600-MSmaples/s Folding andInterpolating ADC. IEEE IEDSSC2009.2009.79-82.
    [57] Roovers R, Steyaert M S J. A175MS/s6-b160-mW3.3-V CMOS A/D Converter.IEEE J. Solid-State Circuits.1996,31(6).938-944.
    [58] Lee H Y, Wang I H, Liu S I. A7-BIT4-00MS/s Sub-anging Flash ADC in0.18umCMOS. IEEE ISOCC2007.2007.11-14.
    [59] Lang F, Alpert T, Ferenci D, et al. A6-bit25-GS/s Flash Interpolating ADC in90-nm CMOS Technology. Ph.D. Research in Microelectronics and Electronics2011.2011.117–120.
    [60] Yu J S, Zhang R T, Lei Z, et al. A Digital Offset Self-Calibration Technique for3-Bit Flash Converter of an Ultra High-Speed Folding and Interpolating ADC.International Conference on ISDEA2010.2010.11-13.
    [61] Jang Y C. Cascaded Voting Process for flash ADC with Interpolating Scheme.Electronics Letters.2008,44(18).1047-1048.
    [62] Weng R M, Chao C C. A1.5-V High Folding Rate Current-Mode FoldingAmplifier for Folding and Interpolating ADC. IEEE ISCAS2006.2006.386-389.
    [63] Chung J W, Kwang S Y. Design of3.3-V10-bit Current-ModeFolding/Interpolating CMOS A/D converter with an Arithmetic Functionality.IEEE AP-ASIC2000. Aug.2000.45-48.
    [64] Li Y C, Sanchez-Sinencio E. A Wide Input Bandwidth7-bit300-MSample/sFolding and Current-Mode Interpolating ADC. IEEE J. Solid-State Circuits.2003,38(8).1405-1410.
    [65] Bell J A. Bruce J W. CMOS Current Mode Interpolating Flash Analog to DigitalConverter. Midwest Symposium on Circuits and Systems2002.2002.II-363-II-366.
    [66] Azin M, Movahedian H, Bakhtiar M S. An8-bit160-MS/s Folding-InterpolatingADC with Optimized Active Averaging/Interpolating Network. IEEE ISCAS2005.2005.6150-6153.
    [67] Kusumoto K, Murata K, Matsuzawa A, et al. A10-b20-MHz30-mW PipelinedInterpolating CMOS ADC. IEEE ISSCC1993.1993.62-63.
    [68] Lin L, Ren J Y, Ye F. A600-MS/s25-mW6-bit Folding and Interpolating ADC in0.13μm CMOS. IEEE ASICON2009.2009.199–202.
    [69] Choe M J,Song B S,Bacrania K. An8-b100-MSample/s CMOS PipelinedFolding ADC. IEEE J. Solid-State Circuits.2001,36(2).184-194.
    [70] Hsu C C, Huang C C, Lin Y H, et al. A10b200MS/s Pipelined Folding ADC withOffset Calibration. IEEE ISSCC2007. Se2007.151-154.
    [71] Hwang S, Moon J, Jung S, et al. Design of a1.8V6-bit100MSPS5mW CMOSA/D Converter with Low Power Folding-Interpolation Techniques. IEEE ISSCC2006.2006.548–551.
    [72] Chen G, Luo Y F, Zhou K. A5-bit10GS/s65nm Flash ADC with FeedthroughCancellation Track-and-Hold Circuit. IEEE IMWSCAS2009.2009.423-426.
    [73] Gray P, Wooley B, Brodersen R. Circuit Concepts and Design Techniques. AnalogMOS Integrated Circuits, II.1989.45-57.
    [74] Thirugnanam R, Dong S H, Choi S.S. Design of a4-bit1.4G Samples/s LowPower Folding ADC for DS-CDMA UWB Transceivers. IEEE InternationalConference on ICU2005.2005.536-541.
    [75] Lee D, Song J, Shin J, et al. Design of a1.8-V8-bit500-MSPSFolding-Interpolation CMOS A/D Converter with a Folder Averaging Technique.ECCTD2007.2007.356–359.
    [76] Heo S C, Jang Y C, Park S H. An8-bit200-MS/s CMOS Folding/InterpolatingADC with a Reduced Number of Preamplifiers using an Averaging Technique.IEEE International ASIC/SOC Conference2002. Sep2002.80-83.
    [77] Figueiredo P M, Vital J C. Averaging Technique in Flash Analog-to-DigitalConverters. IEEE Trans. Circuits and Systems I.2004,51(2).233-253.
    [78] Zanbaghi R, Atarodi M, Mehrmanesh S. A Low Power Pipeline A/D Converter byUsing Double Sampling and Averaging Techniques. IEEE TENCON2006.2006.1-4.
    [79] Fan S G, Zhao H, Tang H. Mixed AC/DC-Coupled Averaging Technique for ADCNonlinearity Reduction. ASQED2010.2010.102-105.
    [80] Ismail A, Elmasry M I. A Termination Technique for the Averaging Network ofFlash ADC's. IEEE ISCAS2006.2006.3321-3324.
    [81] Pan H, Abidi A A. Spatial Filtering in Flash A/D Converters. IEEE Trans. Circuitsand Systems II.2003,50(8).424-436.
    [82] Pan H, Abidi A A. Spectral Spurs due to Quantization in Nyquist ADCs. IEEETrans. Circuits and Systems I.2004,51(8).1422-1439.
    [83] Scott M D, Boser B E, Pister K S J. An Ultra-Low Power ADC for DistributedSensor Networks. IEEE ESSCIRC2002. Sep.2002.255-258.
    [84]杨银堂,李晓娟,朱樟明等.低压低功耗运算放大器结构设计技术.电路与系统学报.2005,10(4).95-101.
    [85] Schlogl F, Zimmermann H. Low-Voltage Operational Amplifier in0.12-μmDigital CMOS Technology. IEE Pro. Circuits, Devices and Systems.2004,151(4):395-398.
    [86] Yao L, Steyaert M, Sansen W. A1.8-V6-bit Flash ADC with Rail-to-Rail InputRange in0.18μm CMOS. ICASIC2003.2003.677-680.
    [87] Nguyen T K, Lee S G. Low-Voltage Low-Power CMOS OperationTransconductance Amplifier with Rail-to-Rail Differential Input Range. IEEEISCAS2006.
    [88] Lee E K F. A3-14V Rail-to-Rail Constant gmOpamp in Conventional0.18μmCMOS Process. IEEE Custom Integrated Circuits Conference2009.2009.467-470
    [89] Ferri G, Sansen W. A Rail-to-Rail Constant-gmLow-voltage CMOS OperationalTransconductance Amplifier. IEEE J. Solid-State Circuits.1997.32(10).1563–1567.
    [90] Movahedian H, Azin M, Sharif Bakhtiar M. A Low Voltage Low Power8-bitFolding/Interpolating ADC with Rail-to-Rail Input Range. ISCAS2004.2004.I-77-I-80.
    [91] Limotyrakis S, Nam K, Wooley B. Analysis and Simulation of Distortion inFolding and Interpolating A/D Converters. IEEE Trans. Circuits and Systems II.200249(3).161-169.
    [92] Li X J, Yang Y T, Zhu Z M. A Low-Kickback Preamplifier with OffsetCancellation For Pipelined Folding A/D Converter. IEEE ASICON2011.2011.996-999.
    [93] Li Y C. Design of High Speed Folding and Interpolating Analog-to-DigitalConverter. PhD Thesis, Texas A&M University. Texas,2003.45-48.
    [94] Asada Y, Yoshihara K, Urano T, et al. A6-bit7-mW250-fJ700-MS/s SubrangingADC. IEEE ASSCC2009.2009.141-144.
    [95] Ku I N, Xu Z W, Kuan Y C, et al. A40-mW7-bit2.2-GS/s Time-InterleavedSubranging ADC for Low-Power Gigabit Wireless Communications in65-nmCMOS. IEEE CICC2011.2011.1-4.
    [96] Li X J, Yang Y T, Zhu Z M. A1.8V100MS/s10-bit Pipelined Folding A/DConverter With9.49ENOB at Nyquist Frequency. IEEE ASICON2011.2011.512-515.
    [97] Erik S ll. Design of a Low Power, High Performance Track-and-Hold Circuit in A0.18μm CMOS Technology. Maser Thesis, Link ping University. Sep.2002.35-38.
    [98] Figueiredo P M, Vital J C. Kickback Noise ReductionTechniques for CMOSLatched Comparators. IEEE Trans. Circuits and Systems II.2006,53(7):541-548.
    [99] Yu Q, Zhang G H, Shao Z B. A Low Kick Back Noise Latched Comparator forHigh Speed Folding and Interpolating ADC. IEEE ICSICT2008.2008.1973-1978.
    [100]李晓娟,杨银堂.一种应用于流水折叠A/D转换器的失调抵消与放大器.西安电子科技大学学报(自然科学版).2012,39(2).104-120.
    [101] Wang Y T, Razavi B. An8-bit150-MHz CMOS A/D converter. IEEE J.Solid-State Circuits.2000,35(3).308-317.
    [102] Fan R, Zhou K, Ma Z, et al. A Digital Calibration Design for10-bit Folding andInterpolating ADC. IEEE International Conf. EDSSC2009.2009.346-349.
    [103] Takagi S, et al. Active Guard Band Circuit for Substrate Noise Suppression.IEEE ISCS2001.2001.548-551.
    [104] Briaire J, et al. Principles of Substrate Crosstalk Generation in CMOS Circuits.IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems.2000,19(6).645-653.
    [105] Maxim. Histogram Testing Determines DNL and INL Errors. Application Note2085of Maxim. May2003.1-8.
    [106] Maxim. Dynamic Testing of High-Speed ADC. Application Note729of Maxim.Jan2001.1-15.
    [107] Blum A S, Engl B H, Eichfeld H P, et al. A1.2-V10-b100-MSamples/s A/DConverter in0.12μm CMOS. IEEE Int Symp VLSI Circuits Dig Tech Papers,2002:326-329.
    [108] Kim D, Song M. A65nm1.2V7-bit1GSPS Folding-Interpolation A/D Converterwith a Digitally Self-calibrated Vector Generator. IEICE Transactions onElectronics,2011, E94-C(7):1199-1206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700