高速低功耗A/D转换器及相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着CMOS制造工艺的不断进步,越来越多的信号处理功能在数字领域内完成,以较低的成本实现高速、低功耗。而现实世界的信号大多是模拟的,需要模数(A/D)转换器将模拟信号转化成数字信号进行处理。A/D转换器的速度和功耗已经成为评价其性能指标的关键因素,是衡量其是否可以在通讯网络、便携式视频设备中应用的重要指标。
     本文首先实现了一种高速、低功耗的流水插值A/D转换器,分析了并指出了该A/D转换器输出特性受电源变化影响比较大的缺点。在该流水插值A/D转换器中引入了片上的LDO稳压器,以改善其电源抑制,并对应用在该流水插值A/D转换器中的带隙基准源和LDO稳压器等相关电路技术进行了研究。本论文主要包括以下几个方面内容:
     实现了一种流水插值的A/D转换器。该A/D转换器应用三级流水的斩波反相放大器、电容插值结构和预平衡的比较器,以实现高速、低功耗。给出了时钟产生电路和输出编码电路等数字电路结构,对该流水插值A/D转换器进行了投片测试。分析了电源噪声对该A/D转换器性能的影响,给出了低电源电压下该流水插值A/D转换器的性能仿真结果。
     研究了低压曲率校正带隙基准源设计技术。基于温度相关电阻比技术,提出了分段非线性曲率校正电流产生电路。在低温度段,该校正电流为零,中温段与温度成指数关系,高温段与温度的平方成正比。将该非线性曲率校正电流应用在了一个低压电流模式带隙基准源中,设计了一个1V电压、低温度系数曲率校正带隙基准源。将非线性曲率校正电流产生电路应用在了一个电压模式带隙基准源中,实现了一个带有负反馈的曲率校正带隙基准源。其主要特点是曲率校正电流产生电路在输出回路上形成了一个负反馈,只用一个电路模块实现了降低温度系数、改善基准源的电源抑制与线性调整率等功能。该负反馈电路结构简单,需要面积和功耗非常小。实验结果验证了设计思想的正确性。
     研究了片上应用的低噪声LDO稳压器实现技术。简单分析了应用预稳压电路的LDO稳压器线性调整率和负载调整率与电路参数的关系,实现了一种片上应用的CMOS低噪声、高电源抑制LDO稳压器。提出了一种可以应用于LDO稳压器和带隙基准源之间的共享预稳压电路,该共享预稳压电路基于电流负反馈原理设计,可以显著降低其基准源性能随工艺阈值电压变化的敏感度,提高参考源的电源抑制,降低LDO稳压器的输出噪声。该共享的预稳压电路结构已经申请发明专利。
     设计了一种应用片上LDO稳压器的高速、低功耗A/D转换器。该A/D转换器包括参考电压产生电路、低噪声LDO稳压器和流水插值A/D转换器三个模块。应用1V曲率校正带隙基准源产生基准电压,这个基准电压经过电平移位电路和缓冲电路为A/D转换器提供高精度的顶部和底部参考电压。电平移位电路的另一路输出形成了一个预稳压电路,预稳压电路与其后的两个功率驱动电路形成了一个低噪声、双路输出LDO稳压器。这个双路输出的LDO稳压器为A/D转换器提供模拟和数字的电源电压。对流水放大器的电路参数进行了优化,以降低噪声改善信噪比,在低压下实现高速低功耗。仿真结果表明该应用LDO稳压器的A/D转换器具有工作电压范围大、功耗低等优点。
With the rapid development of CMOS process, more and more singnal processing is processed in digital domain to achieve high speed and low power with low cost. While most of the signal in our reality world is anglog, analog-to-digital (A/D) converters are required to tansform analog signal into digital signal for processing. The speed and power have become the key factors to evaluate its performance, which are important factors to determine whether they can be used in communication network and portable video equipment.
     A high speed low power pipelined interpolating A/D converter is implemented; the disadvantage of its performance easily affected by the supply variation is analyzed and given. In order to improve its power supply rejection, an on-chip LDO regulator is applied in the high speed, low power pipelined interpolating A/D converter. The related techniques of bandgap refereance and LDO regulator applied in the pipelined interpolating A/D converter are investigated. The thesis includes the following aspects:
     A high speed pipelined interpolating A/D converter is implemented. A three-stage pipeline chopper inverter phase amplifier, capacitive interpolation and pre-equalized comparator are utilized to achieve high speed and low power. The clock generator and output encode circuit is given. The pipeined interpolating A/D converter is fabricated and measured. The affection of supply ripple on the performance of the A/D converter is analyzed and the simulaton result of the A/D convter in low voltage is given.
     Low voltage curvature corrected bandgap references are designed. A piecewise nonlinear curvature corrected current generator based on temperature related ratio is proposed. In the low, middle and high temperature range, the curvature-corrected current is zero, proportion to expontial and squared with temperature respectively. The nonlinear curvature corrteded current generator is utilized in a low voltage current-mode bandgap reference to design a 1V curvature corrected bandgap reference with low temperature coefficient. Applying the nonlinear curvature corrected current generator in a voltage-mode bandgap reference, a curvature corrtected bandgap reference with negative is designed and implemented. The distinguish feature is a negative is formed between the curvature corrected current generator and the output circuit. The two objects of decreaseing the temperature coefficient, improveing power supply rejection (PSR) and line regulation are achieved with only one circuit module. The negative is simple, which needs little extra chip area and power consumption. Experiment results shows the design consideration is correct.
     The implementation technique of low noise LDO regulator for on-chip application is investigated. The relation of line regulation and load regulation with circuit parameters for the LDO regulator with pre-regulator is analyzed briefly. A CMOS low noise, high PSR LDO regulators for on-chip application is implemented. A sharing pre-regulator for LDO regulator is proposed. The pre-regulator is designed based on current negative feedback, which dramatically decreases the sentivity of its bandgap reference performance with the variation of threshold, increases the PSR of its bandgap reference, and decreases the output noise of the LDO regulator. The architecture of the sharing pre-regulator is applied in an invention patent.
     A high speed low power A/D converter with on-chip LDO regulatos is designed, which includes reference generator, low noise LDO regulator and a pipelined interpolating A/D converter. The 1V curvature corrected bandgap reference is utilized in the A/D converters, which is followed by a level shifter and two buffers to provide the top and bottom references for the A/D converter. Another output of level shifter forms a pre-regulator. The pre-regulator and the followed two power drive stages form a dual output low noise LDO regulator, which provides supply for the analog and digital module. The circuit parameters of the pipelined interpolating are optimized to achieve high speed, low voltage and low power. Simulated results show the designed A/D converter has the advantages of high speed, low power and large operating volateg range.
引文
1 Gondon E. Moore. Cramming more components onto integrated circuits. Electronics, 1965, 38(8)
    2王韧.一个9位、125MHz流水线式ADC的研究与设计.电子科技大学硕士论文,2007:1~2
    3钱文荣.低功耗高速流水线模数转换器的研究与设计.上海交通大学硕士论文,2008:1~2
    4 David William Cline. Noise, speed and power trade-offs in pipelined analog-to digital converters. Doctor dissertation of California at Berkerly, 3~4
    5 IEEE Standard for terminology and test methods for analog-to-digital converters std. 1241-2000, IEEE instrumentation and Measurement Society, IEEE New York, 2000.
    6王永生.系统级芯片(SoC)可测性结构及其优化的研究.哈尔滨工业大学博士论文,2006:102~108
    7 W. Yong-sheng, W. Jin-xiang, L. Feng-chang, et al. On-chip ramp generator for ADC BIST. WSEAS Transactions on Systems, 2005, 4(12):2448~2453
    8 F. Azais, S.Bernard, Y.Bertrand, et al. Towards an ADC BIST scheme using histogram test technique. Procceding of IEEE European Test Workshop, ETW00, cascais, 2000: 53~58
    9 F. Azais, S.Bernard, Y.Bertrand, et al. Implementation of a linear histogram BIST for ADCs. Procceding of Design,Automation and Test in Europe, DATE01,Munich, 2001:590~595
    10 W. Yong-sheng, W. Jin-xiang, L. Feng-chang, et al. Optimal schemes for ADC BIST based on histogram. Proceeding of IEEE 14th Asian Test Symposium, Kolkata, 2005, 52~57
    11陈雷.高精度ΣΔADC的研究.西北工业大学博士论文,2006:1~2
    12孟昊,吴武臣.一种18位SAR ADC的设计实现.中国集成电路2008,45~50
    13 Y. Q. Yang, T. Sculley, J. Abraham. A single die 124-dB stereo delta-sigma with 111dB THD. IEEE Journal of Solid-State Circuits. 2008, 43(7): 1657~1665
    14洪志良,曹先国,王晓悦. 18位过采样ΣΔ变换器设计.半导体学报,1996,17(11):830~838
    15李本婧.一个高效率的CMOS模拟ΣΔ调制器的研究与设计.清华大学硕士论文2004:1~10
    16施周渊.低压低功耗Sigma Delta调制器设计.上海交通大学硕士论文,2004:2~5
    17吴鹏. 16位ΣΔ模数转换器设计以及在电表中的应用.浙江大学硕士论文,2005:1~3
    18杨宏.ΣΔADC的设计与研究.北京大学硕士论文,2003:1~2
    19 Chen lei, Zhao Yuanfu and Gao Deyuan, et al. Design of a 16-bit stereo audioΣΔA/D converter. Proceeding of EDSSC, 2005 : 653~656
    20 Ken Poulton, Robert Neff, Brian, Setterberg, et,al. A 20GS/s 8b ADC with a 1M memory in 0.18μm CMOS. Proceeding of ISSCC, 2003, 318~319
    21 Peter Schvan, Jerome Bach, Chris Falt, et al. A 24GS/s 6b ADC in 90nm CMOS. in Proceeding of ISSCC, 2008: 544~634
    22 Robert C. Taft, Chris A. Menkus, Maria Rosaria Tuisi, et, al. A 1.8-V 1.6-GSample/s 8-b Self-Calibrating Folding ADC With 7.26 ENOB at Nyquist Frequency. IEEE Journal of Solid-State Circuits, 2004, 39(12): 2107~2115
    23 Li Fule, Duan Jingbo, and Wang Zhihua. A high linearlity, 13bit pipelined CMOS ADC, Chinese Journal of Semiconductors. 2008, 29(3): 497~501
    24 Long Shanli, Shi Longxiang, Wu Jianhui et al. A 1.8V 10bit 100Msps Pipelined Analog to Digital Converter. Chinese Journal of Semiconductors, 2008 29(5): 923~929
    25林佳明.一种10位_200Msample_s模数转换器的设计.上海交通大学硕士论文,2008:87~88
    26陈诚,毛静文,王照钢.折叠内插模数转换器的分析与实现. Chinese Journal of Semiconductors, 2006, 26(5) :1234~1238
    27 Jipeng Li, Gil-Cho Ahn, Dong-Young chang, et al. A 0.9-V 12-mW 5-MSPS algorithmic ADC with 77-dB SFDR. IEEE Journal of Solid-State Circuits, 2005, 40(4): 960~969
    28 Andrea Agnes, Edoardo Bonizzoni, Piero Malcovati, et al. A 9.4-ENOB 1V 3.8μW 100KS/s SAR ADC with time-domain comparator. Proceeding of ISSCC 2008, 246~247
    29 Denis C, Daly, Anantha P.Chandrakasan, A 6b 0.2-to-0.9V highly digital flash ADC with comparator redundancy. Proceeding of ISSCC, 2008:554 ~555
    30 R. Wang, K. Martin, D. Johns et al. A 3.3mW 12MS/s 10b Pipelined ADC in90nm Digital CMOS. Proceeding of ISSCC, 2005:278~279
    31 G. Van der Plas, S. Decoutere and S. Donnay. A 0.16pJ/conversion-step 2.5mW 1.25GS/s 4b ADC in a 90nm Digital CMOS Process. Proceeding of ISSCC, 2006 : 566~567
    32 J. Craninckx and G. Van der Plas. A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b Charge-Sharirg SAR ADC in 90nn Digital CMOS. Proceeding of ISSCC,2007 : 246~247
    33 D.J. Huber, R. J. Chardler, A. A. Abidi. A 10b 160MS/s 84mW 1V Subranging ADC in 90nm CMOS. Proceeding of ISSCC 2007: 454~455
    34 Zhiheng Cao, Shouli Yan, Yunchu Li. A 32mW 1.25GS/s 6b 2b/step SAR ADC in 0.13μm CMOS. Proceeding of ISSCC, 2008:542~543
    35 Geert Van der Plas, Bob Verbruggen, A 150MS/s 133μW 7b ADC in 90nm digital CMOS Using a Comparator-Based Asynchronous Binary-Search sub-ADC. Proceeding of ISSCC, 2008:242~243
    36 Masato Yoshioka, Masahiro Kudo, Toshihiko Mori. A 0.8V 10b 8OMS/s 6.5mW Pipelined ADC with regulated overdrive voltage biasing. Proceeding of ISSCC, 2007, 452~453
    37 Mounir Boulemnakher, Eric Andre, Jocelyn Roux, et al. A 1.2V 4.5mW 10b 100MS/s Pipeline ADC in a 65nm CMOS. Proceeding of ISSCC, 2008: 250~251
    38袁小龙,赵梦恋,吴晓波等,低功耗高精度逐次逼近型模数转换器的设计.浙江大学学报(工学版),2006,40(12):2153~2157
    39张剑云.应用于数字视频接收器的低功耗高速流水线模数转换器的设计.复旦大学博士论文,2006:99~107
    40 Robert H. Walden. Analog-to-digital converter survey and analysis. IEEE Journal on Selected Areas on Communications, 1999, 17(4):539~550
    41 R. He, N. Nazari, and S. Sutardja. A DSP based receiver for 1000BASE-T PHY. Proceeding of ISSCC, 2001, 308~309
    42 P. Roo, S. Sutardja, S. Wei, F. Aram, and Y. Cheng. A CMOS transceiver analog front-end for gigabit ethernet over cat-5 cables, Proceeding of ISSCC, 2001, 310~311
    43 T. Fujisawa, J. Hasegawa, K. Tsuchie,et al. A single-chip 802.11a MAC/PHY with a 32b RISC processor. Proceeding of ISSCC, 2003, 144~145
    44陈诚.千兆以太网中低电压高速模数转换器设计研究.复旦大学博士论文,2005:1~3
    45 Yun-ti Wang, Behzad Razavi. An 8-Bit 150-MHz CMOS A/D Converter. IEEE Journal of Solid-State Circuits, 2000, 35(3): 308~317
    46 Seung-chan HEO, Young-chan JANG, Sang-Hung PARK. An 8-bit 200Ms/s folding/interpolation analog-to-digital Converter. IEICE Trans. Electron, 2003, E86-C(4): 676~681
    47 Sotirios Limotyrakis, Scott D. Kulchycki, David K. Su. A 150MS/s 8-b 71-mW CMOS time-interleaved ADC. IEEE Journal of Solid-State Circuits, 2005, 40(5):1057~1067
    48 Jan Mulder, Christopher M. Ward, Chi-Hung Lin, et al. A 21-mW 8-b 125-MSample/s ADC in 0.09-mm2 0.13-μm CMOS. IEEE Journal of Solid-State Circuits, 2004, 39(12):2116~2125
    49 Y asuhide Shimizu, Shigemitsu Murayama, Kohhei Kudoh, et al. A Split-Load Interpolation-Amplifier-Array 300MS/s 8b Subranging ADC in 90nm CMOS. in Proceeding of ISSCC, 2008: 552~553
    50 Wang Zhaogang, Chen Cheng, Ren Junyan, et al. A 71mW 8b 125Ms/s A/D converter. Chinese Journal of Semiconductors, 2004, 24(1): 1~6
    51 K. Balasubramanian. A Flash ADC with reduced complexity. IEEE Transaction on Industrial Electronics, 1995, 4(1): 106~108
    52 F. Goodenough. Interpolators put 10-bit 75-MHz A/D converters on 8-bit digital process. Electronic Design, 1989, vol(12):29~30
    53 Christoph Sandner, Martin Clara, Andreas Santner, et al. A 6-bit 1.2-GS/s Low-power Flash_ADC in 0.13-um Digital CMOS. IEEE Journal of Solid-State Circuits, Vol. 40, 2005 (7):1499~1505
    54 M. Steyaert, R.Roovers and J.craninckx. A 100-MHz 8-bit CMOS interpolating A/D converter. Proceeding of Custom Integrated Circuit Conference, 1993, San Diego, 28.1.1~28.1.4
    55 Tzu-Chao Lin, Jiin-Chuan Wu. A Two-Step A/D converter in digital CMOS Process. Proceeding of ASIC Conference, 2002, 177~180
    56 B. Razavi, B.A. Wooley. A 12-b 5MS/s Two-Step CMOS A/D converter. Proceeding of International Solid-State Circuit Conference, 1992: 36~37
    57 Jing Wang. Analysis and design of high-speed High-resolution Analog-to-Digital converter. Doctor dissertation, Texas A&M University, 2003 : 1~118
    58 Hui Pan, Asad, A. Abidi. Signal Folding in A/D converter. IEEE Transaction on Circuit and System-I Regular paper, 2004, 51 (1) : 3~14
    59 Ovidiu Carnu, Adrian Leuciuc. Design Issues For Low Voltage, High Speed Folding and Interpolating A/D Converters. Proceeding of Midwest Symposiumon Circuit and System, 2002: 575~578
    60 Ardie G. W. Venes, Rudy J. van de Plassche. An 80-MHz, 80-mW, 8-b CMOS Folding A/D Converter with Distributed Track-and-Hold Preprocessing. IEEE Journal of Solid-State Circuits, 1999,31 (12) :1846~1853
    61 ROB E. J, VAN DE GRIFT, IVO W. J. M. RUTTEN, et al. An 8-bit Video ADC Incorporating Folding and Interpolation Techniques. IEEE Journal of Solid-State Circuits, 1987, SC-22 (12) : 944~953
    62 Yun Chiu. High-performance pipelined A/D converter design in deep-submicron CMOS. Doctor dissertation of university of California at Berkeley, 2004, 14~15
    63 Y. Chiu, P. R. Gray, B.Nikolic. A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR. IEEE Journal of Solid-State Circuits, 2004, 39(12): 2139~2151
    64 C. R. Grace, P. J. Hurst, S. H. Lewis. A 12-bit 80-Msample/s pipelined ADC with bootstrapped digital calibration. IEEE Journal of Solid-State Circuits, 2005, 40(5): 1038~1046
    65 J. B. Park, S. M. Yoo, S.W. Kim, et al. A 10-b 150-MSample/s 1.8-V 123-mW CMOS A/D converter with 400MHz input bandwidth. IEEE Journal of Solid-State Circuits, 2004, 39(8): 1335~1337
    66 H.C. Liu, Z. M. Lee, J. T. Wu. A 15-b 40MS/s CMOS pipelined analog-to-digital converter with digital background calibration. IEEE Journal of Solid-State Circuits, 2005, 40(5): 1047~1056
    67 B. xia, A. Valdes-Garcia, E. Sánchez-Sinencio. A 10-bit 44-MS/s 20-mW configurable time-Interleaved pipeline ADC for a Dual-Mode 802.11b/Bluetooth Receiver. IEEE Journal of Solid-State Circuits, 2006, 41(3):530~539
    68 K. Nagaraj, J. Fetterman, J. Anidjar, et al. A 250-mW, 8-b 52-Msamples/s parallel-pipelined A/D converter with reduced number of amplifiers. IEEE Journal of Solid-State Circuits, 1997, 32(3): 312~320
    69 B. Xia, A. Valdes-Garcia, E. Sánchez-Sinencio, A configurable time-interleaved pipeline ADC for multi-standard wireless receivers. Proceeding of Europe Solid-State Circuits Conference, 2004, 259~262
    70 C. S. G. Conroy, D. W. Cline, P. R. Gray. An 8-b 85-MS/s parallel pipeline A/D converter in 1-μm CMOS. IEEE Journal of Solid-State Circuits, 1993, 28(4): 447~454
    71 C.-Y. Wang, J.-T. Wu. A background timing-skew calibration technique for time-interleaved Analog-to-Digital converters. IEEE Transactions on Circuit and System II, 2006, 53(4):299~303
    72 S. M. Jamal, D. Fu, N. C.-J. Chang, et al. A 10-b 120-Msample/s time-interleaved analog-to-digital converter with digital background calibration. IEEE Journal of Solid-State Circuits, 2002, 37(12):1618~1627
    73 J. Elbornsson, F. Gustafsson, J.-E. Eklund. Blind adaptive equalization of mismatch errors in a time-interleaved A/D converter system. IEEE Transaction Circuits and System I, 2004, 51(1): 151~158
    74 H. Jin, E. K. F. Lee. A digital-background calibration technique for minimizing timing-error effects in time-interleaved ADCs. IEEE Transaction Circuits and System II, 2000, 47(7):603~613
    75 K. Kusumoto, A. Matsuzawa, K. Murata. A 10-b 20-MHz 30-mW pipelined interpolating CMOS ADC. IEEE Journal of Solid-State Circuits, 1993, 28(12):1200~1206
    76 Bahram Fotouhi. Optimization of chopper amplifier for speed and gain. IEEE Journal of Solid-State Circuits, 1994, 29(7): 823~828
    77 B. J. Sheu, Chenming Hu. Switch-Induced Error Voltage on a Switched Capacitor. IEEE Journal of Solid-State Circuits 1984 (8): 519~525
    78 K. Martin and A.S. Sedra. Effects of Op Amp Finite Gain and Bandwidth on the Performance of Switched-Capacitor Filters. IEEE Transaction on Circuits and System 1981,28(8): 822~829
    79 Yu-Yau Guo. Behavioral modeling and simulations of mixed-signal integrated circuit with process variations and physical defects. Doctor dissertation of university of Rhode island, 2003, 40~52
    80 Benjamin J. Mc Crarroll, Charles G. Sodini Hae-Seung Lee. A High Speed CMOS Comparator for Use in a ADC. IEEE J. Solid-State Circuits. 1988 23(2):159~165
    81 Douglas R. Beck. A 8-b 1.8V 20MS/s Analog to Digital Converter. Doctor thesis of Washington University. 2002: 30~32
    82 Hui Liu. A Re-configurable Pipeline ADC Architecture with Built-in Self-test Technique. Doctor thesis of Iowa state University, 2001: 69~70
    83朱江,邵志标. CMOS折叠-插值A/D转换器中气泡效应的研究.西安交通大学学报1999 (1): 43~46
    84 P.R. Gray, P.J. Hurst, S.H. Lewis, et al. Analysis and design of analog integrated circuits. John Wiley & Sons, Inc. 2001, 4th ed, 317~327
    85 B. Razavi. Design of analog CMOS ingegrated circuits. McGraw-Hill companies, Inc, 2001, 309~329
    86 G. A. Rincon-Mora. Voltage references from diode to precision high-orderbandgap circuits. John Wiley & Sons, Inc, 2002: 45~119
    87 G. A. Rincon-Mora. Current efficient, low voltage, low drop-out regulators. Doctor dissertation of Georgia Institute of Technology, 1996 :76~118
    88 Brokaw, A.P. A simple three terminal IC bandgap reference. IEEE Journal of Solid-State Circuits, 1974, SC-9, (6): 388~393
    89 G. C.M. Meijer, P.C. Schmale, K. V. Zalinge. A new curvature-corrected bandgap reference. IEEE Journal of Solid-State Circuits, 1982, SC-17(6):1139~1143
    90 M. Gunawan, G. C. M. Meijer, J. Fonderie, et al. A curvature-corrected low-voltage bandgap reference. IEEE Journal of Solid-State Circuits, 1993, 28(6): 667~670
    91 I. Lee, G. Kim, W. Kim. Exponential curvature-compensated BiCMOS bandgap references. IEEE Journal of Solid-State Circuits, 1994, 29(11): 1396~1403
    92 P. Malcovati, F. Maloberti, C. Fiocchi, et al. Curvature-compensated BiCMOS bandgap with 1-V supply voltage. IEEE Journal of Solid-State Circuits, 2001, 36(7): 1076~1081
    93 Annema, Anne-Johan.Low-power bandgap references featuring DTMOST’s. IEEE Journal of Solid-State Circuits, 1999, 34(7):949~955
    94 B.-S. SONG, P. R. GRAY. A precision curvature-compensated CMOS bandgap reference. IEEE Journal of Solid-State Circuits, 1984, SC-18(6):634~643
    95 G. A. Rincon-Mora, P. E. Allen. A 1.1-V Current-mode and piecewise-linear curvature-corrected bandgap reference. IEEE Journal of Solid-State Circuits, 1998, 33(10): 1551~1554
    96 K. N. Leung, P. K. T. Mok, C. Y. Leung. A 2-V 23-μA 5.3-ppm/℃curvature-compensated CMOS bandgap voltage reference. IEEE Journal of Solid-State Circuits, 2003, 38(3): 561~564
    97 M. D. Ker, and J. S. Chen. New curvature compensated technique for CMOS bandgap reference with sub-1-V operation. IEEE Transaction on Circuits and System II, 2006, 53(8) :667~671
    98秦波,甲晨,陈志良等. 1V电源非线性补偿的高温度稳定性电压带隙基准源.半导体学报,2006, 27(11):2035~2039
    99 G. Ripamonti, M. Bertolaccini, R. Peritore, et al. Low-power low-voltage bandgap references for EE-prom integrated circuits: Design alternatives and experiments. Proceeding of ICECS, 1999, 635~638
    100 H. Banba, H. Shiga, A. Umezawa, et al. A CMOS bandgap reference with sub-1-V operation. IEEE Journal of Solid-State Circuits, 1999, 34(5):670~674
    101 Bendali A, Audet Y. A 1-V CMOS current reference with temperature and process compensation. IEEE Transaction on Circuit and System I, 2007, 54(7), 1424~1429
    102 T. Books and A. L. Westwisk. A low-power differential CMOS bangdap reference. Proceeding of ISSCC, 1994, 248~249
    103毕查德·拉扎维.模拟CMOS集成电路设计.陈贵灿,程军,张瑞智.第一版.西安交通大学出版社,2003:302~304
    104 Alicea Morales, Ortiz Villanueva, Palomera Garcia. Design of an Adjustable,Low Voltage, Low Dropout Regulator. Proceedings of the Fifth IEEE International Caracas Conference on Devices, Circuits and Systems. Nov 2004,1:289~292
    105 Ramy Tantawy, Elizabeth J. Brauer. Performance Evaluation of CMOS Low Dropout Regulators. Proceeding of the 47th IEEE International Midwest Symposium on Circuits and Systems. 2004:141~144
    106赖凡.低压差电压调节器技术发展动态.微电子学. 2004,34(4):411~417
    107陈晓飞,邹雪城.基于BiCMOS的高精度LDO线性稳压电路.华中科技大学学报. 2006,34(5):59~61
    108王洪来,戴宇杰,张小兴等.低静态电流低压降CMOS线性稳压器.微电子学. 2005, 5(6):665~667
    109王松林,罗莉,来新泉等.一种适用于LDO的动态频率补偿方案.电子器件,2008,31(8):1273~1275
    110陈东坡,何乐年,严晓浪.一种低静态电流、高稳定性的LDO线性稳压器.电子与信息学报,2006, 28(8):1526~1529
    111陈晓飞,邹雪城,刘三清等.一种新颖的BiCMOS高精度LDO线形稳压电路.微电子学,2006, 35(2):80~83
    112 J. Wong. A low-noise low drop-out regulators for portable equipment. Power Conversion and Intelligent Montion, 1990, 2, 65~69
    113 F. Goodenough. Power supply rails plummet and proliferate. Electronic Design, 1995, 7: 51~55
    114 Kwok K C ,Mok P K T. Pole-zero t racking f requency compensation for low dropout regulator . IEEE International Symposium on Circuits and Systems ,2002 , 4 :735
    115 Rincon-Mora G A, Allen P A. A low-voltage, low quiescentcurrent, low drop-out regulator. IEEE Journal of Solid State Circuit s ,1998 ,33 (1) :36~44
    116王义凯,王忆,巩文超.大电流、高稳定性的LDO线性稳压器.半导体学报,2007, 28(7):1149~1155
    117 Fanhua, Fengquenyuan. Design of an op-amp based on a LDO regulator.半导体学报,2005, 26(10):1905~1909
    118 Leung K N, Mok P K T, Ki W H. A novel frequency compensation technique for low-voltage low-dropout regulator. Proceedin of IEEE International Symposium on Circuits and Systems, Florida:Orlando, 1999, Vol.5: 102~105
    119 Kwok K C, Mok P K T. Pole-zero tracking frequency compensation for low dropout regulator. Proceeding of IEEE International Symposium on Circuits and Systems, Arizona: Scottsdale, 2002, vol. 4: 735~738
    120 Yang Jinwen,Feng quanyuan. Single miller capacitor compensated multistage amplifier for low dropout regulators. Proceedings of Microwave Conference, 2005,5:110~113
    121 K. N. Leung, Philip K. M, W. H. Ki. A novel frequency compensation technique for low-voltage low-dropout regulator. Proceedings of international symposium of Circuits and Systems, 1999, V.102~105
    122来新泉,解建章,杜鹏程.利用动态米勒补偿电路解决LDO的稳定性问题.固体电子学研究与进展,2005,25(3):385~390
    123 C. C. Wang, C. C. Huang, T. J. Lee, et al. A Linear LDO Regulator with Modified NMCF Frequency Compensation Independent of Off-chip Capacitor and ESR. Proceeding of Asia Pacific Conference on Circuits and System, 2006, 880~883
    124 Chaitanya K. Chava, JoséSilva-Martínez. A Frequency Compensation Scheme for LDO Voltage Regulators. IEEE Transaction on Circuits and Systems, 2004, 51(6): 1041~1050
    125 H. Peng, W. Zhigong,X Yong, et al. A capacitor-free low-dropout regulator for system-on-chip application.半导体学报,2008,29(8):1507~1510
    126 V. Gupta, G. A. Rincon-Mora, P. Raha. Analysis and Design of Monothic, High PSR, Linear Regulator for SOC Application. Proceeding of IEEE SOC Conference, 2004, Santa Clara, 311~315
    127 V. Gupta, G. A. Rincon-Mora. A low dropout, CMOS regulator with high PSR over wideband frequencies. Proceedings of IEEE International Symposium on Circuits and Systems. 2005, 5:4245~4248
    128 S.K. Hoon, S.Chen, F. Maloberti et al. A Low Noise, High Power Supply Rejection Low Dropout Regulator for Wireless System-on-Chip Applications.Proceeding of IEEE Custom Integrated Circuit Conference, 2005: 759~762
    129 Wonseok Oh, Bertan Bakkaloglu, Bhaskar Aravind et al. A CMOS Low- noise, Low-dropout Regulator for Transceiver SOC Supply Management. In Proceeding of System-On-Chip Conference, Austin, 2006 : 7~11
    130 Wo. Oh, B. Bakkaloglu, B. Aravind, et al. A low 1/f Noise CMOS low-dropout regulator with current-Mode feedback buffer amplifier. Proceeding of Custom Integrated Circuit Conference, 2006, :P-3-1~P-3-4
    131 Philip E Allen, Douglas R Holberg. CMOS Analog Circuit Design (Second Edition). Oxford University Press, 2002, 126~134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700