某航弹折叠翼的有限元分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可折叠弹翼能够满足航弹智能变形的要求,其结构参数、展开特性直接影响航弹的气动特性和弹道轨迹,因而对折叠翼结构和展开过程的分析尤为重要。本文以折叠翼为研究对象,对其结构组成及各部件的工作原理进行研究,建立了折叠翼的三维有限元模型,进行了静力学与模态有限元分析和展开机构运动特性及仿真分析,并对其进行静力试验和展开试验,验证模型建立的准确性、分析方法的合理性。
     首先对折叠翼结构组成及各部件的工作原理进行研究;通过有限元分析技术建立折叠翼有限元模型,对其进行静力学分析,模拟实际受力位置进行加载,直观地展现了弹翼的应力场、位移场、分析了翼片的强度;对折叠翼进行模态分析,得到了弹翼的固有频率和固有振型。
     在ADAMS平台上,应用虚拟样机技术,对可折叠机翼的折叠过程进行了运动特性仿真分析,模拟计算了折叠翼的运动过程,得到了活动翼的角速度、角加速度、展开时间等性能参数。
     对折叠翼进行了静力试验和展开试验,得到折叠翼在使用载荷、设计载荷作用下的应力分布、变形形态、最大承载能力、折叠翼展开时间、气缸最大压力值、角速度、角加速度等性能参数。
     最后,对折叠翼的结构、材料等提出了改进建议。分析了能源组件作动筒节流孔三种不同尺寸孔径的气缸压力峰值大小、峰值时间,确定了更合理的方案。并对两种复合材料折叠翼的性能进行了计算分析,选取碳纤维材料用于活动翼的设计制作。
     本文的研究工作为折叠翼机构的改进和设计制造提供了参考。
Folding wing can meet the requirement of aircraft missiles' intelligent deformation. The structural parameters and expand characteristics directly impact the aerodynamic characteristics and ballistic trajectories of cruise missiles. Thus the analysis of folding wing structure and motion process is particularly important. Taking folding wings as the research object, the parts of structure and working principle were studied in this paper. The three-dimensional finite element model of wing was established. The static character, modal character and motion character of expand sector were analyzed. The static and expand tests were carried. The accuracy of model establishment and rationality of analysis method was testified.
     Firstly, the composition of the folding wing and the principle of different parts were studied. On the basis of its finite element model, the loading position was simulated and the static analysis was carried out, and then the stress field, displacement field and the strength of the wing was calculated; the natural frequency and modal shape were obtained by modal analysis of the folding wing.
     Using virtual prototyping technology on ADAMS platforms, motion character of the wing folding process was analysis and its movement was simulated, and the angular velocity, angular acceleration, opening time and other performance parameters of the active wing were calculated.
     The stress distribution, deformation patterns and the maximum carrying capacity were obtained under apply load and design load by carrying out the static test of the folding wing. Through the expending test of the folding wing, the opening time, the maximum cylinder pressure, angular velocity, acceleration velocity and other performance parameters were gotten.
     Finally, the improvement of folding wing structure and materials was proposed. The more reasonable option was determined, after analysis of the peak pressure and peak time of three different throttle aperture size of energy component actuating cylinder. On finite element static analysis of two composite material wings, the carbon fiber was used to design and manufac manufacture folding wings.
     The research of paper provided a reference for the organization and improvement of the folding wing design and manufacturing.
引文
[1]周义,周绪斌,王自焰.“宝石路”激光制导炸弹风雨四十载[J].兵器博览.2006,(2):5-9页
    [2]吴思.中国精确制导炸弹的发展与最新动态[J].现代兵器.2006,(12):43-49页
    [3]蔡国华.战术导弹折叠翼快速展开性能的测试技术[J].上海航天.1998,(4):3-7页
    [4]关世玺,程峰.弹翼展开装置研究[J].弹箭与制导学报.2006,26(1):528-531页
    [5]雷娟棉,吴甲生.钻石背弹翼外形参数对气动特性的影响[J].北京理工大学学报.2006,26(11):945-948,1013页
    [6]余旭东.战术导弹折叠翼结构动态响应分析[J].西北工业大学学报.1994,(3):237-240页
    [7]赵育善,余旭东,马彩霞.折叠翼展开过程仿真研究[J].弹箭与制导学报.1997,(2):19-23页
    [8]谭湘霞,吴斌,余旭东.导弹折叠翼的机构弹性动力学分析与仿真研究[J].弹箭与制导学报.1999,(1):17-21页
    [9]李莉,任茶仙,张铎.折叠翼机构展开动力学仿真及优化[J].强度与环境.2007,34(1):17-21页
    [10]Deman Tang, Earl H. Dowell. Theoretical an Experimental Aeroelastic Study fo Folding Wing Structures[J]. Journal of Aircraft.2008,26(4):77-81P
    [11]Lee, B.H.K.. Vertical tail buffeting of fighter aircraft[J]. Progress in Aerospace Sciences.2000,14(2):193-279P
    [12]Minh, N.N., Miyata, T., Yamada, H. and Sanada, Y.. Numerical simulation of wind turbulence and buffeting analysis of long-span bridge[J]. Wind Eng.& Industrial Aerodynamics.1999,83(6):301-315P
    [13]王焘,余旭东,马彩霞.导弹折叠翼静力实验研究[J].弹箭与制导学报.1998,(2):51-53页
    [14]Cleghorn W L. Finite Element Analysis of High-speed Flexible Mechanisms[J]. Mechanism and Machine Theory.1981,48(9):407-424P
    [15]Mousseau C.W, Laursen T.A, Lidberg M, etc. Vehicle dynamics simulation with coupled multibody and finite element models[J]. Finite Elements in Analysis and Design.1999,31(4):295-315P
    [16]Rahnejat. Multi-body Dynamics Vehicle, machine and mech-annisms [M]. Hardcover,1992:121-150P
    [17]Robert Kroyer. Wing mechanism analysis[J]. Computers and Structures.1999,72 (8): 253-265P
    [18]Todd M.Reichert. Performance of Articulated Flapping Wings with Partial Leading-Edge Suction[J]. Journal of Aircraft.2007,56(4):398-406P
    [19]Yudi Heryawan, Hoon C. Park, Nam S. Goo, Kwang J. Yoon, Yung H. Byun Design and demonstration of a small expandable morphing wing[J]. Proc. of SPIE.2005, 57(14):224-231P
    [20]Matthew P Snyder. Vibration and Flutter Characteristics of a Folding Wing[J]. Journal of Aircraft.2009,791(6):34-39P
    [21]Douglas Campbell, Arup Maji. Failure Mechanisms and Deployment Accuracy of Elastic-Memory Composites [J]. Journal of aerospace engineering.2006,78(3):283-285P
    [22]Metin Sitti.Piezoelectrically actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax [J]. IEEE/ASME Transactions on Mechatronics.2003,104(1):299-305P
    [23]Laith K. Abbas, RUI Xiao-ting, P. Marzocca. Non-linear Aerothermoelastic Modeling and Behavior of a Double-wedge Lifting Surface [J]. Shanghai Jiaotong Univ.2009, 14(5):620-625P
    [24]D.N.Fedorenko. Patterns of Beetle Wing Folding[J]. Communication 1 Entomological Review.2004,23(4):138-144P
    [25]Shabana. Computational Dynamics [M]. Wiley & Sons, New York,2001:38-47P
    [26]F.M.L. Amirouche. Computational methods in multibody dynamics[M]. New Jersey, Prentice Hall, Englewood Cliffs.1992:65-77P
    [27]Julian Beckett. Yak 558P-ERadio control Models[J].& Electronics.2006, (2):139-144P
    [28]C T Edquist, G Romine. Canister gas dynamics of gas generator launched missiles [R]. AIAA-80-1186.1980:1-13P
    [29]Sugiyama, K. Tritium distribution measurement of the tile gap of JT-60U[J]. Journal of Nuclear Materials.2007,45(3):489-495P
    [30]马彩霞,余旭东,王涛.导弹折叠翼展开运动实验[J].弹箭与制导学报.1993,(2): 63-65页
    [31]贾毅,李甘牛.战术导弹折叠尾翼展开动态测力试验技术研究[J].试验流体力学.2007,21(2):46-49,62页
    [32]李晓晖,李怀念,吴俊全.火箭弹折叠翼展开过程的计算与试验研究[J].航天器环境工程.2009,26(增刊):82-84页
    [33]何子华.某飞机机身加装外挂后静力试验初步方案设计[D].西安:西北工业大学.2007:21-24页
    [34]余旭东,赵伟,马彩霞.反坦克导弹折叠翼结构动力分析[J].弹箭与制导学报.1994,(4):18-21页
    [35]刘晓利.大展弦比弹翼张开机构运动分析[J].南京理工大学学报,2002,26(1):40-43页
    [36]王仲华.飞行器折叠尾翼的弹性动力学有限元数值分析[D].西安:西北工业大学,2004:9-16页
    [37]易龙,彭云,孙秦.折叠机构弹性动力学数值分析[J].机械设计与制造.2006,(7):12-13页
    [38]严子焜,万小朋,赵美英.一种用于折叠翼飞机的行星齿轮机构动力学分析[J].机械设计.2009,26(12):49-51,78页
    [39]钟世宏,王占利,孙巍.巡航导弹可折叠弹翼支架的设计及其动力学研究[J].航天制造技术.2010,(2):18-21,25页
    [40]李毅,王生楠.变体飞行器结构动特性研究[J].航空计算技术.2006,23(11):39-41页
    [41]杜厦,昂海松.一种改进折叠弹翼结构设计与气动分析[J].航空兵器.2009,(3):8-10页
    [42]倪健,陆凯,张铎.导弹折叠翼展开机构的可靠性定性分析[J].上海航天.2000,(3):33-36页
    [43]倪健,张铎.导弹展开机构可靠性分析和计算[J].弹箭与制导学报.2003,23(2):241-244页
    [44]谭湘霞,余旭东.用弹性动力学基本分析方法求解导弹折叠翼展开的动响应[J].现代防御技术.2001,29(3):27-30,47页
    [45]陈向阳.可展桁架结构展开过程和动力响应分析及结构设计[D].杭州:浙江大学.2000:1-7页
    [46]马玉勇,吴建军,屠小昌.燃气作动筒弹翼展开负载模拟装置研究[J].航天制造技术.2008,(2):30-33页
    [47]张石玉,唐金兰,任华.燃气作动筒式折叠弹翼展开过程分析[J].固体火箭技术.2010,33(5):481-485页
    [48]李晓娜,曹琪,张香华.带自锁功能的作动筒设计与仿真[J].世界科技研究与发展.2009,31(3):436-438页
    [49]应申舜,汤军社,周建文.导弹弹射装置作动筒的建模与仿真[J].航空计算技术.2004,34(1):90-93页
    [50]吴小胜.折叠式主弹翼气动特性研究[J].北京理工大学学报.2010,30(9):1024-1027页
    [51]王华光,王华.巡飞器折叠翼的设计要求[J].飞航导弹.2009,(6):36-39页
    [52]樊方星.卫星制导炸弹制导系统设计与精度分析[D].西安:西北工业大学.2007:41-49页
    [53]寿建军.空间可展结构逆设计及宇航结构的装卡研究[D].杭州:浙江大学.2008:1-10页
    [54]郭秋亭.局部主动变形翼型和折叠翼变形飞机动态气动特性数值模拟研究[D].绵阳:中国空气动力研究与发展中心研究生部.2009:1-6页
    [55]张文斌.某型雷达天线座方位减速器箱体有限元分析和优化设计[D].长沙:中南大学.2006:11-17页
    [56]郝洪涛.基于虚拟样机技术的折叠翼厢式车车厢开启系统的研究[D].上海:上海交通大学.2006:21-30页
    [57]王党校.飞行器折叠机构弹性动力分析[D].西安:西北工业大学.2000:31-35页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700