多波束测深系统声速校正方法研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从国家专项课题“西北太平洋海底环境调查”的子专题“EW(Q)区块多波束海底地形调查”的科学需求出发,以多波束测深理论为依托,从声速校正方法的理论研究到基于各种方法的仿真实验,从东海沙脊区声速剖面特性分析到其对测深的影响,将声速校正方法理论研究的成果应用到东海沙脊区多波束调查的数据处理中,从理论到实践完成了多波束测深系统声速校正方法研究及其在东海沙脊区海底地形校正中的应用。
     声速剖面精度及其校正方法直接影响多波束测深数据的精度,其主要原因是由于环境参数直接影响着声线折射弯曲程度。因此,针对不同的海区环境,实时对多波束测深系统的声线进行跟踪,选取或建立针对调查区的校正方法,以提高测量精度成为目前多波束勘测工作中的研究热点。本文主要从数据后处理方面,对多波束测深系统声线弯曲的改正方法加以研究,其结果在选择的目标调查区得到了很好的应用。
     本文在分析了声速结构对声线弯曲影响的基础上,提出了要对实际现场测量的声速剖面进行仔细研究分析,选取相应的措施或技术方法对原始勘测资料进行处理,以提高多波束声线弯曲修正精度;通过统计分析现有的5种声速经验公式得出了适合不同水层的最优声速公式,其成果在浅水区被验证是正确的,具有推广使用的可能性;建立了在深度方向上采用声线跟踪技术进行声速补偿,以提高深度测量精度的技术方法,给出了利用现场测得的声速——深度分布曲线进行声线跟踪的数学模型;利用所给的声线跟踪技术进行声速补偿,可以大大提高海底深度和对应海底点位置测量的精度;考虑到声线跟踪法的缺陷,论证并提出了等效声速剖面法声线改正模型,给出了声线改正方法的计算过程,并对其优缺点进行了系统的分析;根据国家专项EW区块多波束调查结果,进行了资料精细后处理。重点针对调查区声速剖面时空结构的特点,分别采用声线跟踪技术和等效声速剖面法对实测多波束水深数据进行了声速校正处理,最大限度地减小了因为声速剖面的多变性带来的测量误差值。
Starting from scientific requirement of the sub-subject (multi-beam bathymetric survey on EW(Q) zone) of the national specialized project, known as“survey on the northwest pacific ocean bottom”, the author has completed all the work from theoretical research on the method of sound velocity correction to the simulations based on various methods, from analyzing the characteristics of sound velocity profile of the sand ridge in the eastern sea to its influence on bathymetric. By applying the algorithms of sound velocity correction to the data processing in the multi-beam survey, research on the method of sound velocity correction and its application in correcting seabed topographic characteristics of the sand ridge area in the eastern sea are completed.
     Since environment factors influence the bend of sound ray directly, the accuracy of sound velocity profile and its correction algorithm will affect multi-beam bathymetric accuracy. How to track sound ray of the multi-beam bathymetric in real-time and establish correction methods for different environment have become a hot pursuit in multi-beam bathymetric. Mainly from the point of data processing, research on how to correct the bend of sound ray is carried out, application results show that it has good quality.
     Based on the analysis on how various sound velocity structure affect the bend of sound ray, the author proposes that sound velocity profile measured on the spot should be carefully analyzed, and corresponding measures and techniques be applied to process the original acquired data, in order to improve the correction accuracy of bend of sound ray. Based on the statistics induced by the analysis of the current sound velocity classical formulas, an optimized formula fit for different water depth will be acquired. Experiments in shallow water prove the formula is right and possess the possibility of practical application. An depth-oriented acoustic ray tracking technique used to supplement the acoustic velocity has been worked out to improve the depth measuring precision. In light of the relationship between the sound velocity and depth demonstrated by the distribution curve, a methmatics model to track sound ray is built. The precision of sea-bed depth and corresponding postion measuring can be greatly improved by applying the sound ray tracking technique. Considering the defects of sound ray tracking technique, an adjusted model of equivalent sound velocity profile technique is proposed. The computing procedure for adjusting the sound velocity is presented, the advantages and disadvantages of which also are analyzed. Based on the results of the survey on multi-beam in EW(Q) zone, the corrected materials get processed. Focusing on the characteristics of the time-space construction of survey area, the sound ray tracking and equivalent sound profile techniques are respectively adopted to correct the sound velocity data acquired through on spot multi-beam measuring, which greatly reduces the measuring error.
引文
[1]秦臻.海洋开发与水声技术[M].北京:海洋出版社,1984.
    [2]李家彪.多波束勘测原理技术与方法[M].北京:海洋出版社,1999.
    [3]梁开龙.水下地形测量[M].北京:测绘出版社,1995.
    [4]丁继胜.多波束声纳测深系统的声线弯曲及其校正技术[D].青岛:国家海洋局第一海洋研究所,2004.
    [5]赵建虎.多波束深度及图像数据处理方法研究[D].武汉:武汉大学测绘学院,2002.
    [6]丁继胜.基于等效声速剖面法的多波束测深系统声线折射改正技术[J].海洋测绘,2004,24(6):27-29.
    [7]刘胜旋,关永贤.多波束系统的参数误差判断及校正[J].海洋测绘,2002,22(1):33-37.
    [8]齐娜,田坦.多波束条带测深中的声线跟踪技术[J].哈尔滨工程大学学报,2003,24(3):245-248.
    [9]齐娜.多波束测深仪方案及测深侧扫成像研究[D].哈尔滨:哈尔滨工程大学,2002.
    [10]尤立克.水声原理[M].哈尔滨:哈尔滨船舶工程学院出版社,1999.
    [11]刘伯胜.水声学原理[M].哈尔滨:哈尔滨工程大学出版社,1993.
    [12]朱庆,李德仁.多波束测深数据的误差分析与处理[J].武汉测绘科技大学学报,1998,23(1):1-4.
    [13]何高文.多波束测深系统声速校正[J].海洋技术,2002,19(4):14-21.
    [14]桑金.水深测量中的声速改正问题研究[J].海洋测绘,2006,26(3):17-20.
    [15]刘雁春.海洋测深空间结构及其数据结构[M].北京:测绘出版社,2002.
    [16]陶本藻.测量数据统计分析[M].北京:测绘出版社,1992.
    [17]黄漠涛,翟国君,王瑞等.海洋测量异常数据的检测[J].测绘学报,1999, 28(3):269-277.
    [18]刘经南,赵建虎.海洋测量内外业一体化软件包的研制[J].武汉测绘科技大学学报,2000,25(3):243—247.
    [19]赵建虎,刘经南,周丰年.GPS 测定船体姿态方法研究[J].武汉测绘科技大学学报,2000,25(4):353-357.
    [20]管铮.在我国使用声速改正公式的精度分析[J].海洋测绘,1990,3:19-21.
    [21]申家双.回声测深仪的声速改正[J].海洋测绘,1995,3:47-51.
    [22]陈非凡.多波束条带测深仪的动态测量误差评估[J].海洋技术,1999,18(1):41-45.
    [23]丁继胜,张卫红.声速断面对多波束测深误差的影响[J].海洋测绘,1998,3:15-19.
    [24]周丰年,赵建虎.多波束测深系统最优声速公式的确定[J].台湾海峡,2001,20(4):411-419.
    [25]叶长久.声速计算公式比较[J].海洋测绘,1998,1:17-20.
    [26]刘雁春.海洋测深结构及其数据处理[D].武汉:武汉测绘科技大学,1998.
    [27]陈非凡,吴英姿.多波束条带测深技术的研究[J].海洋技术,1998,17(2):1-5.
    [28]赵建虎,刘经南.精密多波束测深系统位置修正方法研究[J].武汉大学学报,2002,27(5):473-477.
    [29]吴自银,金翔龙.多波束测深边缘波束误差的综合校正[J].海洋学报,2005,27(4):88-94.
    [30]金翔龙,高金耀.我国多波束数据综合处理成图技术的现状和对策[A].中国地球物理学会年刊[C].武汉:中国地质大学出版社,2000.
    [31]吴自银,高金耀,方银霞等.海底地形成图子系统 MBMap 的设计及特点[J].海洋通报,2002,21(1):69-79.
    [32]巴兰金,鲍李所夫.大陆架地形测量手段与方法[M].天津:中国人民解放军海军司令部航海保证部,1984.
    [33]朱维庆,魏建江.多波束测深声呐的随机误差模型[J].海洋技术,1986, 2:98-104.
    [34]陈非凡.多波束条带测深仪的动态测量误差评估[J].海洋技术,1999,18(1):42-45.
    [35]昊自银,李家彪.多波束勘测的数据编辑方法〔J].海洋通报,2000, 19(3): 74-78.
    [36]何高文,刘方兰.多波束测深系统声速校正[J].海洋地质与第四纪地质,2000,20(4):109-113.
    [37]昊自银.海底地形坡度参数分析[A].东太平洋多金属结核矿带海洋地质与矿床特征[M].北京:海洋出版社,1997.
    [38]王英,李家彪,韩喜球等.地形坡度对多金属结核分布的控制作用[J].海洋学报,2001,23(1):60-65.
    [39]吴自银,金翔龙,高金耀等.地形地貌多源数据综合成图关键技术[J].海洋学报,2003,25(增刊 1):143-148.
    [40]丁继胜,吴永亭,周兴华等.长江口海域声速剖面特性及其对多波束勘测的影响[J].海洋通报,2006,25(3):1-6.
    [41]丁继胜.声速剖面对多波束测深的影响[J].海洋测绘,2002,2.
    [42]李全兴.多波束测深系统在海洋工程测量中的应用[J].海洋测绘,1999,2.
    [43]李家彪,郑玉龙,王小波等.多波束测深及影响精度的主要因素[J].海洋测绘,2001,1.
    [44]吴自银,李家彪.多波束勘测的数据编辑方法[J].海洋通报,2000,19(3).
    [45]管铮.在我国使用声速改正公式的精度分析[J].海洋测绘,1990,3:32-37.
    [46]张忠兵,马远良.基于声线到达时差的浅海声速剖面反演[J].西北工业大学学报,2002,20(1):36-39.
    [47]梁捷.一种基于声线理论的声速剖面反演技术的研究[J].气象水文海洋仪器,2005,3:1-4.
    [48]张忠兵,梁巢兵.应用东中国海实验数据验证到达时差反演声速剖面算法[J].声学技术,2002,21.
    [49]朴胜春.一种微扰法的声线传播时间计算方法[J].声学技术,2002,20.
    [50]杨坤德,马远良.东中国海典型声速剖面的经验正交函数表示[J].声学技术,2002,20.
    [51]吴自银,金翔龙.东海外陆架线状沙脊群[J].科学通报,2006,51(1):93-103.
    [52]沈远海,马远良.浅水声速剖面的反演方法与实验验证[J].西北工业大学学报,2005,18(2):212-215.
    [53]沈远海,马远良.实测南海典型声速剖面的经验正交函数(EOF)表示[A].98 全国声学学术会议论文集,成都:成都科技大学出版社,1998.
    [54]刘忠臣,陈义兰.东海海底地形分区特征和成因研究[J].海洋科学进展,2003,21(2):160-173.
    [55]刘振夏.中国陆架潮流沙脊研究新进展[J].地球科学进展,1996,11(4):416-418.
    [56]杨文达.东海海底沙脊的结构及沉积环境[J].海洋地质与第四纪地质,2002,22(1):9-16.
    [57]印萍.东海陆架冰后期潮流沙脊地貌与内部结构特征[J].海洋科学进展,2003,21(2):181-186.
    [58]于非.东海海表面温度长期变化趋势研究[J].海洋科学进展,2003,21(4):477-481.
    [59]Robert J U.Principles of Underwater Sound[M].New York:McGraw-Hill Book Company,1983.
    [60]Multibeam Sonar Theory of Operation[R].Seabeam Instruments.Inc,1997.
    [61]David W. Dale N.Multibeam Data Processing of Hydrosweep DS[J].MarineGeophysical Researches,1996,18:631-650.
    [62]XUEYI GENG,ADAM ZIELINSKI.Precise Multibeam Acoustic Bathymetry[J].Marine Geodsy,1999,22:157-167.
    [63]John E Hughs Clarke.Multibeam Training Course[M].Ocean Mapping Group,University of New Brunswick,1996.
    [64]Simrad EM3000 Multibeam Echo Sounder Base Version[R].Kongsberg Simrad,1999.
    [65]Borgefors G.Hierarchical Chamfer Matching: A Parametric Edge Algorithm [J].IEEE Transaction on pattern analysis and machine intelligence,1988,10(6):849-865.
    [66]Mitchll N.Somers M.Quantitative Backscatter Measurements with a Long-range Side-scan Sonar[J].IEEE Journal of Oceanic Engineering,1989,14:365-374.
    [67]Salzmann M.A Real Time Quality Control Procedure for Use in Integrated Navigation Systems[J].The Hydrographic Journal,1994,72.
    [68]Spies F N.Seafloor research and ocean technology[J].MTS Journal,1987,21(2):5-17.
    [69]TIMO-PEKKA JANTTI.Trials and experimental results of ECHOS XD multibeam echo sounder[J].IEEE Journal of Oceanic Engineering,1989,14(4):306-313.
    [70]IHO.IHO standards for hydrographic surveys:No.44[S].4th ed.Special Publication,1994.
    [71]TYCE R C.SeaBeam data collection and processing development[J].MTS Journal,1988,21(2):80-92.
    [72]LINGSCH S C,ROBINSON C S.Acoustic imagery using a multibeam bathymetric system[J].Marine Geodesy,1992,15:81-95.
    [73]FERGUSON J S,CHAYSE D A.A generic swath-mapping data format[J].Marine Geodesy,1992,15:129-140.
    [74]ALEXANDRO D,MOUSTIER C.Adaptive noise canceling applied to SeaBeam side lobe interference rejection[J].IEEE Journal of Oceanic Engineering,1998,13(2):70-76.
    [75]David W C,Dale N C.Guide to MB SYSTEM[J].Seabeam Insturments Inc,1995.
    [76]Donald F D,Bosko D L.The Effect of Sound Velocity Errors on Multibeam Sonar Depth Accuracy[C].IEEE Oceans95 Conference Proceedings,1995,2:1001-1010.
    [77]William J. Capell,Sr.Determination of Sound Velocity Profile Errors Using Multibeam Data[C].Proceeding of Oceans 1999,1144-1148.
    [78]Helene Tonchia,Herve Bisquay.The Effect of Sound Velocity on Wide Swath Multi-beam System Data[C].IEEE Oceans96 Conference Proceedings,1996,2:969-974.
    [79]Daniel Sylvie.Sonar images and swath bathymetry simulations for environment restitution through acoustical ray tracing techniques[A] . 4th European conference on underwater acoustics [C].Rome,Italy,1998.
    [80]Simrad EM950 Multibeam Echo Sounder Operator Manual[R].Kongsberg Simrad company,1999,1-10.
    [81]Tyce R C.Deep Seafloor Mapping Systems-A review.MTS Journal,1987,20(4):4-16.
    [82]Hammerstad E et.al.Field Testing of a New Deep Water Multibeam Echo Sounder[J].Ocean 91,1991,2:743-749.
    [83]SHYU Chuen-tien.Corrections for the Depth Measurement in the Off shore Areaof Taiwan[J].Acta Oceanologica Taiwanica,1982,13:69-83.
    [84]J.A.Grant , R.SCHREIBER . Modern Swathe sounding and Sub-Bottom Profile Technology for Research Application:The Altas Hydrosweep and Parasound systems[J].Marine Geographical Research,1990,12:9-19.
    [85]SeaBeam 1185/1180/1055/1050 Operating Manual[R] . SeaBeam Instruments Inc.1999.
    [86]T P Le Bas.An Analytical Correlation and Comparison of High Resolution Side-Scan Sonar Imagery and Multi-beam bathymetry[J].The Institute of Electric and Engineers,1995,1-6.
    [87]Jin G,Lych F.A Theoretical and Simulation Study of Acoustic Normal Mode Coupling Effects Due to the Darents Sea Polar Front,with Application to Acoustic Tomography and Matched-Field Processing[J].J Acoust Soc Am,1996,101(1):193-205.
    [88]Lindsay C E,Chapman N R.Matched Field Enversion Study of Geoacoustic Model Parameter Using Adaptive Simulated Annealing[J].IEEE Journal of Oceanic Engineering,1993,18(3):224-231.
    [89]Vaccaro R J.The Past, Present, and Future of Underwater Acoustic Signal Processing[J].IEEE Signal Processing Magazine,1998,7:21-51.
    [90]Skarsoutis E K,Athanassoulis G A,Send U.Ocean Acoustic Tomography Based on Peak Arrivals[J].J Acoust Soc Am,1996,100(2):797-813.
    [91]Jensen F B,Kuperman W A,Porte M B.Computational Ocean Acoustics[M].New York:AIP Press,1993.
    [92]Kuperman W A,Colins M D,Perkins J S.Optimal Time-Domain Beamforming withSimulated Annealing Including Application of a Priori Imformation[J].J Acoustic Soc Amer,1990,86(6):1802-1810.
    [93]Porter M B,Bucker H P.Gaussian Beam Tracing for Computing Ocean Acoustic Field[J].J Acoustic Soc Amer,1987,82(4):1349-1359.
    [94]Colins M D,Kuperman W A.Localization:Environmental Foccusing and Source Localization[J].J of the Acoustic Soc of Amer,1991,90(3):1410-1422.
    [95]Tolstooy A,Diachok O.Acoustic Tomography via Matched Field Processing[J].J of the Acoustic Soc of Amer,1991,89(3).
    [96]Szu H,Hartley R.Fast Simulated Annealing[J].Phys lett,1987,122:157-162.
    [97]Park J C,Kennedy R M.Remote sensing of ocean and sound speed profiles by a perception neural network[J].IEEE J. Oceanic Eng.,1996,21(2):216-224.
    [98]Guo B H,Hu X M.Study on interaction between the coastal water, shelf water and Kuroshio water in the Huanghai Sea and East China Sea[J].Acta Oceanologica Sinica,2003,22(3):351-367.
    [99]Du B L,Song X J.The method to predict sea surface temperature by using EOF analysis-Monthly mean sea surface temperature prediction for the East China Sea and adjacent sea areas[J].Acta Oceanologica Simca,1984,3(1):14-26.
    [100]Yu F . Seasonal and internnual variations of Mindanao Cu-rent and Kuroshio[J].Journal of Geoscrences of China,2002,4(2):30-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700