基于4f泵浦探测技术研究介质热致非线性的动力学过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当激光与物质相互作用时,热效应往往不可避免,热致非线性效应也是最早研究的光学非线性效应之一,以往的研究多集中于稳态,近年来随着脉冲激光器的广泛应用,瞬态热致非线性效应的研究就显得尤其重要,也有相当一部分文献对此进行了报道。但关于瞬态热致非线性的动力学过程的研究并没有见到相关报道。本文采用4f泵浦探测技术着重研究了瞬态热致非线性的动力学过程。
     从热致非线性原理出发,在瞬态条件下,采用有限差分的方法对光声方程和热传导方程进行数值求解,计算了瞬态热致非线性折射随时间变化的动力学过程。同时研究了脉冲宽度、束腰半径、激光能量等物理参数对瞬态热致非线性动力学过程的影响,利用4f泵浦探测技术,通过不同的延迟时间,可以有效的区分介质的非线性机制。
     在实验上,利用4f泵浦探测技术来观察C70/甲苯溶液的瞬态热致非线性的动力学过程,用调Q倍频纳秒Nd:YAG激光器为光源,输出波长532nm,脉冲宽度为4ns,在延迟时间分别为5ns,8ns和10ns的条件下,用CCD拍摄不同延迟时间下的C70/甲苯溶液的线性和非线性图像,将线性光斑作为入射光斑拟合实验曲线,发现随着延迟时间的增加,吸收引起的热量积累增加,温度变化的影响增大,使得瞬态热折射明显增强。这与我们在理论上的计算符合一致。
When the laser propagates through the material, the thermal effect is always existent, and the thermal nonlinear effect was the earliest one of the optical effect researches. Previous research focused on the steady. In recent years, with the wide application of pulsed lasers, the research of the transient thermal appears especially important; it is also reported by some literatures. But there is no report about the dynamic process of the transient thermal nonlinear refraction.
     We use the 4f pump-probe to study the process of the transient thermal nonlinear refraction. We start from transient thermal nonlinear principle, and use the Crank-Nicholson finite difference method to solve the acoustic-wave and thermal propagation equation, simulating the change by the time. At the same time, the influence of the thermal effect is simulated by altering such parameters as the laser width, beam radius, pulse energy etc.
     In the experiment, we introduce a method of measure the optics nonlinear index: 4f coherent imaging system with phase object. This method is very simple and accurate, and compare to the traditional method-z scan. The process of transient thermal nonlinear effect was studied using the time-resolved pump-probe system based on 4f coherent imaging system with phase object with nanosecond laser pulse at the wavelength of 532nm. The laser source we used is a Q-switched and mode locked Nd: YAG laser (Continuum Surelite). The delay time is 5ns 8ns and 10ns. The sample is C70/toluene, we get different linear and nonlinear image at the diverse delay time by using the CCD. We choose the linear flare as incident flare to fit experimental curves, and find when the delay time increases, the heat of absorption is growing, the influence of temperature variations increase, and make the transient thermal refraction obvious enhancement. The result is good fit to our theoretical numerical simulation.
引文
[1]钱士雄著.非线性光学-原理与进展.复旦大学出版社. 2001年
    [2] P.A.Franken, A.E.Hill, C.W.Peter, G.Weinreich. Generation of optical harmonics. Phys.Rev.Lett., 1961, 7, 118-122
    [3] G.Eckhardt, R.W. Hellwarth, F.J.McClung, S.E.Schwarz, D.Weiner, E.J.Woodbury. Stimulated raman scattering from organic liquids. Phys.Rev.Lett., 1962, 9, 455
    [4] E.Garmire. F.Pandarese, C.H.Townes, Coherently driven molecular vibrations and light modulation. Phys.Rev.Lett., 1963, 11, 160
    [5] R.Y.Chiao, C.H.Townes, B.P.Stoicheff, Stimulated Brillouin Scattering and coherent generation of intense hypersonic waves. Phys.Rev.Lett., 1964, 12, 592
    [6] N.Bloembergen, J.Ducuing, Experimental verification of optical laws of non-linear reflection. Phys.Lett., 1963, 6, 5
    [7] J.A.Giordmaine, R.C.Miller, Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Phys.Rev.Lett., 1965, 14, 973
    [8] A.Szoke and A.Javan, Isotope shift and saturation behavior of the 1.15-u transition of Ne. Phys, Rev.Lett. 1963, 10, 521
    [9] W.F.Kosonocky and S.E.Harrison, Saturation of absorption and fluorescence in solutions of phthalocyanines. J.Appl.Phys., 1966, 37, 4789
    [10] N.Bloembergen, Nonlinear optics. Benjamin., 1977非线性光学.吴存恺,沈文达,沃新能译.北京:科学出版社, 1987
    [11] B.I.Stepanov, E.V. Ivakin, A.S.Rubanov. Sov. Phys. 1971, 16, 46
    [12] A.Yariv, D.M.Pepper, Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing. Opt. Lett., 1977, 1, 16
    [13] L.Allen, J.H.Eberly, Optical resonance and tow-level atoms, NY, Wiley, 1975
    [14] R.A.Fisher, ed. Optical phase conjugation, NY, Academic, 1963
    [15] P.D.Maker, R.W.Terhune, C.M.Savage, Intensity-dependent changes in the refractiveindex of liquids. Phys.Rev.Lett., 1964, 12, 507
    [16] G.KL Wong, Y.R.Shen, Study of pretransitional behavior of laser-field-induced molecular alignment in isotropic nematic substances. Phys.Rev.A, 1974, 10, 1277
    [17] H.M.Gibbs, Optical Bistability: Controlling light with light, Academic Press, Chapt6, 1985
    [18] R.H.Stolen, E.P,Ippen and A.R.Tynes, Raman oscillation in glass optical waveguide. Appl.Phys.Lett., 1972, 20, 62
    [19] L.F.Mollenauer and R.H.Stolen, The soliton laser. Opt.Lett., 1984, 13-15
    [20] Shen Y.R. The principles of nonlinear optics. John Wiley&Sons, Inc., 1984非线性光学原理.顾世杰译.北京:科学出版社, 1987
    [21] R.E.Slusher, L.W.Hollberg, B.Yurke, J.C.Mertz, J.F.Valley, Obwervation of squeezed states generated by four-wave mixing in an optical cavity. Phys.Rev.Lett., 1985, 55, 2409
    [22] G.P.Agrawal, Application of nonlinear fiber optics, Academic Press, 2001
    [23] K.JWilliams, D.S.Chemla and J.Zuss. Nonlinear optical properties of organic molecules and crystal, Vol.1, Academic, NY, 1987
    [24] P.N.Prasad and K.J.Williams, Introduction to nonlinear optical effects and polymers, John Wiley&Sons, NY, 1991
    [25] H.M.Gibbs, Optical bistability: controlling light with light, Academic Press, NY, 1985
    [26] M.G.Kane, W.Glesk, J.P.Sokoloff, P.R.Prucnal, Asymmetric optical loop mirror: analysis of all-optical switch, Applied Opt. 1994, 33(29): 6833~6841
    [27] J.E.Heebner and R.W.Boyd., Enhanced all-optical switching by use of nonlinear fiber ring resonator, Opt.Lett., 1999, 24, 847~849
    [28]李淳飞著,非线性光学,电子工业出版社, 2009年
    [29] M.J.Weber, D.Molam, W.L.Smith. Nonlinear refractive index of glasses and crystals. Opt.Eng. 1978, 17, 463-469
    [30] M.J.Moran, C.Y.She, R.L.Carman. Interferometric measurement of npnlinearrefractive-index coefficient relative to CS2 in laser-system-related material. IEEE J.Quantum Electron. 1975, QE-11: 259-263
    [31] A.Owyoung. Ellipse rotations studies in laser host materials. IEEE J.Quantun Electron. 1973, QE-9: 1064-1069
    [32] S. R. Friberg, P. W. Smith. Nonlinear optical glasses for ultrafast optical switches. IEEE J. Quantum Electron. 1987, QE-23, 2089–2094
    [33] P. A. Fleitz, R. L. Sutherland, L. V. Natarajan, T. Pottenger, N. C. Fernelius. Effects of two-photon-absorption on defenerate four-wave mixing in solutions of diphenyl polyenes. Opt. Lett. 1992, 17, 716-718
    [34] M. Zhao, Y. Cui, M. Samoc, P. N. Prasad, M. R. Unroe, B. A. Reinhardt. Influence of two-photon-absorption on third-order nonlinear optical processes as studied by degenerate four-wave mixing: The study of soluble didecyloxy substituted polyphenyls. J. Chem. Phys. 1991, 95, 3991-4001
    [35] E. J. Canto-Said, D. J. Hagan, E. W. Van Stryland. Degenerate four-wave mixing measurements of high order nonlinearities in semiconductors. IEEE J.Quantum Electron. 1991, 27, 2274-2280
    [36] R. Adair, L. L. Chase, S. A. Payne. Nonlinear refractive index measurement of glasses using three-wave frequency mixing. J. Opt. Soc. Am. B. 1987, 4, 875–881
    [37] M. Sheik-Bahae, A. A. Said, E.W. Van Stryland. High-sensitivity, Single-beam n2 measurements. Opt. Lett. 1989, 14, 955–957
    [38] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland. Sensitive measurement of optical nonlinearities using a single beam. IEEE J.Quantum Electron. 1990, 26, 760–769
    [39]田建国,臧维平,张光寅.利用改进的Z-scan方法确定热致非线性.物理学报, 1994, 43(9), 1460-1465
    [40] S.V.Kershow. Analysis of the EZ-scan measurement technique. J. Mod. Opt. 1995, 42, 1361-1366
    [41] W. Zhao and P. Palffy-Muhoray. Z-scan technique using top-hat beams. Appl. Phys.Lett. 1993, 63, 1613–1615
    [42] W. Zhao and P. Palffy-Muhoray. Z-scan measurement ofχ(3)using top-hat beams. Appl. Phys. Lett. 1994, 65, 673–675
    [43] R.L.Sutherlang Effects of Multiple Internal sample reflections on nonlinear refractive z-scan measurements. Appl.Opt. 1994, 33, 5567-5584
    [44] V.P. Kozich, A.Marcano O., F.E.Hernandez, J.A.Castillo. Dual-beam time-resolved z-scan in liquids to study heating due to linear and nonlinear light absorption. Appl.Spex. 1994, 48, 1506-1512
    [45] G. Boudebs, S. Cherukulappurath. Nonlinear optical measurements using a 4f coherent imaging system with phase objects. Phys. Rev. A. 2004, 69, 053813
    [46] J.P.Gordon, R.C.C.Leite, R.S.Moore, S.P.Porto, J.R.Whinnery. Long-transient effects in lasers with inserted samples. J.Appl.Phys. 1965, 36, 3~8
    [47] C.Hu, J.R.Wiinnery. New thermooptical measurement method and a comparision with other methods. Appl.Opt., 1973, 12, 72-79
    [48] J.R.Whinnery. Laser measurement of optical-absorption in liquids. Acc. Chem.Res., 1974, 7, 225-231
    [49] S.R.J.Brue,k, H. Kildal, L.J.Belanger. Photo-acoustic and photo-refractive detection of small absorption in liquids. Opt. Comm., 1980, 34(2), 199-204
    [50] G.Liu. Theory of the photoacoustic effect in condensed matter. Appl. Opt., 1982, 21, 955-960
    [51] S.J.Sheldon, L.V.Knight, J.M.Thome. Laser-induced thermal lens effect a new theoretical model. Appl. Opt., 1982, 21(9), 1663-1669
    [52] C.A.Cater, L.M.Harris. Comparison of models describing the thermal lens effects. Appl. Opt., 1984, 23, 476-481
    [53] J.Tian, C.Zhang, G.Zhang, J.Li. Position dispersion and optical limiting resulting form thermally induced nonlinearities in Chinese tea liquid. Appl. Opt.1993, 32(33), 6628-6631
    [54] B.L.Justus, Z.H.Kafafi, A.L.Huston. Excited-state absorption-enhanced thermal optical limiting in C60. Opt. Lett. 1993, 18(19), 1603-1605
    [55] P.Brochard, V.Grolier-Mazza, and R.Cabanel. Thermal nonlinear refraction in dye solutions: a study of the transient regime. J.Opt.Soc.Am.B. 1997, 14(2), 405-414
    [56] J. Zhou, E.Y.B.Pun, X. H.Zhang. Nonlinear optical refractive indices and absorption coefficients ofαβ-unsaturated ketone derivatives. J.Opt.Soc.Am.B. 2001, 18(10), 1456-1463
    [57] J.Tian, H.Wang, W.Zhou, T.Li, C.Zhang, G.Zhang. Analysisi of the influence of thermal effect on z-scan measurements with a nanosecond pulse laser. Chin. Phys.Lett. 2000, 17(7), 510-512
    [58]周文远,田建国,臧维平,张春平,张光寅,王肇坼.厚非线性介质瞬态下热光非线性效应研究.物理学报, 2002, 51(11), 2623-2627
    [59] T.H. Wei, T.H. Huang. Signs of nonlinear refration in chloroaluminum phthalocyanine solution. Appl.Phys.Lett. 1998, 72(20), 2505-2507
    [60] T.H. Wei, T.H. Huang, T.T. Wu, P.C. Tsai, M.S. Lin. Studies of nonlinear absorption and refraction in C60/toluene solution. Chem.Phys.Lett. 2000, 318, 53-57
    [61] T.H.Wei, T.H.Huang, S.Yang, D.Liu, J.K.Hu and C.W.Chen. Z-scan study of optical nonlinearity inC60-toluene solution. Molecular physics, 2005, 103(14), 1847-1857
    [62] R.A.Ganeev, A.I.Ryasnyansky, V.I.Redkorechev, K.Fostiropoulos, G.Priebe, T.Usmanov. Variations of nonlinear optical characteristics of C60 thin films at 532 nm.Opt.Comm. 2003, 225, 131-139
    [63] Y. Junyi, S. Yinglin. Direct observation of the transient thermal-lensing effect using the phase-object Z-scan technique. Opt.Lett. 2009, 34, 2, 157
    [64] G.Boudebs, M.Chis, and J.P.Bourdin. Third-order susceptibility measurements by nonlinear image processing. J.Opt.Soc.Am.B. 1996, 13(7), 1450-1456
    [65] G. Boudebs, M. Chis, and A. Monteil. Contrast increasing by third-order nonlinear image processing: a numerical study for microscopic rectangular obiedcts.Opt.Commun. 1998, 150, 287-196
    [66] S. Cherukulappurath, G. Boudebs, and A. Monteil. 4f coherent imager system and its application to nonlinear optical measurement. J.Opt.Soc.Am.B. 2004, 21(2), 273-279
    [67] D. Landau and E. M. Lifshitz, Course of theoretical physics. Volume 6. Fluid mechanics, Pergamon Press.
    [68] P.R.Longaker and M.M.Litvak, Perturbation of the refractive index of absorbing media by a pulsed laser beam, J.Appl.Phys, 40, 4033-4041, 1969

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700