ABR处理印染废水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印染废水水量大、成分复杂、水质多变、色度高、碱度大、可生化性差、含有某些有毒物质,属于难降解有机废水,是工业废水处理的重点。本论文采用五格折流式厌氧反应器(ABR)小试装置处理某印染企业排出的印染废水,以及五格ABR中试装置处理以印染废水为主的综合废水,试验重点考察了ABR对印染废水中主要污染物的处理效果及其降解特性,得到以下主要结论:
     (1)ABR预处理印染废水启动速度快,具有较好的可行性和适用性。启动前期,进水由实际废水与葡萄糖按比例混合配得,葡萄糖的投加量逐步降低,直至进水完全为实际印染废水。50 d后,出水颜色由进水的红棕色变为粉红色,B/C由进水的0.21上升至0.36,可生化性明显提高,说明反应器启动成功。
     (2)ABR对印染废水的COD具有较好的处理效果。当水力停留时间(HRT)分别为32h、24 h、18 h、14 h和10 h时,COD去除率随HRT的缩短逐渐降低。ABR中不同格室对COD的去除率差别较大,其中,第1格最高,约占总COD去除率的38.5%-54%;。随HRT的减小,ABR前端格室的COD相对去除率呈降低趋势,后端格室则相反。
     (3)ABR对印染废水的色度具有良好的去除效果。当进水色度发生较大波动时,反应器对其具有一定的抗冲击性。稳定运行期,当进水平均色度为380倍时,出水平均色度为150倍左右,平均去除率约为60%。色度去除率随HRT的缩短缓慢降低,但均在50%以上。各格室色度沿程逐渐降低,第1格的去除率最高,其次是第2格。
     (4)经ABR预处理,印染废水的可生化性得到很大程度改善。在不同的HRT下,进水B/C约为0.2,出水B/C约为0.35,可生化性明显提高,有利于后续好氧处理。
     (5)ABR对温度具有一定的抗冲击性。当HRT为24 h时,15℃时的COD去除率仅比30℃时下降了6.6%。
     (6)在HRT=24 h时,考察了ABR-A/O组合系统处理印染废水的运行效果。结果表明,好氧出水COD平均去除率高达80%;出水氨氮为4.05 mg/L,小于5 mg/L,达到DB32/1072-2007标准;色度去除率也达到76%,为末端治理达标排放提供了有力保障。
     (7)通过GC-MS可知,ABR处理前后,印染废水中有机物的结构及种类发生了很大变化;经好氧处理后,有机物被降解,种类进一步减少;某些苯类和酚类无法通过好氧去除,限制了系统性能的发挥,说明要稳定达到DB32的太湖标准仍需进行深度处理。
     (8)对ABR处理综合印染废水进行了中试研究。结果表明,ABR在HRT=24 h下稳定运行2个月,进、出水COD平均浓度分别为630 mg/L、376 mg/L时,平均去除率达40.4%;进、出水平均色度分别为380倍、110倍时,平均去除率为70%。经ABR处理后,综合印染废水的B/C由0.28提高到0.41,废水可生化性明显改善。
Printing and dyeing wastewater is refractory organic wastewater, and exerts great threat on the environment. Its characteristics, such as large water volume, complex composition, changeable water quality, deep chromaticity, high alkalinity, poor biodegradability, and containing some toxic substances, make it become the focus of industrial wastewater treatment.
     In this study, ABR with five compartments was adopted in the small-scale experiment to treat printing and dyeing wastewater discharged from a printing and dyeing enterprise in Changshu, Jiangsu Province. Then, a pilot-scale study using ABR with five compartments was performed to study the integrated wastewater which was mainly composed of printing and dyeing wastewater. The removal effect of the major pollutants in the printing and dyeing wastewater and removal characteristics of ABR were investigated. Main conclusions are as follows:
     (1) ABR is feasible and applicabe for printing and dyeing waste water treatment. It can be started very fast. The start-up influent included complex printing and dyeing wastewater and glucose, which were mixed according to a certain proportion. The amount of glucose was gradually reduced to zero. After continuous operation about 50 days, the color of wasterwater was changed from the original reddish-brown to pink. BOD5/CODcr of printing and dyeing wastewater was raised from 0.21 to 0.36, indicating the improvement of its biodegradability and that the ABR was started successfully.
     (2) ABR has a good effect on COD of printing and dyeing wastewater. The shorter the hydraulic retention time (HRT), the lower the COD removal rate became. When HRT was 32 h,24 h,18 h,14 h and 10 h, COD removal rate differed greatly from one chamber to another. The highest removal rate of ABR was observed in the first grid chamber, which accounted for around 38.5%~54% of the total removal rate. When shortening HRT, the relative COD removal rate in front-end compartments of ABR decreased while it was observed to increase in back-end compartments.
     (3) ABR has good color removal effect. ABR was not affected when the color of influent was fluctuated greatly. The average color removal rate was about 60% when color of influent and effluent was 380 times and 150 times, respectively. As HRT being shortened, the color removal rate declined slowly, but it was kept above 50%. The color decreased along the way in every compartment. The highest removal rate of ABR was observed in the first grid chamber; followed by the second grid chamber.
     (4) ABR can effectively improve the biodegradability of printing and dyeing wastewater. The average B/C was increased from being about 0.2 (input water) to around 0.35 (output water), indicating that the biodegradability of wastewater has been improved and the burden of post-aerobic treatment sequence has been reduced.
     (5) ABR maintained a relatively stable treatment effect in the low temperature. When the HRT was 24 h, the COD removal rate decreased about 6.6% when the temperature was 15℃, compared to the rate when the temperature was 30℃.
     (6) The performance of ABR-A/O system was investigated when the HRT was 24 h. The average COD of aerobic effluent was 124 mg/L, and the removal rate reached 80%; oammonia nitrogen of output water was 4.05 mg/L, less than 5 mg/L, and met the standard of DB321072-2007; decolorization rate reached 76%. This system provided a way to meet the standards by further treatment.
     (7) GC-MS analysis showed that the structure and species of the organic compounds changed significantly after ABR treatment. The variabliilty of organic component in the effluent declined as most organic compounds were further degradated after aerobic treatment. The performance of the system was restricted because some benzene and phenol could not be removed through aerobic biological processes. Thus, advanced treatment process was still needed in order to satisfy discharge standards DB32.
     (8) Pilot-scale study of using ABR to treat printing and dyeing wastewater.was conducted. The result showed that:With the prime HRT 24 h, the system was operated for two months. COD of influent and effluent was 630 mg/L and 376 mg/L, respectively, and the average COD removal rate was about 40.4%. Color of influent and effluent was 380 times and 110 times, respectively, and the average color removal rate was about 70%. The average B/C of printing and dyeing wastewater was increased from 0.28 to 0.41, indicating the biodegradability of printing and dyeing wastewater was improved greatly.
引文
[1]王振东,张志祥.印染废水的污染与控制[J].环境科学与技术,2001(1):19~23.
    [2]杨书铭,黄长盾.纺织印染工业废水治理技术[M].北京:化学工业出版社,2002.
    [3]宋卫锋,吴斌,李义九,等.形稳阳极电解处理有机废水机理研究[J].重庆环境科学,2000,22(6):60~63.
    [4]洪俊明,洪华生,熊小京.生物法处理印染废水研究进展[J].现代化工,2005,25(7):98~101.
    [5]Chey, Mekay K K H, etal. Sorption from acid dyes from effluents using activated carbon [J]. Resource, Conservation and Recycling,1999,27(1-2):57~71.
    [6]郭向利,姚亚东,尹光福,等.新型印染废水脱色材料的研究[J].材料工程,2006(增刊):113~116.
    [7]马志毅,张国洪.处理染色废水专用活性炭研究[J].环境科学学报,1997,17(3):328~333.
    [8]李荣庭,郑雅杰,彭振华,等.PDMDAAC及其复合絮凝剂对模拟印染废水的处理[J].中南大学学报,2008,39(4):658~663.
    [9]范迪,王琳,王娟.新型复合混凝脱色剂处理印染废水试验研究[J].环境科学,2007,28(6):1285~1289.
    [10]苏玫舒,张继东.混凝-二氧化氯法对印染废水脱色的研究[J].工业水处理,2007,27(7):81~83.
    [11]苏玉萍,奚旦立.活性染料印染废水混凝脱色研究[J].上海环境科学,199.9,18(2):88~90.
    [12]彭晓文,杨迎新.膜分离技术在印染废水处理中的应用[J].江西化工,2003(1):21~23.
    [13]Marcucci M, Nosenzo G, Capan nelli G, et al. Treatment and reuse of textile effluents based on new ultra filtration and other membrane technologies [J]. Desalination,2001, 138(1~3):75~82.
    [14]Pignon H, Brasquet C, Le Cloirec P. Coupling ultra filtration and adsorption onto activated carbon cloth:application to the treatment of highly colored wastewaters [J]. Water Science and Technology,2000,42 (5~6):355~362.
    [15]杨泽志,奚旦立,毛艳梅.微滤技术在纺织印染废水深度处理中的应用[J].印染,2007(14):6-8.
    [16]徐竟成,许健,李光明,等.微絮凝-微滤用于印染废水回用反渗透预处理的试验研究[J].环境工程学报,2007,1(11):64~68.
    [17]Kuo W.G. Decolorizing dye wastewater with Fenton's reagent [J]. Wat. Res,1992,26(7): 881~886
    [18]徐向荣,王文华,李华斌.Fenton试剂与染料溶液的反应[J].环境科学,1999,20(3):72~74.
    [19]涂代惠,史长林,杨云龙.TiO2膜光催化氧化法深度处理印染废水[J].中国给水排水,2003,19(2):53~55.
    [20]程沧沧,胡德文.Ti02-Fe3+体系降解耐酸大红染料的研究[J].环境污染与防治,1998,20(4):17~19.
    [21]谭湘萍.载银TiO2半导体催化剂对印染废水的光降解研究[J].环境污染与防治,1994,16(5):5-7.
    [22]徐高田,校华,曾旭,等.纳米Ti02光催化-SBR工艺处理印染废水的研究[J].环境科学学报,2007,27(9):1444~1450.
    [23]储金宇,光建新.铁屑还原法降解高浓度印染废水[J].印染,2007(4):26~28.
    [24]许佩瑶,王淑娜,王德洪.高浓度印染废水德电解-内电解复合处理[J].印染,2004(8):26~28.
    [25]李长海.导流电凝聚法脱除印染废水色度的研究[J].化工环保,1999,19(5):264~268.
    [26]郑曦,陈日耀,兰瑞芳.电生成Fenton试剂及其对染料降解脱色的研究[J].电化学,2003,9(1):98~103.
    [27]王爱民,等.电化学方法治理含染料废水的现状与进展[J].工业水处理,2001,21(8):4-6.
    [28]刘占孟,向速林,张琦,等.染料废水电催化氧化及降解动力学研究[J].环境科学与技术,2006,29(7):23~25.
    [29]刘弋潞,卢维奇,黄贵明.电催化氧化法处理印染废水的实验研究[J].化学与生物工程,2009,26(2):58~61.
    [30]Sponza D T, Isik M. Decolonization and azo dye degradation by anaerobic/aerobic sequential process [J]. Enzyme and Microbial Technology,2002,31:102~110.
    [31]沈东升,刘新文.常温厌氧处理真丝印染废水的技术研究[J].浙江大学学报(农业与生命科学版),2005,31(6):750~754.
    [32]卿海波,黄瑞敏,王成军,等.印染废水处理中厌氧处理时间对后续混凝的影响[J].中国沼气,2008,26(3):19~21.
    [33]Wu Huifang, Wang Shihe, Kong Huoliang, et al. Performance of combined process of anoxic baffled reactor-biological contact oxidation treating printing and dyeing wastewater [J]. Bioresource Technology,2007,98(7):1501~1504.
    [34]彭继伟,邵云海,王军波.改良厌氧-生物接触氧化处理纺织印染废水[J].工业水处理,2002,22(7):46~48.
    [35]陈英文,宋天顺,沈树宝.混凝-厌氧水解-好氧组合工艺处理印染废水的研究[J].工业水处理,2005,25(5):22-24.
    [36]Blanquez P, Sarra M, Vicent T. Development of a continuous process to adapt the textile wastewater treatment by fungi to industrial conditions [J]. Process Biochemistry,2008, 43:1-7.
    [37]Coughlin M F, Kinkle B K, Bishop P L. Degradation of acid orange 7 in an aerobic biofilm [J]. Chemosphere,2002,46:11~19.
    [38]Novotny C, Svobodova K, Kasinath A, et al. Biodegradation of synthetic dyes by Irpex lacteus under various growth conditions [J]. International Biodeterioration and Biodegradation,2004,54:215~223.
    [39]赵大传,张洪荣,贾洪斌.核桃壳固定化微生物处理高浓度印染废水的研究[J].工业水处理,2004,4(4):17~19.
    [40]Khan A A, Husain Q. Decolorization and removal of textile and non-textile dyes from polluted wastewater and dyeing effluent by using potato(Solanum tuberosum)soluble and immobilized polyphenol oxidase [J]. Bioresource Technology,2007,98:1012~1019.
    [41]Chen K C, Wu J Y, Huang C C, et al. Decolorization of azo dye using PVA-immobilized microorganisms [J]. Journal of Biotechnology,2003,101(3):241~252.
    [42]Z. Badani, et al. Treatment of textile wastewater by membrane bioreactor and reuse [J]. Desalination,2005,185:411~417.
    [43]M. Brik, et al. Advanced treatment of textile wastewater towards reuse using a membrane Bioreactor [J]. Process Chemistry,2006,41:1751~1757.
    [44]陈英文,张利民,夏明芳,等.高效混凝-膜生物反应器工艺处理印染废水的研究[J].环境污染与防治,2004,26(4):293~297.
    [45]邱滔,张建文,胡琦,等.膜生物反应器工艺处理高浓度前处理印染废水研究[J].环境科学与技术,2008,31(8):93~96.
    [46]薛罡,梁晓菲,何圣兵,等.膜生物反应器处理难降解印染废水的膜污染微观特性研究[J].水处理技术,2008,34(2):28~31.
    [47]郭雅妮,同帜,于翔.MBR工艺处理印染废水中膜的污染和清洗[J].水处理技术,2007,33(4):72~74.
    [48]胡纪萃.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003.2-7.
    [49]肖波,李蓓,李冰冰,等.有机固废厌氧消化技术研究进展[J].科技创业月刊,2006,12:107~109.
    [50]Y. Kalogo, J. H. Mbouche, W. Verstraete. Physical and Biological Performance of Self-inoculated UASB Reactor Treating Raw Domestic Sewage [J]. Journal of Environmental Engineering, February,2001:179~183.
    [51]任南琪,王爱杰,等.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004:24~26.
    [52]Mccarty P L. One hundred years of anaerobic treatment [M].Proceeding of 2nd International Symposium on Anaerobic Digestion,1981.
    [53]黄永恒.折流式厌氧反应器水力特性及工艺特性研究[D].清华大学环境科学与工程系硕士毕业论文,1999.
    [54]Barber M P, Stuckey D C. The use of the anaerobic baffled reactor (ABR) for wastewater treatment:a review [J]. Water Research,1999,33(7):1559~1578.
    [55]Lettinga G, Field J, Van J. Advanced anaerobic wastewater treatment in the near future [J]. Water Sci.& Tech.,1997,35(10):5-12.
    [56]方玲玲.厌氧折流板反应器水力混合特性研究[D].合肥工业大学环境工程专业硕士毕业论文,2006.
    [57]Fannin KF, Srtivasrta VJ, Condra JR, et al. Marine biomass program:anaerobic digester system development, an annual report for general electric company, IGT project 65044, institute of gas technology, IIT Centre,3424s. State Street, Chicago, IL60616.
    [58]Bachmann A, Beard V L, McCarty P L. Comparison of fixed film reactor with a modified sludge blanket reactor [J]. Pollut Technol Rev,1983(10):384~402.
    [59]Bachmann A, Beard V L, McCarty P L. Performance characteristics of the anaerobic baffled reactor [J]. Water Research,1985,19(1):99~106.
    [60]Tilche A, Yang X. Light and scanning electron microscope observations on the granular biomass of experimental SBAF SBAR and HABR reactors [C].Proceedings of Gasmat Workshop, Netherlands,1987:170~178.
    [61]Boopathy R, Sievers DM. Performance of a modified anaerobic baffled reactor to treat swine wastewater [J]. Trans. ASAE,1991,34(6):2573~2578.
    [62]Yang PY, Moengangongo TH. Operational stability of a horizontally baffled anaerobic reactor for dilute swine wastewater in the tropics [J].Trans ASAE,1987,30(4): 1105~1110.
    [63]Skiadas IV, Lybeartos G. The periodic anaerobic baffled reactor [J].Wat Sci,1998, 38(8~9):401~408.
    [64]巩有奎,相会强,穆兰.厌氧折流板反应器降解青霉素废水的特性研究[J].现代化工,2006,26(增刊):172~175.
    [65]徐金兰,黄廷林,王志盈.ABR中厌氧颗粒污泥的微生物学特性[J].中国给水排水,2004,20(10):49~51.
    [66]Gopala Krishna G V T, Kumar P, Kumar P. Complex Wastewater Treatment Using an Anaerobic Baffled Reactor [J]. Environmental Progress,2007,26(4):391~397.
    [67]Naehaiyasit S, Stueky D C. The effect of shock loads on the performance of an anaerobic baffled reactor (ABR). 1. Step changes in feed concentration at constant retention time [J]. Water Research,1997,31(11):2737~2746.
    [68]Naehaiyasit S, Stueky D C. The effect of shock loads on the performance of an anaerobic baffled reactor (ABR). 2. Step and transient hydraulic shocks at constant feed concentration [J]. Water Research,1997,31(11):2747~2754.
    [69]Grobicki A, Sutekey DC. Hydrodynamic characteristics of the anaerobic baffled reactor [J].Water Research,1992,26(3):371~378.
    [70]郭静,李清雪.ARB反应器的性能及水力特性研究[J].中国给水排水,1997,13(4):17~20.
    [71]徐金兰,黄廷林,王志盈.厌氧折流板反应器处理难降解PVA废水[J].中国环境科学,2005,25(1):65~69.
    [72]吴慧芳,陆继来,王世和,等.ABR水解/生物接触氧化处理印染废水[J].中国给水排水,2005,21(10):52~54.
    [73]曾国驱,任随周,许玫英,等.ABR结合SBR法处理印染废水的研究[J].微生物学通报,2005,32(6):68~73.
    [74]任随周,郭俊,曾国驱,等.处理印染废水的厌氧折流板反应器中的微生物种群组成及分布规律[J].生态学报,2005,25(9):2297~2302.
    [75]Bell J, Plumb J J, Buekley C A, et al. Treatment and decolonization of dyes in an anaerobic baffled reactor [J]. J Environ Eng.2000,126(11):1026~1032.
    [76]Plumb Jason J, Bell J, Stueky D C. Microbial populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor [J]. APPI Environ Microbiol,2001,67(7):3226~3235.
    [77]杨颖波,王连俊.ABR-MBR处理纺织废水[J].污染防治技术,2003(S1):44~46.
    [78]贾洪斌,赵大传,王力民.挡板式水解酸化法处理印染废水的中试试验研究[J].工业水处理,2001,21(1):39~41.
    [79]陈荣圻.现代活性染料与分散染料的发展[J].染料与染色,2007,44(1):15~18.
    [80]晓琴,章杰.我国分散染料发展趋势[J].印染,2006,10:44~48.
    [81]Weiland P, Rozzi A. The start-up, operation and monitoring of high~rate anaerobic treatment systems:discusser's report [J]. Wat Sci Tech,1991,24(8):257~277.
    [82]郭静,李清雪.厌氧浮动生物膜反应器与厌氧折流板反应器处理高浓度有机废水工艺比较[J].污染防治技术,1998,11(4):234~236.
    [83]Barber W P, Stueky D C. Start-up strategies for anaerobic baffled reactors treating, a synthetic sucrose feed [J]. Proc.8th International Conf. on Anaerobic Digestion,1995: 32~39.
    [84]徐金兰,王志盈,杨永哲,等.ABR反应器的启动与颗粒污泥形成特征[J].环境科学学报,2003,23(5):575~581.
    [85]杨宏,张静慧,于萍波,等.ABR反应器的启动研究[J].安全与环境学报,2008,8(5):44~47.
    [86]王菊生.染整工艺原理(第三册)[M].北京:中国纺织出版社,1983:567-589.
    [87]蒋姬,姜佩华.分散染料的生物降解性能[J].东华大学学报(自然科学版),2003,29(6):115~119.
    [88]Alphenaar P. A., Visser A., Letinga Cz. The Effect of Liquid Upward Velocity and hydraulic Retention Time on Granulation in UASB Reactors Treating Wastewater with a High Sulfate Content [J]. Bioresearch Technology,1993,43:249~258.
    [89]Alphenaar P A. Anaerobic Granular Sludge:Characterization and Factors Afecting its Functioning. Ph.D. Thesis. The Netherland. WAU.1994:25~29.
    [90]祁佩时,丁雷,刘云芝.微氧水解酸化工艺处理高浓度抗生素废水[J].环境科学,2005,26(3):106~111.
    [91]Pearce CI, Lloyd JR, Guthrie JT. The removal of color from textile wastewater using whole bacterial cells:a review [J]. Dyes and Pigments,2003,58(3):179~196.
    [92]吴慧芳,王世和,夏明芳,等.ABR处理印染废水水温影响特性及降解模型[J].工业水处理,2006,26(10):39~43.
    [93]孔火良,夏明芳.折流式水解反应器处理印染废水水温影响研究[J].环境污染治理技术与设备,2006,7(12):77~81.
    [94]陈世和,陈建华,王士芬.微生物生理学原理[M].上海:同济大学出版社,1992:44~66.
    [95]吴慧芳,陆继来,王世和,等.折流式水解反应器处理印染前道废水进水pH的影响[J].中国沼气,2006,24(1):21~25.
    [96]张希衡,等.废水厌氧生物处理工程[M].北京:中国环境科学出版社,1996.
    [97]戴友芝,施汉昌,冀静平,等.厌氧折流板反应器处理有毒废水及其污泥特性的研究[J].环境科学学报,2000,20(3):284~289.
    [98]杨志,汪苹,张月琴,等.GC-MS法对垃圾渗滤液生物处理前后微量有机物的研究[J].环境污染与防治,2005,27(3):218~221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700