化学辅助软磨粒流抛光技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模具是零件成型过程的重要工艺装备,模具应用领域不断扩大。随着市场竞争的白热化,人们对模具提出了越来越高的要求。模具正朝着大型、复杂、精密化方向发展。复杂的模具中往往存在大量的沟、槽、孔等结构化表面,受尺寸、形状限制而无法使用工具进行接触式加工,这一点成为模具制造业急需解决的技术难题。为了解决这一现实问题,本文提出了针对模具结构化表面的化学辅助软磨粒流抛光方法。
     化学辅助软磨粒流抛光分为化学抛光、软磨粒流抛光两个阶段。化学抛光工艺简单,操作方便,不受零件形状尺寸的限制,同时化学抛光可除去零件表面的机械损伤层和应力层;化学抛光后的零件表面因为发生了化学反应降低了表面原子的键合能力,提高了软磨粒流抛光的效率。同时,软磨粒流抛光也是化学抛光的一种补充,协助除去表面未溶解的金属氧化物,同时清洗残留的化学液。为了使两个阶段能够起到很好的协调组合作用,需要研究这两个阶段的工艺过程、加工机理等,各章节都仅仅围绕以上需要解决的问题进行展开。本文的主要工作如下:
     (1)应用数值模拟技术对软磨粒抛光中流体的湍流特性进行了研究。为了得到洋实的湍流信息,采用大涡数值模拟和雷诺平均模拟两种湍流数值模拟方法进行研究。从理论上,分析了大涡数值模拟和属于雷诺平均模拟的可实现κ-ε模型的特点,建立“M”形的弯形流道为数值模拟的几何模型,在初始条件、边界条件、计算方法都相同的情况下,分别采用大涡模拟和可实现κ-ε模型两种不同的湍流模拟方法分别对流道内的物理参数进行了数值计算。结果表明,大涡模拟能获得比可实现κ-ε模型更精确地结果,同时大涡数值模拟的计算工作量较大
     根据上述结论,构建了约束流道的实体物理模型,并采用PIV方法对流道内的流场特性进行实时观测,验证了大涡数值模拟方法的有效性。
     (2)软磨粒流的切削机理分析以及固液两相流数值模拟。首先借助于冲蚀理论,分析了影响磨粒加工的主要因素,讨论了软磨粒流加工的机理。接着采用大涡模拟与随机轨道模型相结合的数值计算方法,结合正交实验法,模拟了在多种条件下固液两相流中颗粒的不同运动特性,特别是近壁区的颗粒与壁面的相互作用关系。数值模拟结果表明,流体的速度是流体脉动的主要影响因素,速度越大流体脉动越明显。流体脉动也影响到颗粒的脉动,颗粒脉动还受颗粒直径的影响,颗粒的直径越大其惯性力也越大,受流体脉动的影响相对较小:颗粒的体积含量越多,颗粒之间碰撞的机会也越多,因此颗粒不确定运动的几率也越大。为了进一步验证数值模拟的可行性以及弥补数值模拟的不足之处,流道仍加工成“M”的弯形流道,利用PIV实验系统检测颗粒在流体中的运动情况。实验表明,由于受到湍流的混掺作用,导致颗粒运动偏离主流运动的方向,呈现出与壁面与其它颗粒的碰撞,从而实现颗粒对壁面的有效切除。
     (3)化学抛光液的配置与化学抛光实验。采用不同配比的双氧水、草酸、硫酸、尿素等化学成分配置了几种环保型化学抛光液。针对1Cr18Ni9、3Cr2Mo、45#、Q235钢的试件进行了化学抛光实验,并利用分析天平测量质量,计算失重率。实验证明不同的材料在相同化学抛光液中腐蚀程度不同。常温下,抛光5分钟左右,工件表面质量有明显改善。
     (4)软磨粒抛光实验。利用软磨粒流精密光整加工试验台,以“M”形流道的45#钢试件为例,进行了软磨粒流抛光实验。研究了流体的速度,磨粒的浓度以及粒径,抛光时间等对材料去除量和表面粗糙度的影响规律。改变所要研究的软磨粒流抛光的某一参数,而使其余的参数保持不变,利用分析太平测量试件的质量,计算去除量;采用TR200手持式粗糙度仪进行测量,采用KEYENCE VW-6000动态分析三维显示系统进行测量工件表面形貌,实验结果证明了软性磨粒流加工方法应用在模具结构化表面光整加工上的可行性和有效性。
     (5)通过对软磨粒流抛光作用机理分析,以及参考多相流输运机械中冲蚀破坏模型,结合软磨粒流抛光实验,建立了材料去除率数学模型。
Moulds are the important technological equipment during the process of parts forming. The application field of moulds expanded day after day. With the intense market competition the development trend of moulds appeared large scale, complexity and precision. Accordingly the structured surface such as the groove, the groove, the hole and the slot, that existed in moulds, is difficult for contact processing because of size and shape. In order to solve the problem in reality the method of chemical-aid softness abrasive flow polishing was proposed according to the structured surface of moulds.
     The phase of chemical-aid softness abrasive flow polishing can be divided into chemical polishing and softness abrasive flow polishing. Chemical polishing is easy to operated and free of the restriction of the shape and size. In the same time chemical polishing would remove the mechanical nick layer and the stress layer of parts. The surface of the part after the chemical polishing can be machined by the soft abrasive flow more easily, because bonding capability of the surface atoms can be reduced by chemical reactions. Softness abrasive flow polishing could be regarded as the supplement of chemical polishing. It would remove the unsolved metal oxides on the surface and clean the residual chemical liquid. In order to coordinated the two stages the process and the machining mechanism should be researched. The main content in this paper was as the following.
     (l)Turbulence characteristics in the process of soft abrasive polishing were researched by the application of numerical simulation. To get detailed information about the turbulence, large eddy simulation and Reynolds-averaged simulation were put into use. The geometry model of numerical simulation was established according to the M shaped flow channel after the analysis of the characteristic of LES and κ-ε model that belonged to Reynolds averaged simulation. Physical parameters in flow channel were gotten by the adoption of Large eddy simulation and κ-ε model in the case of the same initial conditions, boundary conditions and the calculation methods. The results showed that more accurate results could be gotten through large eddy simulation who took more computational workload.
     On these conditions, physical model entity of the constrained flow channel was constructed. Then the flow field characteristics was observed with the method of PIV, which proved the effectiveness of the method of LES.
     (2)The analysis of cutting mechanism of soft abrasive flow and the numerical simulation of solid-liquid two-phase flow. Firstly based on erosion theory the main factors to affect the particle motion were analyzed. The machining mechanism of soft abrasive flow were discussed. Secondly the different motion characteristics of the particle in the solid-liquid two-phase flow in a variety of conditions were simulated by the adoption of the combination of LES and SPTM, especially the interaction between the wall and the particles in the near-wall region. The numerical simulation results showed that the velocity of the fluid was the main factor of fluid pulsation. The greater the speed, the more obvious the fluid pulsation. The pulsation of the particles was also influenced by the particle diameter. The larger the diameter of the particle, the larger the inertial force. The particle with large diameter was affected by the pulsation little. The more the volume content, the more the chance of collision among particles. Thus the probability of uncertain movement of particles was bigger. The M shaped flow channel was still in use to validate the feasibility of numerical simulation and make up for the deficiency of the numerical simulation. The movement of particles in the fluid could be gotten through observation experimental system. The experiment showed that on account of the blending effect of turbulence particles deviated from the mainstream direction of movement and collided with the wall surface. Thereby the effective resection of the wall surface could be done by particles.
     (3)The deployment of the chemical polishing solution and the chemical polishing experiment. Several kinds of chemical polishing liquid were prepared by using different proportion of hydrogen peroxide, oxalic acid, sulfuric acid, urea and other chemical ingredients.1Crl8Ni9,3Cr2Mo,45#and Q235, was used in the chemical polishing experiment. Analytical balance were used to measure the quality of the several steel and mass loss rate could be calculated. The experiment showed that the degree of corrosion of different materials was different in the same chemical polishing solution. At room temperature the surface smoothness of the work piece had a significant improvement after fifteen-minute polishing.
     (4)Taking45steel for example, the experiment of soft abrasive flow polishing was done by soft abrasive flow precision machining laboratory bench. The law that some factors, such as the velocity of the fluid, the concentration and the size of particles, polishing time, affected the amount of material removed and the surface roughness was researched. The removal rate was calculated after the quality measurement of the test piece by the analytical balance on condition that only one single parameter of soft abrasive flow polishing changed. The TR200handheld roughness instrument was used for measurement. KEYENCE VW-6000dynamic analysis three-dimension display system was used to measure the surface appearance of work piece. The experimental results showed that applying the method of the soft abrasive flow machining on the structured surface finishing of moulds was feasible and valid.
     (5) The mechanism of softness abrasive flow polishing was analyzed. The mathematical model of the material removal rate was established combining the experiment of soft abrasive flow polishing drawing on the erosion failure model of the multiphase flow transport machinery.
引文
[1]夏玉海.模具产业的现状及发展趋势[J].现代制造技术与装备,2007,6:1-5.
    [2]颜伟.我国塑料模具工业现状及进一步发展的对策[J].机械工程师,2011.8:27-39.
    [3]刘全坤,王成勇,刘传经.模具技术的现状与未来发展的重点[J].模具工业,2011,37(5):1-4.
    [4]包荣华.精密型腔模具的抛光技术[J].模具制造,2004(6):1-2.
    [5]熊惟皓,郑立允,杨青青.模具表面处理与表面加工[M].北京:化学工业出版社,2007.1.
    [6]陈锡栋.模具精饰加工及表面强化处理技术[M].北京:机械工业出版社,2002.2.
    [7]Brinksmeier E. Polishing of structured molds. CIRP Annals-Manufacturing Technology, 2004,53(1): 247-250.
    [8]Brinksmeier E. Finishing of structured surfaces by abrasive polishing. Precision Engineering,2006, 30(3):325-336.
    [9]Gessenharter.A., Riemer, O.,Brinksmeier, E. Polishing Processes for Structured Surfaces[J]. Proc. of the ASPE 18th Annual Meeting,Portland,Oregon,USA,2003,October 26-31:579-582.
    [10]计时鸣,付有志,谭大鹏,等.基于剪切应力输运湍流模型的两相磨粒流动力学特性研究[J].兵工学报,2012,33(4):443-450.
    [11]Ji S M, Gong B, Tan D P, et al. Research on liquid-solid two phase abrasive flow based on the unified second-moment [J]. Advanced Materials Research,2010,102-104:489-4945.
    [12]包荣华.精密型腔模具的抛光技术[J].模具制造,2004(6):44-47.
    [13]许洪斌,李登波.模具表面抛光技术的研究进展[J].模具制造,2006(2):44-48.
    [14]张浩,屠炳林,王灿,等.铝及铝合金化学抛光工艺比较[J].材料保护,2003(4):10-12
    [15]彭荣华,李国斌,马凇江.铜及其合金化学抛光工艺研究[J].材料保护,2005,38(6):30-32.
    [16]姚颖悟,邱立,赵春梅.不锈钢化学抛光工艺的研究[J].电镀与精饰,2010,32(9):5-7.
    [17]周金保.不锈钢化学抛光过程的腐蚀学特点及其工艺控制[J].仪表材料,1984,15(2):53-62.
    [18]温美星.不锈钢化学抛光液研究的现状与发展[J].浙江化工,2003.10:30-33.
    [19]杨建桥,霍苗.不锈钢杯内壁的电化学抛光[J].电镀与涂饰,2009,31(5):24-25,29.
    [20]方景礼.金属材料的抛光技术[M].北京:国防工业出版礼,2005,38-39.
    [21]杜炳志,漆红兰.电化学抛光技术新进展[J].表面技术,2007,36(2):56-58.
    [22]韦瑶,杜高昌,蓝伟强.电化学抛光工艺的研究及应用[J].表面技术,2001,30(1):19-24.
    [23]张述林,罗祎,陈世波.铜及铜合金电化学抛光[J].电镀与涂饰,2008,27(9):26-28.
    [24]孙林宝,汪栋,高平,等.不锈钢大型容器设备电化学抛光技术[J].石油化工设备,2002,31(4):37-39.
    [25]曹凤国.超声加工技术[M].北京:化学工业出版社,2004:149-151.
    [26]周忆,米林,廖强,等.基于超声研磨的超精密加工[J].航空精密制造技术,2003,39(1):1-4.
    [27]H. Suzuki, T. Moriwaki, T. Okino, et al. Development of Ultrasonic Vibration Assisted Polishing Machine for Micro Aspheric Die and Mold[J].CIRP Annals-Manufacturing Technology,2006, 55(1):385-388.
    [28]陈怀民.超声电火花复合加工在模具制造中的应用[J].模具工业,2009,35(9):62-65.
    [29]赵雪松,高洪.精密模具超声电解复合抛光试验研究[J].农业机械学报,2004,35(3):188-190.
    [30]王慧军,张飞虎,赵航,等.超声波磁流变复合抛光中几种工艺参数对材料去除率的影响[J].光学精密工程,2007,15(10):1583-1588.
    [31]张凌云,吴凤林.磨料流加工技术现状及展望[J].机械工程与自动化,2006,138(5):166-168.
    [32]武利生,李元宗.磨料流加工研究进展[J].刚石与磨料磨具工程,145(1):69-74.
    [33]郭应竹.磨粒流加工在航空发动机制造中的应用[J].航空制造技术,1993,(05):28-32.
    [34]郭应竹.细小孔的磨粒流加工[J].航空制造技术,1991,(03)
    [35]汤勇,陈澄洲,张发英.磨料流加工压力特性对加工表面粗糙度的影响[J].华南理工大学学报(自然科学版),1997,25(5):23-25.
    [36]汤勇,陈澄洲,张发英.磨料流加工时磨料流动形态的研究[J].华南理工大学学报(自然科学版),1997,25(9):2-5.
    [37]杨建明,聂先桥.磨料流在工件孔腔中的流动特性分析[J].淮海工学院学报,2000,9(2):7-9.
    [38]聂先桥,杨建明.磨料流加工磨料流动边界条件的确定[J].机械制造,2001,39(10):9-11.
    [39]M. Hashish. A modeling study of metal cutting with abrasive waterjet, J. Eng. Mater. Technol. 1984,106:88-100.
    [40]H. Hocheng, K.R. Chang. Material removal analysis in abrasive waterjet cutting of ceramic plates[J]. J. Mater. Process. Technol,1994,40:287-304.
    [41]R. Balasubramanian, J. Krishnan, N. Ramakrishnan. A study on the shape of the surface generated by abrasive jet machining [J]. J. Mater. Process. Technol.2002.,121:102-106.
    [42]D.S. Srinivasu, D.A. Axinte, P.H. Shipway,et al. Influence of kinematic operating parameters on kerf geometry in abrasive waterjet machining of silicon carbide ceramics[J]. Int. J. Mach. Tools Manuf. 2009,49:1077-1088.
    [43]方慧,郭培基,余景池.液体喷射抛光材料去除机理的研究[J].光学技术,2004,(3):248-250.
    [44]R.G.Hou. C.Z.Huang, J.Wang, et al.Simulation of Gas—solid—liquidThree—Phase Flow Inside and outside the Abrasive Water Jet Nozzle.Materials Seienee Forum.2006:833 - 836.
    [45]成建联,宋国英,李福援.磨料水射流抛光时工艺参数对工件去除量的试验研究[J].西安工业学院学报,2002,22(1):67-71.
    [46]徐慧,李天生,刘继光.磨液射流磨削抛光机设计[J].液压与气动,2007(4).
    [47]Donald Golini, Stephen D.Jacobs, William I.Kordonsky. Fabrication of glass aspheres using deterministic microgrinding and magnetorheological finishing [C]SPIE,2536:208-211.
    [48]Stephen D.Jacobs, Donald Golini, YulingHsu, etal. Magnetorheological finishing:a deterministic process for optical manufacture [C].SPIE,2576:372-382.
    [49]Harvey Pollicove, Don Golini. Deterministic manufacturing processes for precision optical surfaces [C]. Advances in Abrasive Technology V.2003:53-58.
    [50]张峰,张学军,余景池,等.磁流变抛光数学模型的建立[J].光学技术,2000,26(2):190-192.
    [5]]尤伟伟,彭小强,戴一帆.磁流变抛光液的研究[J].光学精密工程,2004,12(3):330-334.
    [52]程灏波,冯之敬.磁流变抛光超光滑光学表面[J].哈尔滨工业大学学报,2005,37(4):433-436.
    [53]KORDONSKI W, SHOREY A, SEKERES A. New magnetically assisted:material removal with magnetorheological fluid jet[J]. SPIE,2003,5 (8):107-114.
    [54]W Kordonski, D Golini, S Hogan, A Sekeres. System for abrasive jet shaping and Polishing of surface using magnetorheological fluid. US Patent 5,971,835,1999.
    [55]W Kordonski. Apparatus and method for abrasive jet finishing of deeply concave surfaces using magnetorheological fluid. US Patent 6,561,874,2003.
    [56]张学成,戴一帆,李圣怡,彭小强.基于CFD的磁射流抛光去除机理分析[J].国防科技大学学报,2007,29(4):110-115.
    [57]计时鸣,张生昌,张宪,等.基于流场约束型液动磨粒流的表面光整加工方法[P].中国专利:200710067628,2007-03-21.
    [58]计时鸣,张生昌,张宪,等.基于流场约束型液动磨粒流的表面光整加工系统[P].中国专利:200710067629,2007-03-21.
    [59]计时鸣,唐波,谭大鹏,等.结构化表面软性磨粒流精密光整加工方法及其磨粒流动力学数值分析[J].机械工程学报,2010,46(15):179-184.
    [60]Ji ShiMing, Xiao FengQing, Tan DaPcng.Analytical method for softness abrasive flow field based on discrete phase model[J].SCIENCE CHINA Technological Sciences,2010,53(10):2867-2877.
    [61]Shi Ming Ji, Xiao Xing Weng, Da Peng Tan..Numerical Simulation of Softness Abrasive Two-Phase Flow Field on Level Set Method, Advanced Materials Research,2010,154 (10):197-201.
    [62]计时鸣,马宝丽,谭大鹏.结构化表面环境下软磨粒流的流场数值分析[J].光学精密工程,2011,19(9):2092-2099.
    [63]Bart J.H.van Stratum..A priori study of subgrid models in large-eddy simulation using direct numerical simulation of a turbulent channel flow[D]. The Kingdom of Netherlands:Wageningen University,2011.
    [64]丛国辉,王福军.双吸离心泵隔舌区压力脉动特性分析[J].农业机械学报,2008,39(6):60-63.
    [65]胡胜波,苏莫明.不同湍流模刑在离心压缩机叶轮内流场数值模拟中的比较研究[J].流体机械,38(8):22-26.
    [66]Smagorinsky J.General circulation experiments with the primitive cquations[J].Mon Weather Rev,1963:93-99.
    [67]苏铭德,Friedrieh.R.子持纵向恋曲壁面湍流边界层的大涡模拟[J].力学学报,1984,16(4):321-332.
    [68]王兵,张会强,王希麟.亚格子尺度湍流特性研究[J].工程力学,23(2):47-51.
    [69]肖红林,罗纪生.大涡模拟中亚矿格子模型的该进及其在槽道湍流中的应用[J].航空动力学报, 2007,22(4):583-587.
    [70]刘小兵,程良骏.固液两相湍流和颗粒磨损的数值模拟[J].水利学报,1996,(11):20-27.
    [71]张志峰,刘洋,蔡体敏.随机颗粒轨道模型在长尾喷管发动机流场计算中的应用[J].固体火箭技术,2007,30(5):376-380.
    [72]王志斌,陈文梅,褚良银,等.旋流分离器中固体颗粒随机轨道的数值模拟及分离特性分析[J].机械工程学报,2006,42(6):34-39.
    [73]倪晋仁,王光谦.高浓度恒定固液两相流运动机理探析:Ⅰ·理论[J].水利学报,2000,(5):22-26.
    [74]倪晋仁,王光谦.高浓度恒定固液两相流运动机理探析:Ⅱ·应用[J].水利学报,2000,(5):27-32.
    [75]温美星,胡锦华,刘春.模具钢无黄烟化学抛光机理的探讨[J].电镀与环保,2004,24(5):30-32.
    [76]Jacquet P A. Electrolytic polishing of metallic surfaces[J].Metal Finishing,1949,47(5):48-54.
    [77]Andrade L S, Xavier S C, Rocha-Filho R C, et al. Electropolishing of AISI-304 stainless steel using an oxidizing solution originally used for electrochemical coloration[J].Electrochimica Acta,2005,50(13):2623-2627.
    [78]Hoar T P, Farthing T W. Nature,1952,169-324.
    [79]陈大同.关于化学抛光机理的探讨[J].天津电镀,1981,(3):10-20.
    [80]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004
    [81]张兆顺,崔桂香,许春晓.湍流大涡数值模拟的理论和应用[M].北京:清华大学出版社,2008.
    [82]Smagorinsky J.General circulation experiments with the primitive equations[J].MonWeather Rev, 1963:93-99.
    [83]Schumann U.Subgrid scale model for finite difference simulations of turbulent flows in plane channel and annuli[J].Journal of Computational Physics,1975,18(4):376-404.
    [84]Grotzbach G. Direct numerical and large eddy simulation ofturbulent channel flows[J]. Encyclopedia of Fluid Mechanics,Gulf,1987,6:1337-1391.
    [85]Wenner H, Wengle H. Large-eddy-simulation of turbulent flow over and around a cube in a plate channel[M].The Eighth International Symposium on Turbulent Shear Flows, Berlin:Springer-Verlag,1991:1941-1946.
    [86]SHIH T H, LIOU W W, SHABB1R A, et al. A new k-ε eddy viscosity two-equation model for high Renolds number turbulent flows[J]. Computer Fluids,1995,24(3):227-238.
    [87]于勇,张夏,陈维.用双流体模型模拟超声速气固两相流动[J].航空动力学报,2010,25(4):800-807.
    [88]车得福,李会雄.多相流及其应用[M].西安:西安交通大学出版社,2007:513-570.
    [89]唐学林,徐宇,吴玉林.高浓度固一液两相流紊流的动理学模型[J].力学学报,2002,34(6):956-962.
    [90]唐学林,余欣,任松长,等.固-液两相流体动力学及其在水力机械中的应用[M].河南:黄河水利 出版社,2006:57-119.
    [91]HAIDER A, LEVENSPIEL O. Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles[J]. Powder Technology,1989,58(1):63-70.
    [92]骆素珍,郑玉贵,李劲等.浆体含砂量和砂粒度对环氧粉末涂层冲蚀规律的影响[J].腐蚀科学与防护技术,2002,14(2):63-66.
    [93]骆素珍,郑玉贵,李劲,等.环氧粉末涂层的抗冲蚀性能[J].材料研究学报,2000,14(5):517-523.
    [94]马颖,任峻,李元东,等.冲蚀磨损研究的进展[J].兰州理工大学学报,2005,31(1):21-25.
    [95]I.Finnie.Some observations on the erosion of ductile metals.Wear,1972,19:81-90.
    [96]I. Finnie. Some reflections on the past and future of erosion.Wear,1995,186-187:1-10.
    [97]I. Finnie. Erosion of surfaces by solid particles. Wear,1960,3:87-103.
    [98]Bitter J G A.A study of erosion phenomena. Part Ⅰ.Wear,1963,6:5-21.
    [99]Bitter J G A.A study of erosion phenomena. Part Ⅱ.Wear,1963,8:61-90.
    [100]A.V.Levy.The platelet mechanism of erosion of ductile metals. Wear,1986,108:1-21.
    [101]Hutchings I M. A model for the erosion of metals by spherical partides at normal incidence[J]. wear, 1981(70):269-281.
    [102]Edwards J K,Mclaury B S,Evaluation of altermative pipe bend fitting in erosive service[A]. Proceedings of ASME FEDSM00:ASME 2000 Fluids Engineering Division Summer Meeting[C]. Boston:ASME,2000.959-966.
    [103]陈再枝,马党参.塑料模具钢应用手册[M].北京:化学工业出版社,2005.
    [104]李勇,左秀荣,陈蕴博,等.P20塑料模具钢淬火及回火组织性能的研究[J].材料热处理技术,2010,39(6):119-122.
    [105]徐爱军,高桂枝,巩育军,等.Q235钢的化学抛光[J].腐蚀与防护,2008,29(5):275-278.
    [106]董延茂,赵丹,梁润培.钢表面环保型化学抛光液的研制[J].电镀与涂饰,2010,29(4):32-35.
    [107]温美星.不锈钢化学抛光液研究的现状与发展[J].浙江化工,2003,34(10):30-33.
    [108]许利剑,龚竹青,杜晶晶,等.电镀Fe-Nr-Cr合金的现状和发展[J].电镀与环保,2006,26(3):1-4.
    [109]杜晶晶,许利剑,汤建新.影响铁基上滚镀Fe-N-i Cr合金镀层质量和成分的因素[J].腐蚀与防护,2007,28(7):361-363.
    [110]冯绍彬,冯丽婷,商士波.电镀不锈钢工艺及镀液稳定性的研究[J].材料保护,2004,37(1):46-47.
    [111]表面处理工艺手册编审委员会.表面处理工艺手册[M].上海:上海科学技术出版社,1991.
    [112]Jones J DC, Anderson DJ, Greated CA. Fibre-opticbeam delivery systems for particle image velocimetry[J]. OpticsandLasers in Engineering,1997,27:657-674.
    [113]魏名山,马朝臣,李向荣,等.用PIV进行静电旋风除尘器流场的测定[J].北京理工大学学报,2000,20(4):496-499.
    [114]石惠娴,王勤辉,骆仲泱,等.PIV应用于气固多相流动的研究现状[J].动力工程,2002,22(1):1589-1593.
    [115]冯旺聪,郑士琴.粒子图像测速技术的发展[J].仪器仪表用户,2003,10(6):1-3.
    [116]冯进,张慢来,冯仲.带粒液流中圆形弯管的冲蚀模型研究[J].长江大学学报(自然科学版),2008,5(3):74-76.
    [117]Tilly G P.Erosion by impact of solid particlesl Treatise on Material Science and Technology [M]. New York:AcademicPress,1979.
    [118]吴晶华,汤文成,徐鸿翔,等.微磨粒冲蚀磨损的数值分析方法[J].润滑与密封,2008,33(9):16-20.
    [119]孙家枢,王小同,郭大展.几种等离子喷涂陶瓷涂层之固体粒子冲蚀磨损的特性与数学模型[J].摩擦学学报,1994,14(1):57-64.
    [120]Rask E. Tube erosion by ash impaction [J]. Wear,1969, (13):301-315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700