光束采样光栅采样效率均匀性和损伤阈值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在惯性约束核聚变(Inertial Confined Fusion ICF)系统中,光束采样光栅(Beam Sampling Grating BSG)是其终端光学系统中重要的一种光学元件。作用是从三倍频主光路中取出极小部分作为采样光束,对入射光的能量、功率、空间分布及波长畸变等进行诊断。采样效率均匀性和激光损伤阈值(Laser-induced damage threshold LIDT)是评价BSG性能的两个至关重要的参数。采样效率均匀性直接关系到对入射光能量响应的特点。均匀性越好,测量相对误差越小,采样准确性越好。激光损伤阈值代表其抗激光损伤的能力,决定了其在强激光环境中的使用寿命。BSG指标要求是采样效率均匀性RMS≤5%,激光损伤阈值达到14J/cm2。目前国内采用全息离子束刻蚀方法制作的BSG,由于技术条件限制,均匀性不能满足要求,同时光栅制作过程中引入的污染物也导致了BSG抗激光损伤能力的下降。为提高大尺寸BSG的效率均匀性和激光损伤阈值的特性,本论文的主要研究工作包括:
     1、将熔石英的抛光技术用于大尺寸BSG,初步解决了提高BSG采样效率均匀性的关键技术。通过抛光的方法改变BSG局部衍射效率较高区域的光栅槽形结构,降低其衍射效率,使之达到与周围区域的衍射效率相近,最终使BSG衍射效率趋于均匀。
     研究了大尺寸BSG抛光的关键技术,光栅各结构参数及抛光工艺参数对光栅栅线高度去除速率的影响,掌握了抛光过程中BSG的槽形演化规律,获得了优化的大尺寸BSG抛光工艺参数。此外还将BSG效率模拟结果与实验结果进行比较分析,掌握了大尺寸BSG抛光过程中槽形轮廓演化情况;建立了大尺寸BSG的效率检测系统。
     利用建立的BSG抛光技术,可以将大尺寸BSG效率均匀性控制在RMS小于5%的水平,与美国NIF的水平相当。BSG抛光技术已经成为有效控制大尺寸BSG效率均匀性的关键工艺环节,显著降低了对全息光刻和离子束刻蚀过程工艺均匀性的要求。
     2、利用二次离子质谱技术,比较了离子束刻蚀、衍射效率均匀性修正及清洗等不同工艺条件下,碳、氟、金属及铈、镧等元素的浓度在BSG表层的深度分布变化,定量表征了BSG的关键工艺环节引入的化学污染及其清洗效果,获得了分别基于组合强酸和基于氢氟酸(HF)的两种BSG清洗方案。
     二次离子质谱实验结果显示,这两种清洗方案均可将BSG制备过程中引入的主要杂质污染分别降低到与初始熔石英基底相当或更低的水平,基于HF的清洗方案略优于基于组合强酸的清洗方案。基于稀释HF的清洗方案虽然提高了阈值,但在一定程度上降低了BSG衍射效率的均匀性。
     3、利用3ns脉宽,355nm波长激光对清洗前及不同清洗工艺下的BSG阈值进行了状态确认。初步BSG阈值实验结果显示,目前熔石英基底的损伤阈值为10-12J/cm2,采用基于组合强酸和基于HF两种清洗工艺后,BSG的损伤阈值分别为9J/cm2、12J/cm2;与熔石英基底的激光损伤阈值相比,BSG的激光损伤阈值低了10%-20%左右。说明使用基于氢氟酸清洗的效果非常的理想,消除了光栅制作和抛光工艺引入的污染物的影响,而基于组合强酸清洗方案未使BSG阈值提升到基底水平的原因待进一步分析。
     美国NIF对终端组件中熔石英基底和BSG的阈值要求分别是15J/cm2和14J/cm2(355nm,3ns).因此,下一步迫切需要提高熔石英基底和BSG光栅的激光损伤阈值。
Beam sampling grating (BSG) is one important optical component of the final optical systems of the Inertial Confined Fusion (ICF) system. It is used to diagnose the energy, power, spatial distribution and wavelength distortion of the incident laser by diffracting and focusing a small fraction of the total laser energy to a calorimeter. The uniformity of diffraction efficiency and laser-induced damage threshold (LIDT) are two important parameters of BSG. The uniformity of diffraction efficiency is related directly to the response characteristics of incident laser energy. The analysis indicated that the better the uniformity of diffraction efficiency is, the less relative error of the measurement. And the LIDT represents its resistance to high power laser and also determine the lifetime of BSG. At present, the efficiency uniformity of BSG which was fabiricated by holographic ion beam etching (HIBE) can not meet the requirements due to the limit of technical conditions in China. Various surface contaminants introduced during the grating manufacture process lead laser-induced damages to grating. In order to improve the efficiency uniformity and LIDT of large-aperture BSG, the main works of this thesis are follows:
     1, Fused silica polishing technology was applied to large-aperture BSG, which become the key technology of improving the efficiency uniformity of BSG. After the HIBE of BSG, polishing process is utilized upon the local area of BSG, where exhibits higher efficiency. After polishing process, its groove profile can be modified and its efficiency can be reduced. The efficiency uniformity of whole-aperture BSG can be improved accordingly.
     The key polishing technology of large-apture BSG, including the influence of the grating structure and polishing process parameters on the polishing rate has been researched. The optimized polishing parameter for large-aperture BSG has been gotten.
     2、The BSG surface contaminations in the ion beam etching, polishing and cleaning processes have been analysed using the high-sensitivity secondary ion mass spectrometry. The results show two cleaning solution can remove the contaminants to the original level of initial fused silica substrate or ever lower. The cleaning process based on hydrofluoric acid (HF) cleaning solution is better than that based on multi-acid solution. It's should be noted that the multi-acid cleaning method can preserve the efficiency uniformity of BSG.
     3、The LIDT of BSG with different cleaning processes has been measured at the wavelength of355nm and8ns. The results show that the LIDT of fused silica substrate is10-12J/cm2. And the LIDT of BSG cleaned based on the multi-acid cleaning process and the hydrofluoric acid (HF) cleaning solution is9J/cm2and12J/cm2, respectively. Comparing to the fused silica substrate, the LIDT of BSG has dropped by10%-20%. Therefore, the HF cleaning process is an effective way to improve the LIDT of BSG.
     Since the peak UV fluences required for the fused silica substrate and BSG at the National Ignition Facility (NIF) is15J/cm2and14J/cm2respectively, the next urgent step is to improving the LIDT of large-aperture BSG and its fused silica substrate.
引文
[1]张家泰.1995.激光等离子体相互作用物理[M].北京:中国工程物理研究院北京研究生部.
    [2]巴索夫,欣生.1992.稠密等离子体诊断学[M].绵阳:《强激光与离子束》杂志社.
    [3]Wang G C.1987. Suggestion of neutron geneartion with powerful of lasers [J]. Chinese of Lasesr,14(11):000.
    [4]Lowdermilk W H.1997. Status of the National Ignition Facility Project[C]//Second International Conference on Solid State Lasers for Application to ICF. International Society for Optics and Photonics. Proc. SPIE,16-37.
    [5]Andre M L.1997. Status of the LMJ Project[C]//Second International Conference on Solid State Lasers for Application to ICF. International Society for Optics and Photonics. Proc. SPIE,38-42.
    [6]Peng H S, Zhang X M, Wei X F, et al.1999. Status of the SG-III solid state laser project[C].//Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion. International Society for Optics and Photonics. Proc. SPIE,25-33.
    [7]Nakai S, Miley G H.1992. Japan-US Seminar on Physics of High Power Laser Matter Interaction [M]. Kyoto:World Scientific.
    [8]Xie Y J, Liu J R, Zhao X Q.2001. Laser beam smoothing and uniform illumination in ICF [J]. Laser Technology,6:013.
    [9]Gao F H, Zeng Y S, Xie S W et al.2003. Using E-beam directory writing methods to fabricated low-efficiency beam sampling grating [J]. Chinese J. Lasers,30(2):134-136.
    [10]Qiao Z F, Lu X Q, Zhao D F et al. Arrangement design of the final optics assembly for the SG-Ⅱ upgrading laser [J]. Chinese J. Lasers,35(9):009.
    [11]Britten J A, Boyd R D, Perry M D, et al.1995. Low-efficiency gratings for the third-harmonic diagnostics applications[C]//Solid State Lasers for Application to Inertial Confinement Fusion (ICF). International Society for Optics and Photonics. Proc. SPIE, 121-128.
    [12]Bett T H, Smith I C.1999. Diffractive beam samplers for lager-aperture beam diagnostics[C]//Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion. International Society for Optics and Photonics. Proc. SPIE, 444-451.
    [13]Dixit S N, Britten J A, Hyde R A, et al.2001. Fabrication and applications of large-aperture diffractive optics[C]//International Symposium on Optical Science and Technology. International Society for Optics and Photonics. Proc. SPIE,101-108.
    [14]Laumann C W, Caird J A, Smith J R, et al.1991. Development of third-harmonic output beam diagnostics on NOVA[C]//Optics, Electro-Optics, and Laser Applications in Science and Engineering. International Society for Optics and Photonics. Proc. SPIE,151-160.
    [15]Neauport J, Bouchut P, Flamand J, et al.2001. Large transmission 1ω and 3ω gratings for the LIL Laser[C]//International Symposium on Optical Science and Technology. International Society for Optics and Photonics. Proc. SPIE,41-50.
    [16]刘全,吴建宏.2007.取样光栅镀膜减反技术研究[J].强激发光与粒子束,19(1):75-78.
    [17]Chen X C. Li C, Wu J H.2009. Study on the characteristic of energy response of large sampling device to ultra-high energy laser diagnosis[C]//International Symposium on Photoelectronic Detection and Imaging 2009. International Society for Optics and Photonics. Proc. SPIE,738222-73822-5.
    [18]Bercegol H, Bouchut P R, Lamaignere L, et al.2004. The impact of laser damage on the lifetime of optical components in fusion lasers[C]//XXX V Annual Symposium on Optical Materials for High Power Lasers. Boulder Damage Symposium. International Society for Optics and Photonics. Proc. SPIE,312-324.
    [19]Menapace J A, Penetrante B, Golini D, et al.2002. Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused-silica optics[C]//Boulder Damage. International Society for Optics and Photonics. Proc. SPIE,56-68.
    [20]Genin F Y, Salleo A, Pistor T V, et al.2001. Role of light intensification by cracks in optical breakdown on surfaces [J]. JOSA A,18(10):2607-2616.
    [21]Feit M D, Rubenchik A M.2004. Influence of subsurface cracks on laser-induced surface damage[C]//XXXV Annual Symposium on Optical Materials for High Power Lasers. Boulder Damage Symposium:International Society for Optics and Photonics. Proc. SPIE, 264-272.
    [22]Camp D W, Kozlowski M R, Sheehan L M, et al.1998. Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces[C]// Laser-Induced Damage in Optical Materials. International Society for Optics and Photonics. Proc. SPIE,356-364.
    [23]Neauport J, Lamaignere L, Bercegol H, et al.2005. Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm [J]. Optics Express,13(25): 10163-10171.
    [24]Alley T, Allard P, Schuster R, et al.2010. How to polish fused silica to obtain the surface damage threshold equals to the bulk damage threshold[C]//Laser Damage Symposium XLII: Annual Symposium on Optical Materials for High Power Lasers. International Society for Optics and Photonics. Proc. SPIE,784226-784226-18.
    [25]Britten J A, Hoaglan C R, Nissen J D, et al.2008. Method for cleaning diffraction gratings: US Patent, US2008047584 [P].
    [26]陈上碧.2012.多层介质膜脉宽压缩光栅的清洗及阈值研究[D]:[博士].合肥:中国科学技术大学.
    [27]Spriggs D M, Bett T H.1993. Laser damage studies of etched diffractive-optic components[C]//Proceedings of Symposia on Laser Induced Damage in Optical Materials. Proc. SPIE,2114:136-144.
    [28]Bett T H, Stevenson R M, Taghizadeh M R, et al.1995. Diffractive optics development for application on high-power solid state lasers[C]//Solid State Lasers for Application to Inertial Confinement Fusion (ICF). International Society for Optics and Photonics. Proc. SPIE,129-140.
    [29]高福华,曾阳素,谢世伟,等.电子束直写制作低效取样光栅[J].中国激光,2003,30(2)
    [30]Chiou T B, Hahmann P, Liaw M C, et al.2000. Evaluation of fine pattern definition with electron-beam direct writing lithography[C]//Microlithography 2000. International Society for Optics and Photonics. Proc. SPIE,646-657.
    [31]Gao F, Zhu J, Huang Q.2001. Computer-generated hologram fabricated by electron-beam direct-writing [J]. Chinese Journal of laser,28(6):556-558.
    [32]Garvin H L, Au A, Minden M L.1981. Ion-etched gratings for laser applications[C]//24th Annual Technical Symposium. International Society for Optics and Photonics. Proc. SPIE, 63-68.
    [33]Hobrock L M, Garvin H L, Withrington R J, et al.2008. Method for fabrication of low efficiency diffraction gratings and product obtained thereby. US Patent, No.4,828,356[P].
    [34]毕晓川,孙光宇.1999.离子束刻蚀正交位相型Ronchi光栅研究[J].量子电子学报,16(4):371-374.
    [35]徐向东,洪义麟,霍同林,等.2000.同步辐射球面闪耀光栅的研制[J].中国科学技术大学学报,30(2):248-250.
    [36]徐向东,洪义麟,霍同林,等.2001.同步辐射Laminar光栅的研制[J].光学技术,27(5):459-461.
    [37]徐向东,洪义麟,傅绍军.2003.光刻胶灰化用于全息离子束刻蚀光栅制作[J].真空科学与技术,23(5):362-364.
    [38]徐向东,洪义麟,傅绍军,等.2004.全息离子束刻蚀衍射光栅[J].物理,33(05):0.
    [39]徐朝银,董晓浩,赵飞云,等.2006.KZ-400离子束刻蚀装置的研制[J].真空科学与技术学报,26(1):48-53.
    [40]刘颖,徐德权,徐向东,等.2007.几种常用光学材料的离子束刻蚀特性研究[J].中国科学技术大学学报,37(4):536-538.
    [41]Anner G E.1990. Planar Processing Primer [M]. New York:Van Nostrand Reinhold.
    [42]Murray C.1986. Wet Etching Update [J]. Semicond International,80-85 May.
    [43]Neauport J, Flamand J, Josserand Y, et al.2004. Diffraction gratings production for L1L high power laser: an overview[C]//Optical Systems Design. International Society for Optics and Photonics. Proc. SPIE,5252:140-147.
    [44]Touzet B M, Flamand J, Thevenon A, et al.1999. Focusing transmission gratings for high-energy lasers[C]//Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion. International Society for Optics and Photonics. Proc. SPIE,426-436.
    [45]Yu J, Britten J A, Summers L, et al.2003. Fabrication of beam sampling gratings for the national ignition facility (NIF) [C]//Lasers and Electro-Optics,2003. CLEO'03. Conference on. IEEE,5 pp.
    [46]Laumann C W, Caird J A, Smith J R, et al.1991. Development of third-harmonic output beam diagnostics on NOVA[C]//Optics, Electro-Optics, and Laser Applications in Science and Engineering. International Society for Optics and Photonics. Proc. SPIE,151-160.
    [47]Bett T H, Smith I C. Diffractive beam samplers for large-aperture beam diagnostics[C]//Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion. International Society for Optics and Photonics. Proc. SPIE, 444-451.
    [48]Neauport J, Flamand J, Josserand Y, et al.2004. Diffraction gratings production for LIL high power laser: an overview[C]//Optical Systems Design. International Society for Optics and Photonics. Proc. SPIE,5252:140-147.
    [49]Liu Q, Wu J, Li C.2006. Design of beam sampling grating and study on its diffraction action[C]//ICO20:Optical Information Processing. International Society for Optics and Photonics. Proc. SPIE,60273C-60273C-6.
    [50]陈刚,吴建宏,陈新荣,等.2006.镀铬基片全息光栅光刻胶掩模槽形参量光谱检测方法[J].中国激光,33(6):800-804.
    [51]夏小斌.2012.取样光栅制作过程中的铬掩模占宽比测量技术研究[D]:[硕十].苏州:苏州大学.
    [52]丁晓亮.2013.微结构光学表面纳米/亚纳米尺度超精密加工工艺研究[D]:[硕士].苏州:苏州大学.
    [53]Wei H, Wan-Qing H, Fang W, et al.2010. Laser-induced damage on large-aperture fused silica gratings [J]. Chinese Physics B,19(10):106105.
    [54]Moharam M G, Gaylord T K.1982. Diffraction analysis of dielectric surface-relief gratings [J]. JOSA,72(10):1385-1392.
    [55]Moharam M G, Gaylord T K.1983. Three-dimensional vector coupled-wave analysis of planar-grating diffraction [J]. JOSA,73(9):1105-1112.
    [56]Baird W E, Moharam M G, Gaylord T K.1983. Diffraction characteristics of planar absorption gratings [J]. Applied Physics B,32(1):15-20.
    [57]Moharam M G, Gaylord T K.1986. Rigorous coupled-wave analysis of metallic surface-relief gratings [J]. JOSA a,3(11):1780-1787.
    [58]Moharam M G.1988. Coupled-wave analysis of two-dimensional dielectric gratings[C]//1988 Los Angeles Symposium--OE/LASE' 88. International Society for Optics and Photonics. Proc. SPIE,8-11.
    [59]Glytsis E N, Gaylord T K.1987. Rigorous three-dimensional coupled-wave diffraction analysis of single and cascaded anisotropic gratings [J]. JOSA A,4(11):2061-2080.
    [60]Moharam M G, Grann E B, Pommet D A, et al.1995. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings [J]. JOSA A, 12(5):1068-1076.
    [61]Moharam M G, Pommet D A, Grann E B, et al.1995. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings:enhanced transmittance matrix approach [J]. JOSA A,12(5):1077-1086.
    [62]樊树维.2000.任意槽形光栅衍射特性的矢量理论分析与计算[J].光学精密工程,8(1):5-10.
    [63]曹丽梅,胡岳华,徐兢,等.2000.半导体工业中的化学机械抛光(CMP)技术[J].湖北化工,17(4):7-9.
    [64]Martinez M A.1995. A year later, CMP market has grown even hotter [J]. Solid State Technology,38(9):44-51.
    [65]Jairath R, Farkas J, Huang C K, et al.1994. Chemical-mechanical polishing-process manufacturability [J]. Solid State Technology,37(7):71.
    [66]Horiuchi O, Ikeno J, Shibutani H, et al.2007. Nano-abrasion machining of brittle materials and its application to corrective figuring [J]. Precision engineering,31(1):47-54.
    [67]DeGroote J E.2007. Surface interactions between nanodiamonds and glass in magnetorheological finishing (MRF) [D]:[Doctor]. New York:University of Rochester.
    [68]郭培基,方慧,余景池.2008.液体喷射抛光技术研究[J].激光杂志,29(1):25-27.
    [69]李兆泽.2011.磨料水射流抛光技术研究[D]:[博士].长沙:国防科学技术大学
    [70]Brown N J, Baker P C, Maney R T.1982. Optical polishing of metals[C]//25th Annual Technical Symposium. International Society for Optics and Photonics Proc. SPIE,42-57.
    [71]Runnels S R, Eyman L M.1994. Tribology Analysis of Chemical-Mechanical Polishing [J]. Journal of the Electrochemical Society,141(6):1698-1701.
    [72]Jeng Y R, Huang P Y.2004. Impact of Abrasive Particles on the Material Removal Rate in CMP A Microcontact Perspective [J]. Electrochemical and solid-state letters,7(2): G40-G43.
    [73]Brown N J.1987. Some speculations on the mechanisms of abrasive grinding and polishing [J]. Precision Engineering,9(3):129-138.
    [74]Cook L M.1990. Chemical processes in glass polishing [J]. Journal of Non-Crystalline Solids,120(1):152-171.
    [75]Tetsuro I.1998. Polishing mechanism of optical glasses [J]. Journal of Japan Society of Lubrication Engineering,33(4):267-273.
    [76]Kelsall A.1998. Cerium oxide as a route to acid free polishing [J]. Glass Technology, 39(1):6-9.
    [77]Suphantharida P, Osseo-Asare K.2004. Cerium oxide slurries in CMP. Electrophoretic mobility and adsorption investigations of ceria/silicate interaction [J]. Journal of The Electrochemical Societv,151(10):G658-G662.
    [78]Lim D S, Ahn J W, Park H S, et al.2005. The effect of CeO2 abrasive size on dishing and step height reduction of silicon oxide film in STI-CMP [J]. Surface and Coating. Technology.200(5):1751-1754.
    [79]Nojo H, Kodera M, Nakata R.1996. Slurry engineering for self-stopping, dishing free SiO2-CMP[C]//Electron Devices Meeting,1996. IEDM'96, International. IEEE,349-352.
    [80]Steinhardt R, Serfass E.1951. X-Ray Photoelectron Spectrometer for Chemical Analysis [J], Anal. Chem.23(11):1585
    [81]Nordling C, Sokolowski E, Siegbahn K.1957. Precision Method for Obtaining Absolution Values of Atomic Binding Energies [J]. Phys. Rev..105(5):1676.
    [82]Sokolowski E, Nordling C, Siegbahn K.1958. Chemical Shift Effect in Inner Electronic Levels of Cu Due to Oxidation [J]. Phys. Rev.,110(3):776.
    [83]刘世宏.王当憨,潘承煌.1988.X射线光电子能谱分析[M].北京:科学出版社
    [84]Goff R F, Smith D P.1970. Surface Composition Analysis by Binary Scattering of Noble Gas Ions [J]. J. Vac. Sci. Technol.,7(1):72.
    [85]Boerma D O.2001. Surface Physics with Low-Energy Ion Scattering [J]. Nucl, Instrum. Mtd. Phys. Res. B,183(1-2):73.
    [86]Lander J J.1953. Auger Peaks in the Energy Spectra of Secondary Electrons from Various Materials [J]. Phys. Rev.,91(6):1382.
    [87]L. A. Harris. Analysis of Materials by Electron-Excited Auger Electrons [J]. J. Appl. Phys., 1968,39(3):1419.
    [88]Harris L A.1968. Some Observations of Surface Segregation by Auger Electron Emission [J]. J. Appl. Phys.,39(3):1428.
    [89]Sanders J H.1996. Investigation of Grain Boundary Chemistry in Al-Li 2195 Welds using Auger Electron Spectroscopy [J]. Thin Solid Films,277(1-2):121.
    [90]Benninghoven A.1969. Analysis of Sunmonolayers on Silver by Negative Secondary Ion Emision [J]. Phys. Status Solidi,43(2):K169.
    [91]Wilson R G, Stevie F A, Magee C W.1989. Secondary Ion Mass Spectrometry:A Practical Handbook for Depth Profiling and Bulk Impurity Analysis [M]. New York:John Wiley.
    [92]黄惠忠.2002.论表面分析及其在材料研究中的应用[M].北京:科学技术文献出版社.
    [93]王铮,曹永明,李越生,等.二次离子质谱分析[J].上海计量测试技术,30(3):42-46.
    [94]Evans Analytical Group Website-www.eaglabs.com.
    [95]www.ukesca.org/tech/list/html.
    [96]Goff R F, Smith D P.1970. Surface Composition Analysis by Binary Scattering of Noble Gas Ions [J]. J. Vac. Sci. Technol.,7(1):72.
    [97]Boerma D O.2001. Surface Physics with Low-Energy Ion Scattering [J]. Nucl. Instrum. Mtd. Phys. Res. B,183(1-2):73.
    [98]Alben J O, Fiamingo F G.1984. Fourier transform infrared spectroscopy [J]. Optical techniques in biological research.133-179.
    [99]Buontempo J T, Rice S A. Winston R.1995. Fourier transform infrared spectrometer. US Patent. No.5,416,325 [P].
    [100]董剑、余敏.2002.傅立叶变换红外光谱仪[J].上海计量测试,29(4):40-42.
    [101]Griffiths P, De Haseth J A.2007. Fourier transform infrared spectrometry [M]. Hoboken: John Wiley & Sons.
    [102]Kneipp K, Kneipp H, Itzkan I, et al.1999. Ultrasensitive chemical analysis by Raman spectroscopy [J]. Chemical Reviews,99(10):2957-2976.
    [103]McCreery R L.2005. Raman spectroscopy for chemical analysis [M]. Hoboken:John Wiley & Sons.
    [104]Yoshiyama J, Genin F Y. Salleo A, et al.1997. Study of the effects of polishing, etching cleaving, and water leaching on the UV laser damage of fused silica[R]. Lawrence Livermore National Lab., CA (United States).
    [105]Miller P E, Suratwala T I, Bude J D, et al.2009. Laser damage precursors in fused silica[C]//Laser Damage Symposium XLI:Annual Symposium on Optical Materials for High Power Lasers. International Society for Optics and Photonics. Proc. SPIE, 75040X-75040X-14.
    [106]Britten J A, Nguyen H T.2007. Method for cleaning diffraction gratings. US Patent, Application 11/895,392[P].
    [107]陈上碧.2012.多层介质膜脉宽压缩光栅的清洗及闽值研究[D]:[博士].合肥:中国科学技术大学.
    [108]Verhaverbeke S, Messoussi R. Morinaga H, et al.1995. Recent advances in wet processing technology and science[C]//MRS Proceedings. Cambridge University Press,386:
    [109]Judge J S.1971. A study of the dissolution of SiO2 in acidic fluoride solutions [J]. Journal of the Electrochemical Society,118(11):1772-1775.
    [110]Knotter D M, Stewart N, Sharp I, et al.2005. Performing selective etch of Si3N4 and SiO2 using a single-wafer wet-etch technology [J]. MICRO-SANTA MONICA-,23(1):47.
    [111]Kern W.1970. Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology [J]. RCA review,31:187-206.
    [112]Miller P E, Suratwala T I, Bude J D, et al.2009. Laser damage precursors in fused silica[C]//Laser Damage Symposium XLI:Annual Symposium on Optical Materials for High Power Lasers. International Society for Optics and Photonics. Proc. SPIE, 75040X-75040X-14.
    [113]Thornton J A, Penfold A S, Vossen J L, et al.1978. Thin film processes [J]. Academic, New York,76.
    [114]Kern W, Schnable G L, Moss S J, et al.1987. The Chemistry of the Semiconductor Industry [J]. Blackie and Son Ltd, Glasgow,252.
    [115]Walker P, Tarn W H.1991. CRC Handbook of Etchants for Metals and Metallic Compounds [J]. CRC press
    [116]Monk D J, Soane D S, Howe R T.1993. Determination of the etching kinetics for the hydrofluoric acid/silicon dioxide system [J]. Journal of the Electrochemical Society, 140(8):2339-2346.
    [117]Verhaverbeke S, Teerlinck I, Vinckier C, et al.1994. The etching mechanisms of SiO2 in hydrofluoric acid [J]. Journal of the Electrochemical Society,141(10):2852-2857.
    [118]Somashekhar A, O'Brien S.1996. Etching SiO2 films in aqueous 0.49% HF [J]. Journal of the Electrochemical Society,143(9):2885-2891.
    [119]孙承伟.2002.激光辐照效应[M].北京:国防工业出版社.
    [120]Wood R M.2003. Laser-induced damage of optical materials [M]. CRC Press.
    [121]Becker J, Bernhardt A.1994. ISO 11254:an international standard for the determination of the laser-induced damage threshold[C]//Laser-lnduced Damage in Optical Materials:1993. International Society for Optics and Photonics. Proc. SPIE,703-713.
    [122]Sheehan L M, Kozlowski M R, Stolz C J, et al.1996. Large-area damage testing of optics[C]//Optical Instrumentation & Systems Design. International Society for Optics and Photonics. Proc. SPIE,357-369.
    [123]张问辉.2005.高功率激光诱导光学元件损伤场效应及损伤阈值测试研究[D]:[硕士].成都:四川大学.
    [124]朱耀南.2006.光学薄膜激光损伤闽值测试方法的介绍和讨论[J].激光技术.30(5):532.
    [125]Wolfe J, Runkel M, Folta J, et al.2005. Small Optics Laser Damage Test Procedure[R]. Tech. Rep. MEL01-013-0D (Lawrence Livermore National Laboratory, Livermore, CA 2005).
    [126]Sheehan L, Hendrix J L, Battersby C, et al.1999. National Ignition Facility Small Optics Laser-Induced Damage and Photometry Measurements Program[C]//SPIE's International Symposium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics. Proc. SPIE,3782:518-524.
    [127]Borden M R, Folta J A, Stolz C J, et al.2005. Improved Method for Laser Damage Testing Coated Optics[C]//Boulder Damage Symposium XXXVII:Annual Symposium on Optical Materials for High Power Lasers. International Society for Optics and Photonics. Proc. SPIE,59912A-59912A-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700