基于刚性散体的抛光头柔度控制与抛光技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的进步和制造业的不断发展,模具的应用日益广泛,特别是在航空航天、汽车制造业等高新技术领域。模具的制造设计水平已经成为衡量一个国家工业发展水平的重要标志。但是,国内外对模具表面的精加工多以手工抛光为主,去除效率低,加工周期长,质量也不稳定。为解决这些问题,本文提出了一种新的柔性抛光技术——基于刚性散体的柔度连续可调抛光技术。基于刚性散体的柔度连续可调抛光技术是柔性抛光技术(如气囊抛光和磁流变液抛光)的延续,是一种可以得到高精度和高效率的先进抛光技术,是一种具有较强创新性、实用性的模具自由曲面抛光技术,值得进行积极探索和推广应用。该抛光技术用于金属模具的抛光,可以精确地控制被抛光工件的型面,材料去除效率高,对于模具的粗抛很有意义。本文研究的内容主要包括以下几个部分:
     1、在对国内外模具抛光技术和应用状况进行分析后,结合本项目抛光技术的特点,基于散体力学、电磁学原理及偶极子的物理模型,建立以理想铁球为研究对象的模型,并通过剪切试验对这一理想铁球模型进行修正。
     2、基于修正的力学模型,开发了一种应用于模具自由曲面抛光的机器人抛光系统。该系统利用MOTOMAN-HP20型机器人作为抛光工具的载体,通过对该型机器人的控制实现抛光轨迹的自动规划,从而构成一套完整的自动化抛光系统。与传统的刚性抛光方式相比,由于该系统采用柔性技术,抛光头刚度可随磁场强度实时调整,且其不同的抛光轨迹均可通过机器人的控制加以实现,因此该系统能够实现不同型面的柔性抛光。经试验验证,该抛光技术切实可行,去除效率高。
     3、为本抛光技术在模具行业内的推广应用,在分析机床功能和运动要求的基础上,设计了基于刚性散体的柔性抛光原型样机,并对其中的关键技术进行分析和研究。
     本文对磁控散体抛光的原理和应用进行了初步探讨,为今后进一步的研究打下了良好的基础。
Along with the progress on science and technology and the continuous development of manufacturing industry, mold is widely used day by day particularly in high-tech fields such as aerospace, automotive manufacturing etc. Mold manufacturing and design level has become an important symbol to measure a country's industrial development level. However, finishing machining method on the surface of mold is mainly manual polishing nowadays, which has a low removing efficiency, long processing cycle and unstable quality. In order to solve these problems, a new flexible polishing technology that is adjustable flexibility polishing technology based on rigid granular was presented in this dissertation. Adjustable flexibility polishing technology based on rigid granular is a continuation of flexible polishing technology such as bonnet tool polishing and magnetorheological fluid polishing, which is a advanced polishing technique with high precision and high efficiency. It is also a kind of mold free-surface polishing technology with strong innovation and practicality, which worth to explore actively and expand. While this polishing technology were used in polishing metal mold, the workpiece surface can be precisely controlled by polishing with high material removal efficiency, which has a significant meaning in rough polishing mold. The contents of the study include the following parts:
     (1) A model regarded ideal iron sphere as study object was established after the analysis on mold polishing technology and application situation, with the combination of characteristics of polishing technology, based on granular mechanics, electromagnetic principle and physical model of dipole. Then the model was modified by shear test.
     (2) A robot polishing system was developed applied in polishing free-form surface of mold based on modified mechanical model. The system uses Motorman MOTOMAN-HP20 as a carrier of polishing tools. An automated polishing system was established through controlling the robot to achieve the automatic polishing trajectory planning. Compared with traditional polishing method, this system can realize flexible polishing on different types of surface. Because this system uses flexible technology, the polishing head stiffness can be adjusted along with the magnetic field strength in real-time, and different polishing trajectories can be realized by controlling the robot. The experimental results show that the polishing technology is practical, with high removal efficiency.
     (3) A flexible polishing prototype based on rigid granular was designed after the analysis of machine function and movement requirements in order to spread the polishing technology application on mold industry. Some key technology were also analyzed and researched.
     In this dissertation, the polishing principle and application of magnetic granular was also discussed which provide a good foundation for further research.
引文
[1]Cai G Q,lu Y S,Cai R,et al.Analysis on lapping and polishing pressuredistribution[J].Annals of the CIRP.1998,47(1):235-238.
    [2]Weule H,S E W.Automation of the surface finishing in the manufacturing of dies and[J].Annals of the CIRP.1990,39(1):299-303.
    [3]Liu H T.To speed up rohotic mold polishing by hard tools[J].Prooeeings of the IEEE international conference on Industrial Technology.1996,10:513-516.
    [4]丁金福,李伟,虞付进,等.模具自由曲面抛光过程的分析与研究[J].模具工业.2006,32(9):66-70.
    [5]Chen S L L Y C.Post Processor Development of a Six Degrees of Freedom Parallel Link Machine Tool[J].The International Journal of Advanced Manufacturing Technology.2005(7):467-475.
    [6]袁楚明,张雷,陈幼平,等.机器人辅助模具自动抛光研究及发展趋势[J].中国机械工程.2000,11(12):1428-1430.
    [7]王通,周祖德,袁楚明,等.机器人模具抛光自由曲面刀具轨迹的生成研究[J].中国机械工程.2001,12(4):401-404.
    [8]王平,杨沿平,邓晓,等.基于模具表面抛光机器人系统的运动控制研究[J].中国机械工程.2007,18(20):2422-2425.
    [9]张雷,袁楚明,陈幼平,等.模具曲面机器人抛光工艺过程的建模与仿真[J].华中科技大学学报(自然科学版).2001,29(4):50-52.
    [10]周永泰.中国模具工业的现状与发展[J].航空制造技术.2007(12):37-39.
    [11]赵雪松,杨明,朱树敏.模具型腔复合抛光工艺规律研究[J].现代制造工程.2002(10):61-63.
    [12]D Moreton,R Durnford.Three-dimensional tool compensation for a three-axis turning center[J].Int.J.Adv.Manuf.Technol.1999(15):649-654.
    [13]H.h.Tsai,H.Hocheng.Monitoring strategy of thermal-induced convex deformation of workpiece in surface grinding[J].Adv.Manuf.Technol.2001(17):710-714.
    [14]Guillot A E.Accuracy enhancement of multi-axis CNC machines through on-line neuro compensation[J].Intelligent Manuf.2000,11(6):535-545.
    [15]H.k.Tonshoff B K A C R.Process monitoring in grinding using micromagnetic techniques[J].Adv.Manuf.Technol.1999(15):694-698.
    [16]马泳涛,陈五一,孙玉静,等.抛光CVD金刚石的夹具设计及试验研究[J].金刚石与磨料磨具工程.2007(3):36-39.
    [17]蒋建忠,赵永武,雒建斌,等.一种基于非晶层粘性流动的机械化学抛光模型[J].中国机械工程.2006,17(24):2540-2546.
    [18]王永光,赵永武,吴燕玲,等.超精密抛光材料的非连续去除机理[J].中国机械工程.2007,18(9):1032-1035.
    [19]孙家振,潘国顺,朱永华,等.颗粒等抛光液组分对硬盘盘基片抛光的影响[J].润滑与密封.2007,32(11):1-430.
    [20]曹经倩,刘炳根,周雅.焊接不锈钢的电化学抛光[J].材料保护.2003,36(6):25-26.
    [21]秦毅红,胡拥军,石西昌,等.铝的碱性电解抛光[J].材料保护.2002,35(1):17-18.
    [22]Drouiche N,Ghaffour N,Lounici H,et al.Electrochemical treatment of chemical mechanical polishing wastewater:removal of fluoride—sludge characteristics—operating cost[J].Desalination.2008,223(1-3):134-142.
    [23]Hebert M,Rochefort D.Electrode passivation by reaction products of the electrochemical and enzymatic oxidation of p-phenylenediamine[J].Electrochimica Acta.2008,In Press,Accepted Manuscript:142.
    [24]Rafiquee M Z,Saxena N,Khan S,et al.Influence of surfactants on the corrosion inhibition behaviour of 2-aminophenyl-5-mercapto-l-oxa-3,4-diazole(AMOD)on mild steel[J].Materials Chemistry and Physics.2008,107(2-3):528-533.
    [25]张文玉.超声波—电化学抛光技术在模具中的应用[J].机床与液压.2003(4):299-300.
    [26]Pa P S.Electrode form design of large holes of die material in ultrasonic electrochemical finishing[J].Journal of Materials Processing Technology.2007,192-193:470-477.
    [27]Wu A T,Mammosser J,Phillips L,et al.Smooth Nb surfaces fabricated by buffered electropolishing[J].Applied Surface Science.2007,253(6):3041-3052.
    [28]Seo Y J,Park J S,Woo-sun L.Chemical mechanical polishing of PZT thin films for FRAM applications[J].Microelectronic Engineering.2006,83(11-12):2238-2242.
    [29]彭小强,戴一帆,李圣怡.磁流变抛光的材料去除数学模型[J].机械工程学报.2004,40(4):67-70.
    [30]张朝辉,雒建斌,雷红,等.化学机械抛光中的纳米级薄膜流动[J].中国机械工程.2005,16(14):1282-1285.
    [31]Guay F,Ozcan L C,Kashyap R.Surface relief diffraction gratings fabricated in ZnSe by frequency doubled Nd:YAG laser micromachining[J].Optics Communications.2008,281(5):935-939.
    [32]Koukharenko E,Tudor M J,Beeby S P.Performance improvement of a vibration-powered electromagnetic generator by reduced silicon surface roughness[J].Materials Letters.2008,62(4-5):651-654.
    [33]Hanser D,Tutor M,Preble E,et al.Surface preparation of substrates from bulk GaN crystals[J].Journal of Crystal Growth.2007,305(2):372-376.
    [34]张学成,戴一帆,李圣怡,等.磁射流抛光技术研究[J].机械设计与制造.2007(12):114-116.
    [35]胡伟,魏昕,谢小柱,等.化学机械抛光中抛光垫修整的作用及规律研究[J].金刚石与磨料磨具工程.2007(5):58-63.
    [36]车翠莲,黄传真,朱洪涛,等.磨料水射流抛光技术的研究现状[J].工具技术.2007,41(10):14-16.
    [37]王永光,赵永武.粘着力对化学机械抛光芯片分子去除机理影响的数学模型[J].半导体学报.2007,28(12):2018-2022.
    [38]Lohbauer U,Muller F A,Petschelt A.Influence of surface roughness on mechanical strength of resin composite versus glass ceramic materials[J].Dental Materials.2008,24(2):250-256.
    [39]Hu J,Chou Y K,Thompson R G,et al.Characterizations of nano-crystalline diamond coating cutting tools[J].Surface and Coatings Technology.2007,202(4-7):1113-1117.
    [40]Li J L,Wang L J,He T,et al.Surface graphitization and mechanical properties of hot-pressed bulk carbon nanotubes compacted by spark plasma sintering[J].Carbon.2007,45(13):2636-2642.
    [41]Koukharenko E,Tudor M J,Beeby S P.Performance improvement of a vibration-powered electromagnetic generator by reduced silicon surface roughness[J].Materials Letters.2008,62(4-5):651-654.
    [42]王慧军,张飞虎,赵航,等.超声波磁流变复合抛光中几种工艺参数对材料去除率的影响[J].光学精密工程.2007,15(10):1583-1588.
    [43]蒋建忠,赵永武.一种新型的机械化学抛光模型[J].江南大学学报(自然科学版).2007,6(5):578-582.
    [44]Lei H,Lu H,Luo J,et al.Preparation of[alpha]-alumina-g-polyacrylamide composite abrasive and chemical mechanical polishing behavior[J].Thin Solid Films.2008,516(10):3005-3008.
    [45]Drouiche N,Ghaffour N,Lounici H,et al.Electrochemical treatment of chemical mechanical polishing wastewater:removal of fluoride—sludge characteristics—operating cost[J].Desalination.2008,223(1-3):134-142.
    [46]Kim S,So J H,Lee D J,et al.Adsorption behavior of anionic polyelectrolyte for chemical mechanical polishing(CMP)[J].Journal of Colloid and Interface Science.2008,319(1):48-52.
    [47]张峰,张斌智.磁流体辅助抛光工件表面粗糙度研究[J].光学精密工程.2005,13(1):34-39.
    [48]Zhang L,Zhao Y W,He X S,et al.An investigation of effective area in electrorheological fluid-assisted polishing of tungsten carbide[J].International Journal of Machine Tools and Manufacture.2008,48(3-4):295-306.
    [49]Das M,Jain V K,Ghoshdastidar P S.Fluid flow analysis of magnetorheological abrasive flow finishing(MRAFF)process[J].International Journal of Machine Tools and Manufacture.2008,48(3-4):415-426.
    [50]Cheng H,Yeung Y,Tong H.Viscosity behavior of magnetic suspensions in fluid-assisted finishing[J].Progress in Natural Science.2008,18(1):91-96.
    [51]Akagami Y,Umehara N.Development of electrically controlled polishing with dispersion type ER fluid under AC electric field[J].Wear.2006,260(3):345-350.
    [52]Cai G Q,lu Y S,Cai R,et A.Analysis on lapping and polishing pressuredistribution[J].Annals of the CIRP,1998,47(1):235-238.
    [53]Wang Y,Zhao Y.Modeling the effects of oxidizer,complexing agent and inhibitor on material removal for copper chemical mechanical polishing[J].Applied Surface Science.2007,254(5):1517-1523.
    [54]Tam H Y,Cheng H B,Wang Y W.Removal rate and surface roughness in the lapping and polishing of RB-SiC optical components[J].Journal of Materials Processing Technology.2007,192-193:276-280.
    [55]Wang Y,Zhao Y,An W,et al.Modeling the effects of cohesive energy for single particle on the material removal in chemical mechanical polishing at atomic scale[J].Applied Surface Science.2007,253(23):9137-9141.
    [56]Ng D,Kulkarni M,Johnson J,et al.Oxidation and removal mechanisms during chemical-mechanical planarization[J].Wear.2007,263(7-12):1477-1483.
    [57]方慧,郭培基,余景池,等.液体喷射抛光技术材料去除机理的有限元分析[J].光学精密工程.2006,14(2):218-223.
    [58]申儒林,钟掘.GMR硬盘磁头自由磨粒抛光材料去除机理研究[J].四川大学学报(工程科学版).2007,39(4):103-108.
    [59]王永光,赵永武,吴燕玲,等.超精密抛光材料的非连续去除机理[J].中国机械工程.2007,18(9):1032-1035.
    [60]朱永伟,何建桥,.固结磨料抛光垫作用下的材料去除速率模型[J].金刚石与磨料磨具工程.2006(3).
    [61]唐宇,戴一帆,彭小强,.磁流变抛光工艺参数优化研究[J].中国机械工程.2006,17(s2): 324-327.
    [62]刘玉岭,李嘉席,檀柏梅,等.ULSI制备中多层布线导体铜的抛光液与抛光技术的研究[J].电子工业专用设备.2007(10):17-21.
    [63]Charlton P,Blunt L.Surface and form metrology of polished "freeform" biological surfaces[J].Wear.2008,264(5-6):394-399.
    [64]Kim S W,Walker D,Brooks D.Active profiling and polishing for efficient control of material removal from large precision surfaces with moderate asphericity[J].Mechatronics.2003,13(4):295-312.
    [65]Schinhaerl M,Smith G,Stamp R,et al.Mathematical modelling of influence functions in computer-controlled polishing:Part Ⅰ[J].Applied Mathematical Modelling.2007,In Press,Corrected Proof.
    [66]Lee M C,Go S J,Lee M H,et al.A robust trajectory tracking control of a polishing robot system based on CAM data[J].Robotics and Computer-Integrated Manufacturing.2001,17(1-2):177-183.
    [67]彭小强,戴一帆,李圣怡,等.磁流变抛光工艺参数的正交试验分析[J].光学技术.2006,32(6):886-888892.
    [68]彭小强,戴一帆,李圣怡.磁流变抛光中的磁场与磁流变液缎带成型分析[J].高技术通讯.2004,14(4):58-60.
    [69]彭小强,戴一帆,李圣怡.磁流变抛光的材料去除数学模型[J].机械工程学报.2004,40(4):67-70.
    [70]彭小强,戴一帆,李圣怡,等.回转对称非球面光学零件磁流变成形抛光的驻留时间算法[J].国防科技大学学报.2004,26(3):89-92.
    [71]彭小强,戴一帆,唐宇,等.基于灰色预测控制的磁流变抛光液循环控制系统[J].光学精密工程.2007,15(1):100-105.
    [72]彭小强,尤伟伟,石峰,等.磁流变液剪切屈服应力模型的理论分析与试验[J].国防科技大学学报.2006,28(4):110-114.
    [73]孙希威,张飞虎,董申,等.磁流变抛光去除模型及驻留时间算法研究[J].新技术新工艺.2006(2):73-75.
    [74]孙希威,张飞虎,董申,等.磁流变抛光光学曲面的两级插补算法[J].光电工程.2006,33(2):61-64.
    [75]王贵林,张飞虎,袁哲俊.磁流变抛光的确定量加工模型与影响因素[J].机械工程师.2004(5):3-6.
    [76]张峰.几种参数对磁流变抛光的影响[J].光学技术.2000,26(3):220-221.
    [77]张峰,潘守甫,张学军,等.磁流变抛光材料去除的研究[J].光学技术.2001,27(6):522-523525.
    [78]张峰,余景池,张学军,等.磁流变抛光技术[J].光学精密工程.1999,7(5).
    [79]张峰,张学军,余景池,等.磁流变抛光数学模型的建立[J].光学技术.2000,26(2):190-192.
    [80]程灏波,冯之敬,王英伟,等.磁流变抛光超光滑光学表面[J].哈尔滨工业大学学报.2005,37(4):433-436.
    [81]程灏波,冯之敬,王英伟.磁流变抛光光学非球面元件表面误差的评价[J].清华大学学报(自然科学版).2004,44(11):1497-1500.
    [82]程灏波,冯之敬,王英伟.油基磁流变液的开发及抛光性能研究[J]_光电工程.2004,31(10):28-31.
    [83]程灏波,王英伟,冯之敬,等.永磁流变抛光纳米精度非球面技术研究[J].光学技术.2005, 31(1):52-54.
    [84]高波谢大纲,姚英学,等.气囊式工具抛光新技术[J].光学技术.2004,30(3):333-336.
    [851高波,姚英学,谢大纲,等.气囊抛光进动机构的运动建模与仿真[J].机械工程学报.2006,42(2):101-104.
    [86]高波,姚英学,谢大纲,等.气囊抛光工具的研制及特性测试[J].现代制造工程.2004(10):52-54.
    [87]宋剑锋,姚英学,谢大纲,等.超精密气囊工具抛光方法的研究[J].华中科技大学学报(自然科学版).2007,35(z1):104-107.
    [88]王云飞,姚英学,余顺周,等.回转对称非球面气囊抛光控制算法研究[J].现代制造工程.2006(8):9-1114.
    [89]余顺周,姚英学.气囊抛光数控机床后置处理算法的研究[J].机械制造.2007,45(2):16-18.
    [90]余顺周,姚英学,高波,等.气囊式抛光机数控系统的研究与开发[J].机床与液压.2007,35(5):13-1541.
    [91]计时鸣,金明生,张宪,等.应用于模具自由曲面的新型气囊抛光技术[J].机械工程学报.2007(8).
    [92]张雷,袁楚明,周祖德,等.模具曲面抛光时表面去除的建模与试验研究[J].机械工程学报.2001,29(12):50-52.
    [93]陈仲颐等.土力学[M].北京:清华大学出版社,1994.37-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700