模具曲面气囊进动抛光技术及实现研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在模具制造过程中,为提高模具的精度和品质,光整加工必不可少。而随着产品的个人化、精致化,曲面的设计和应用越来越多,加工难度相对提高。目前,模具曲面抛光主要采用手工操作,生产效率低,且难以保证稳定的抛光质量,使得抛光作业成为模具自动化制造的瓶颈。
     本文针对实现模具曲面自动化抛光这一难点和热点问题,结合国家自然科学基金项目(No.50575208)的研究,提出一种基于气囊抛光工具的模具曲面气囊进动抛光技术。该技术基于柔性可控的气囊抛光工具与模具曲面顺从接触和机器人对抛光工具的位姿与抛光路径控制,保证了对曲面的面形修正精度,获得高表面质量,实现了模具曲面高效、精密、自动化抛光。
     本文的主要工作如下:
     1)气囊进动抛光时变材料去除特性研究。对气囊非进动和进动抛光的原理与效果进行了对比研究,分析了定点进动和连续进动抛光,为抛光工具在机器人控制下实现连续进动运动奠定了理论基础:对气囊进动抛光过程中的磨粒运动趋势、分布状态、作用机理等进行了理论分析和实验研究,为时变材料去除模型、加工主动控制和轨迹优化研究奠定了基础;提出基于磨粒群损耗因子的气囊进动抛光时变材料去除模型,并进行了补偿实验研究,实现了材料的均匀去除,获得稳定的表面质量。
     2)气囊进动抛光进动比和初始姿态角研究。对不同下乐量和充气压力与不同曲率半径工件接触时的气囊接触力进行实验研究与分析,为抛光接触力控制提供了理论依据;对不同气囊下压量、充气压力、倾角、壁厚和橡胶弹性模量的气囊进行接触力和接触压力均匀性的正交仿真和分析,获得了灵敏度排序和结果预测模型,为正确选择加工工艺参数和橡胶气囊提供了应用依据:进行等壁厚和非等壁厚气囊对接触力、压力分布均匀性和自身形变的影响研究,为优化气囊结构提供了依据;对气囊进动抛光速度场进行研究,给出切向速度和切削方向表达式,定义进动比和初始姿态偏转角,并进行影响作用分析,确定了初始姿态偏转角优化组合,为气囊进动抛光轨迹优化研究提供了保证;在气囊接触力、压力分布和速度场等分析基础上,给出材料去除模型建模方法,实现MATLAB环境下的材料去除仿真。
     3)气囊进动抛光轨迹优化研究。对去除任意外形轮廓的气囊进动抛光工艺规划策略、驻留时间、进给速度和接触边缘效应等问题进行研究和分析;对不同进动比时的切削方向分布和材料去除特性进行分析,给出优化进动比和对应的进给速度,为气囊进动抛光叠加次数优化和行间距优化奠定了基础;对不同初始姿态角组合叠加对材料去除特性的影响进行研究,给出叠加次数优化值;提出一种基于概率技术的气囊进动抛光轨迹规划二分优化方法,对气囊进动抛光行间距优化问题进行研究,给出优化值。
     4)气囊进动抛光系统及工艺的实现研究。对六自由度机器人辅助实现气囊连续进动抛光问题进行研究,建立气囊连续进动抛光离线规划原型系统,为实现自动化抛光和轨迹规划奠定了重要基础;基于LabVIEW建立了气囊进动抛光接触力神经网络控制系统,进行气囊输入气压的预测和抛光接触力控制,并通过抛光接触力跟踪仿真和实验研究,验证了气囊进动抛光接触力控制平台的跟踪特性:基于建立的气囊连续进动抛光离线规划原型系统和气囊抛光接触力神经网络控制系统,进行气囊进动抛光工艺实验研究,获得了高质量的表面。
     本文研究成果对于推进模具曲面精密、高效、自动化抛光技术的发展具有一定的理论指导意义和技术借鉴价值。
In order to improve the precision and quality of the mould, polishing is necessary in the mould manufacturing process. Well, with the products become personalized and refined, curved design and application is more and more and processing difficult relatively improve. At present, curved surface mould polishing is mainly manual with low production efficiency and unstable polishing quality. This makes polishing become the biggest bottleneck in the automated mould polishing.
     Focusing on the crux and hot topic of polishing curved surface mould and combing the research supported by the National Natural Science Foundation of China (No.50575208), a novel curved surface mould polishing with contimuous precession process technique is proposed based on the gasbag polishing tool. This kind of technique is based on compliant contact between controllable flexibility gasbag polishing tool and mould free-from surface and the polishing tool pose and path planning control, which guarantees the local surface shape amendment precision and the quality of curved surface. The efficiency, accuracy and automation of polishing can be realized.
     Main works of this dissertation are shown as follows:
     1) The time-varying material removal characteristic of gasbag polishing with continuous precession process is analyzed. Comparative study of the principle and effect of the gasbag polishing with continuous precession process and without continuous precession process is carried out. The gasbag sentinel precession and continuous precession are analyzed and laid a theoretical foundation for the polishing tool to achieve continuous precession in the robot control. The abrasive movement trend, distribution state, mechanism of action and time-varying characteristics of the polishing with continuous precession process are researched through the experiments and simulation, which laid a foundation for time-varying material removal model, processing active control and trajectory optimization study. The time-varying material removal model is proposed based on the loss factor of abrasive group and a uniform removal of material is realized. The stable surface quality is obtained.
     2) The feed rate and initial posture deflection angle of gasbag polishing with continuous precession process are studied. The polishing contact force with different downward depth, inflation pressure and radius of curvature is researched through experiments, which provides the theoretical basis for the polishing contact force compensation experiments. The contact force and contact pressure's uniformity orthogonal simulation and analysis are done for sensitivity sort and forecast the result with different downward depth, inflation pressure, angle, thickness and the rubber elastic modulus of the gasbag and provide the basis for the correct selection of the process parameters and gasbag. The influence of the equal wall thickness and unequal wall thickness gasbag to the contact force and the uniformity of pressure distribution are studied. Based on the velocity field research, the tangential velocity and the cutting direction expression are given. The feed rate and initial posture deflection angle are defined and the optimized combination method of the initial posture deflection angle is determined, which provide guarantee for the trajectory optimization study of the gasbag polishing with continuous precession process. Based on the analysis of the contact force, pressure distribution and velocity field, the material removal modeling idea is given and the material removal simulation is realized in the MATLAB environment.
     3) The trajectory optimization of the gasbag polishing with continuous precession process is studied. The process planning strategy, dwell time, feed rate and contact edge effect of gasbag polishing with continuous precession process are studied and analyzed. The cutting direction distribution and material removal characteristics are studied on the different precession ratio. The optimized precession ratio and the corresponding feed rate is given, which laid a foundation for optimize the stacking fold and line space. The material removal characteristic under different initial posture deflection angles stacking is analyzed and the optimized stacking fold is given. A binary optimization method of trajectory planning based on probability technology is proposed. The line space optimization problem is studied and the optimization value is given.
     4) The gasbag polishing precession system and the polishing process are studied. Establish the offline planning prototype system of the gasbag polishing with continuous precession process based on the study of the robot-assisted gasbag polishing with continuous precession process, which laid an important foundation for realizing the automation polishing and trajectory planning. The gasbag polishing contact force network control system is designed based on LabVIEW. It can realize the forecast of gasbag input pressure and the control of polishing contact force. The tracking characteristic of the gasbag polishing contact force control platform is verified through the tracking simulation and experiment of the contact force. The process experiment research of the gasbag continues precession is done and the ideal results are achieved based on the offline planning prototype system and the gasbag polishing contact force network control system.
     This dissertation has some significant theoretical guidance and technical reference value for propelling the development of polishing technology with high level of efficiency, accuracy and automation for curved surface mould.
引文
[1]D.D. Walker, A.T.H. Beaucamp, V. Doubrovski, et al. New results extending the Precessions process to smoothing ground asplieres and producing freeform parts [A]. Proceedings of SPIE-The International Society for Optical Engineering[C],2005,5869:1-9.
    [2]D. D. Walker, A. Beaucamp, C. Dunn, et al. Active control of edges and global microstructure on segmented mirrors [A].Proceedings of SPIE-The International Society for Optical Engineering[C], 2008,7018:1812-1812
    [3]R.G. Bingham, D.D. Walker, D-H. Kim, et al. A Novel Automated Process for Aspheric Surfaces [A]. Proc. SPIE 45th Annual Meeting, the International Symposium on Optical Science and Technology[C],2000,4093:445-448.
    [4]D.D. Walker. R. Freeman. G. McCavana, et al. The Zeeko/UCL Process for Polishing Large Lenses and Prisms [A]. Proc. of Large Lenses and Mirrors conference[C],2001,106-111.
    [5]D. Walker, R. Freeman, G. Hobbs. Zeeko 1 metre polishing system [A].7th Int. Conf Lamdamap Cranfield, UK,2005:240
    [6]D.D. Walker, A.T.H. Beaucamp, C. Dunn, et al. First Results on Free-form Polishing Using the Precessions Process [A]. Proc. ASPE Winter Conference'Freeform Optics, Design, Fabrication, Metrology. Assembly'[C].2004,31:29-34.
    [7]D.D. Walker, A.T.H. Beaucamp. R.G. Bingham, et al. Precessions aspheric polishing:-New results from the development programme [A]. Proceedings of SPIE-The International Society for Optical Engineering[C],2003,5180:15-28.
    [8]D.D. Walker, A.T.H. Beaucamp, R.G. Bingham, et al. The precessions process for efficient production of aspheric optics for large telescopes and their instrumentation [A]. Proceedings of SPIE-The International Society for Optical Engineering[C],2002,4842:73-84.
    [9]D.D. Walker, A.T.H. Beaucamp, C. Dunn, et al. Active control of edges and global microstructure on segmented mirrors [A]. Proceedings of SPIE-The International Society for Optical Engineering[C], 2008,7018:p701812.
    [10]R. Freeman, A.T.H. Beaucamp, G. McCavana, et al. Manufacturing processes for free-form optics [A]. Proc conference Chubu [C],2007.
    [11]D.D. Walker, A.T.H. Beaucamp. V. Doubrovski, et al. Automated optical fabrication:First results from the new "Precessions" 1.2m CNC polishing machine [A]. Proceedings of SPIE-The International Society for Optical Engineering[C],2006,6273:p.627309-1 to 627309-8.
    [12]M.J. Tsai. J.F. Huang, W.L. Kao. Robotic polishing of precision molds with uniform material removal control [J]. International Journal of Machine Tools & Manufacture,2009,49:885-895.
    [13]Y.T Su, J.Y. Sheen. A process planning strategy for removing arbitrary and axially symmetric profile by a polishing process [J]. International Journal of Machine Tools & Manufacture,1999, (39): 187-207.
    [14]D.D. Walker, A.T.H. Beaucamp, C. Dunn, et al. Active control of edges and global microstructure on segmented mirrors [A]. Proceedings of SPIE-The International Society for Optical Engineering[C], 2008,7018:p701812.
    [15]D.D. Walker, D. Brooks, R. Freeman, et al. The first aspheric form and texture results from a production machine embodying the Precession process [A]. Proc. of 46th Annual Meeting of SPIE[C],2001,4451:267-276.
    [16]D.D. Walker, A.P. Doel, R.G. Bingham, et al. The Euro50 Extremely Large Telescope [A], Proceedings of SPIE-The International Society for Optical Engineering [C].2002.4840:214-225
    [17]D.D. Walker, A.T.H. Beaucamp. D. Brooks, et al. Novel CNC polishing process for control of form and texture on aspheric surfaces [A]. Proceedings of SPIE-The International Society for Optical Engineering[C].2002.4767:99-105.
    [18]D.D. Walker, A. King. The 'Precessions' tooling for polishing and figuring flat, spherical and aspheric surfaces [J]. Optics Express,2003.11:958-964.
    [19]D.D. Walker, P. Shore. Manufacture of segments for extremely large telescopes:A new perspective [A]. Proceedings of SPIE-The International Society for Optical Engineering[C].2004.5382: 277-284.
    [20]D.D. Walker. A.T.H. Beaucamp, D. Brooks. New results from the Precessions polishing process scaled to larger sizes [A]. Proceedings of SPIE- The International Society for Optical Engineering[C],2004,5494:71-80.
    [21]D.D. Walker, A.T.H. Beaucamp, D. Brooks. Recent development of Precessions polishing for larger components and free-form surfaces [A]. Proceedings of SPIE-The International Society for Optical Engineering[C],2004,5523:281-289.
    [22]D.D. Walker. A.T.H. Beaucamp. V. Doubrovski. Recent advances in the control of form and texture on free-form surfaces [A]. Proceedings of SPIE-The International Society for Optical Engineering[C],2005,5965:59650S.
    [23]D.D. Walker. M. Hutchinson. Matching Manufacturing and Measurements-solutions for Free-Form Surfaces [A]. Proceedings of the VisionOnline Seminar'Ultra Precision Optics- Meeting the Manufacturing Challenge & The Metrology of Advanced Optics' [C],2005:28.
    [24]D.D. Walker. A.T.H. Beaucamp, V. Doubrovski. Commissioning of the first Precessions 1.2m CNC polishing machines for large optics [A]. Proceedings of SPIE-The International Society for Optical Engineering[C],2006,6288:62880P
    [25]D.D. Walker, A.T.H. Beaucamp. V. Doubrovski. New developments in the Precessions process for manufacturing free-form, large-optical, and precision-mechanical surfaces [A]. Proceedings of SPIE-The International Society for Optical Engineering[C],2006,6148(5):1-9.
    [26]D.D. Walker, A.T.H. Beaucamp, R. Freeman. Precessions 21/2D correction of an aspheric mirror optical fabrication and testing [J]. Proc. Optical Society of America Rochester, NY,2006
    [27]D.D. Walker. R. Freeman. R. Morton. Use of the 'Precessions' process for prepolishing and correcting 2D and 21/2D form [J]. Optics Express.2006,14:11787-11795
    [28]D.D. Walker. R. Evans. S. Hamidi. The precessions polishing and hybrid grolishing processes-implementation in a novel 1.2m capacity machine tool [A], Lamdamap, Cardiff.2007
    [29]Christina R. Dunn, David D. Walker. Pseudo-random tool paths for CNC sub-aperture polishing and other applications [J]. Optics Express,2008,16(23):18942-18949
    [30]H. C. Kim. Tool path generation for contour parallel milling with incomplete mesh model [J]. International Journal of Advanced Manufacturing Technology,2010,58 (5-8):443-454
    [31]W. He, M. Lei. H.Z. Bin. Iso-parametric CNC tool path optimization based on adaptive grid generation [J]. International Journal of Advanced Manufacturing Technology,2009,41 (5-6): 538-548
    [32]M.Liu, X.L. Ding, Y.F. Yan, et al. Study on optimal path changing tools in CNC turret typing machine based on genetic algorithm [J]. IFIP Advances in Information and Communication Technology.2011,34 (4):345-354
    [33]N. Wang, K. Tang. Five-axis tool path generation for a flat-end tool based on iso-conic partitioning [J]. CAD Computer Aided Design,2008,40 (12):1067-1079
    [34]B. Lauwers, D. Plakhotnik. Five-axis milling tool path generation with dynamic step-over calculation based on integrated material removal simulation [A]. CIRP Annals-Manufacturing Technology[C], 61 (1):139-142
    [35]D.Walker, C.Y.Yu, H.Y. Li, et al. Edges in CNC polishing:from mirror-segments towards semiconductors, paper 1:edges on processing the global surface [J]. Optics Express,2012,20(18) :19787-19798
    [36]H.Y. Li, G.Y.Yu, D.Walker. Modeling and measurement of polishing tool influence functions for edge control [J]. Journal of the European Optical Society-Rapid Publications,2011,6:11048-6
    [37]A. Beaucamp, R. Freeman, R. Morton, et al. Removal of diamond-turning signatures on x-ray mandrels and metal optics by fluid-jet polishing [A]. Proceedings of SPIE-The International Society for Optical Engineering [C],2008,7018:1835-1835
    [38]张伟,李洪玉,金海.气囊抛光去除函数的数值仿真与试验研究[J].机械工程学报,2009,45(2):308-312
    [39]宋剑锋,姚英学,谢大纲,等.平面和曲面光学零件气囊抛光材料去除的比较研究[J].光学技术,2008,34(s):63-66
    [40]杨炜.郭隐彪,许乔,等.超精抛光中边缘效应对材料去除量的影响[J].强激光与粒子束,2008,20(10):1653-1657
    [41]Poniatowska Magorzata. Parameters for cmm contact measurements of free-form surfaces [J]. Metrology and Measurement Systems,2011,18 (2):3
    [42]D. W. Kim, W. H. Park, H.K. An, et al. Parametric smoothing model for visco-elastic polishing tools [J]. Optics Express,2010.18(21):22515-22526
    [43]H. Y. Li, G. Y. Yu, D. Walker, et al. Modelling and measurement of polishing tool influence functions for edge control [J]. Journal of the European Optical Society,2011,6:13-17
    [44]D. W. Kim, W. H. Park. S.W. Kim. et al. Parametric modeling of edge effects for polishing tool influence functions [J]. Optics Express,2009,17(7):5656-5665
    [45]H. Hu, Y. F. Dai, X. Q. Peng. Research on reducing the edge effect in magnetorheological finishing [J]. Applied Optics,2011,50(9):1220-1226
    [46]H. Hu, Y.F. Dai, X.Q. Peng, et al. Research on reducing the edge effect in magnetorheological finishing [J]. Applied Optics,2011,50(9):1220-1226
    [47]Savio Gianpaolo, Meneghello Roberto, Concheri Gianmaria. A surface roughness predictive model in deterministic polishing of ground glass moulds [J]. International Journal of Machine Tools & Manufacture,2009,49(1):1-7
    [48]H. Suzuki, T. Moriwaki, T. Okino, et al. Development of ultrasonic vibration assisted polishing machine for micro aspheric die and mold [J]. CIRP Annals-Manufacturing Technology,2006,55 (1):385-388
    [49]王健,郭隐彪,朱睿.光学非球面元件机器人柔性抛光技术[J].厦门大学学报:自然科学版,2010,V49(5):636-639
    [50]D. W. Kim, James H. Burge. Rigid conformal polishing tool using non-linear visco-elastic effect [J]. Optics Express,2010, Vol.18 (3):2242-2257
    [51]D.W. Kim. W.H. Park, H.K.An, et al. Parametric smoothing model for visco-elastic polishing tools [J]. Optics Express,2010,18 (21):22515-22526
    [52]D.W. Kim, James H Burge. Rigid conformal polishing tool using non-linear visco-elastic effect[J].Optics Express,18(3):2242-2257
    [53]H. Lee. Junguk Kim, Hyunhyung Kang. Airbag tool polishing for aspherical glass lens molds [J]. Journal of Mechanical Science and Technology,2010,24(1):153-158
    [54]X. Tonnellier, P. Shore, P. Morantz, et al. Sub-surface damage issues for effective fabrication of large optics [A]. Proceedings of SPIE-The International Society for Optical Engineering[C],2008.7018: F180-F180
    [55]P. Spano,F. M Zerbi. C. J. Norrie,et al. Challenges in optics for extremelylarge telescope instrumentation[J].Astronomische Nachrichten,2006,327(7):649-673
    [56]P. Shore. P.Parr-Burman. Manufacture of large mirrors for ELTs:A fresh perspective [A]. Proceedings of SPIE-The International Society for Optical Engineering[C],2004.5252:55-62
    [57]潘,杨炜,王振忠.大口径非球面元件可控气囊抛光系统.强激光与粒子束[J].2012,24(6):1344-1348
    [58]李洪玉,张伟,于国彧.空间光学元件超精密气囊抛光的去除特性研究[J].光学学报,2009.29(9):811-817
    [59]龚金成;谢大纲;宋剑锋 等.气囊抛光曲面光学零件工艺参数对抛光区特征影响的研究[J].燕山大学学报,2008.32(3):197-200
    [60]T. S. Kwak, Y. C. Lee. G. N. Kim, et al. Nano-precision combined process of electrolytic in-process dressing grinding and magnetic assisted polishing on optics glass material [J]. Transactions of Nonferrous Metals Society Of China,2009,19:S301-S306
    [61]Hecht Kerstin, Bliedtner Jens, Mueller Hartmut, et al. Development of a process chain for grinding and subsequent laser beam polishing of quartz glass components [J]. Annals of DAAAM and Proceedings,2009,20:379-380
    [62]D. W. Kim,S. W. Kim, James H. Burge. Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions [J]. Optics Express.2009. 17(24):21850-21866
    [63]D.W. Kim. S.W. Kim. James H. Burge. Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions [J]. Optics Express,2009. 17(24):21850-21866
    [64]D.W. Kim. Hubert M. Martin. James H. Burge.Calibration and optimization of computer-controlled optical surfacing for large optics [A]. Proceedings of SPIE-The International Society for Optical Engincering[C], v 8126,2011, Optical Manufacturing and Testing IX
    [65]G.Y. Yu, D.Walker, Li, and H.Y. Li. Implementing a polishing process in Zeeko IRP machines [J]. Applied Optics,2012.51(27):6637-6640
    [66]D. Walker, C. Atkins. I. Baker, et al. Technologies for producing segments for extremely large telescopes [A]. Conference on Optical Manufacturing and Testing IX [C], San Diego, CA, AUG 22-24,2011
    [67]S.W. Kim, D. Walker, D. Brooks. Active profiling and polishing for efficient control of material removal from large precision surfaces with moderate asphericity [J]. Mechatronics,2003,13: 295-312
    [68]潘日,王振忠,郭隐彪.大口径轴对称非球面气囊抛光进动运动建模及控制[J].机械工程学报,2012.48(11):183-190
    [69]高波,谢大纲,姚英学,袁哲俊.气囊式工具抛光新技术[J].光学技术,2004,30:333-335
    [70]高波,姚英学,谢大纲,袁哲俊.气囊抛光工具的研制及特性测试[J].现代制造工程,2004,(10):52-54
    [71]刘研.气囊式抛光原理分析及工艺实验研究[D].哈尔滨:哈尔滨工业大学,2004
    [72]王金.气囊抛光去除特性的试验研究[D].哈尔滨:哈尔滨工业大学,2005
    [73]高波.气囊抛光实验样机的研制及其关键技术的研究[D].哈尔滨:哈尔滨工业大学,2005
    [74]舒锐,胡忠辉,周彦平.一种新型非球面数控抛光方法的研究[J].光学技术,2005,31(3):398-400
    [75]上云飞,姚英学,余顺周.回转对称非球面气囊抛光控制算法研究[J].现代制造工程,2006,(8):9-11
    [76]高波,姚英学,谢大纲,等.气囊抛光进动机构的运动建模与仿真[J].机械工程学报,2006,42(2):101-104
    [77]余顺周,姚英学.气囊抛光数控机床后置处理算法的研究[J].机械制造,2007,45(510):16-18
    [78]宋剑波,姚英学,谢大纲,等.超精密气囊工具抛光方法的研究[J].华中科技大学学报(自然科学版),2007,35(增刊Ⅰ):104-107
    [79]余顺周,姚英学,高波,等.气囊式抛光机数控系统的研究与开发[J].机床与液压,2007,35(5):13-15
    [80]龚金成,谢大纲,宋剑锋,等.气囊抛光曲面光学零件工艺参数对抛光区特钲影响的研究[J].燕山大学学报,2008,32(3):197-200
    [81]张伟,李洪玉,于国或.光学元件超精密气囊抛光关键技术研究现状[J].光学学报,2009,29(1):27-34
    [82]R.K. Jain, V.K. Jain, P.M. Dixit. Modeling of material removal and surface roughness in abrasive flow machining process [J]. International Journal of Machine Tools and Manufacture,1999,39(12): 1903-1923
    [83]赵玉刚,江世成,周锦进.新型的复杂曲而磁粒光整加工机床[J].机械工程学报.2000,36(3):101-106
    [84]黄建峰.Windows环境下五轴逆向工程与抛光专用机器人之发展[M].成功大学.2001
    [85]F.J. Shiou, C.H. Chen. Freeform surface finish of plastic injection mold by using ball-burnishing process [J]. Journal of Materials Processing Technology,2003,140:248-254
    [86]李邦忠,周锦进.不锈钢电化学机械镜面加工电解液研究[J].中国机械工程,2004,15(11):954-958
    [87]赵国勇,赵玉刚,赵福令,等.丛于Windows98磁粒光整加工CNC系统的开发研究[J].大连理工大学学报,2005,45(1):75-78
    [88]A. Roswell, F.F. Xi, G.J. Liu. Modeling and analysis of contact stress for automated polishing [J]. International Journal of Machine Tools & Manufacture.2006,46:424-435
    [89]X.J. Wu, Y. Kita, K. Ikoku. New polishing technology of free form surface by GC [J]. Journal of Materials Processing Technology,2007,187-188:81-84
    [90]S.M. Ji, F.Q. Xiao, D.P. Tan. Analytical method for softness abrasive flow field based on discrete phase model [J]. Science China-Technology Science,2010,53(10):2867-2877
    [91]陈勇志.精密曲面加工之形状误差分析[M].台湾科技大学.2007
    [92]张昭龙.自动化模具抛光系统的路径及制程设计[M].成功大学.2001
    [93]H.Y. Tam. C.H. Lui, C.K. Mok. Robotic polishing of free-form surfaces using scanning paths [J]. Journal of Materials Processing Technology,1999,95 (1-3):191-200
    [94]H.C. Kim, M.Y. Yang. Incomplete mesh-based tool path generation for optimum zigzag milling [J]. International Journal of Advanced Manufacturing Technology,2008,35 (7-8):803-811
    [95]C.C. Chen, Y.S. Juang, W.Z. Lin. Generation of fractal toolpaths for irregular shapes of surface finishing areas [J]. Journal of Materials Processing Technology,2002,127 (2):146-150
    [96]B.K. Choi, R.B. Jerard. Sculptured surface machining [P]. Kluwar Academic Plulishers.1998
    [97]徐立国.赵继,徐卫.NURBS曲面无退刀双螺旋线轨迹规划法[J].中国机械工程,2006,17(18):1924-1927
    [98]程灏波.基于六自由度机构平台实施自由曲面确定性抛光[J].光学技术,2006,32(S1):357-361
    [99]Y.H. Li, J. C. Feng, Y. H. Wang. Fractal tool-path planning for free-form surface polishing system [J]. Key Engineering Materials.2008.359-360:484-488
    [100]H. Shcn, J. Fu. Y. Fan. A new adaptive interpolation scheme of NURBS based on axis dynamics [J]. International Journal of Advanced Manufacturing Technology.2011 56 (1-4):215-221
    [101]X. B. Yu. F. H. Zhang, Y. Zhang, Planning and Implementation of tool path computer controlled polishing optical surfaces [A].5th International Symposium on Advanced Optical Manufacturing and Testing Technologies-Advanced Optical Manufacturing Technologies[C], Dalian, APR 26-29,2010
    [102]邓伟杰,郑立功,史亚莉,等.离轴非球面数控抛光路径的自适应规划[J].光学精密工程,2009.17(1):65-71
    [103]周林,戴一帆,解旭辉,等.计算机控制抛光中基于等面积增长螺旋线的加工路径[J].国防科技大学学报,2009,31(4):1-4.
    [104]D.Q. Li, L. Zhang, J. Zhao. Research on polishing path planning and simulation of small mobile robot [A]. IEEE International Conference on Mechatronics and Automation[C].2009.1-7: 4941-4945
    [105]B. Xu. W. Xu, L.G. Xu. Variable focus tool-path planning algorithm for virtual-axis elastic polishing machine tool [A].2009 IEEE International Conference on Mechatronics and Automation[C],2009. 1-7:2911-2916
    [106]J. M. Zhan, X. Q. Zhou, L. Y. Hu. Study on Path Planning for industrial robots in free-form surfaces polishing [J]. Key Engineering Materials.2009.392-394:771-776
    [107]M. Rososhansky, F.F.Xi. Coverage based tool-path planning for automated polishing using contact mechanics theory [J]. Journal of Manufacturing Systems,2011.30(3):144-153
    [108]S.M. Ji. L. Zhang, Q.L. Yuan,et al. A novel ballonet polishing tool and its robot control system for polishing curved surface of mould [J]. International Journal of Computer Applications in Technology. 2007.29(2-4):212-215
    [109]D.Q. Li, L. Zhang, J. Zhao. Research on polishing path planning and simulation of small mobile robot [A]. IEEE International Conference on Mechatronics and Automation [C],2009,1-7: 4941.4945
    [110]B. Xu. W. Xu, L.G. Xu. Variable focus tool-path planning algorithm for virtual-axis elastic polishing machine tool [A].2009 IEEE International Conference on Mechatronics and Automation[C],2009, 1-7:2911-2916
    [111]J. M. Zhan, X. Q. Zhou, L. Y. Hu. Study on Path Planning for industrial robots in free-form surfaces polishing [J]. Key Engineering Materials,2009,392-394:771-776
    [112]M. Rososhansky, F.F.Xi. Coverage based tool-path planning for automated polishing using contact mechanics theory [J]. Journal of Manufacturing Systems,2011.30(3):144-153
    [113]S.M. Ji. L. Zhang, X. Zhang, et al. Spinning-inflated-ballonet polishing tool and its application in curved surface polishing [J]. Key Engineering Materials,2007,339:21-25
    [114]S.M. Ji, Y.Q. Shen, L. Zhang. M.S. Jin, et al. Research on the metamorphosis of dynamic abrasive particles field via inconsistent curvature contact based on image processing[A].Proceedings of the 8th WSEAS International Conference on Robotics, Control and Manufacturing TechnologyfC],2008, 70-74
    [115]S.M. Ji,X. Zhang, L. Zhang, Q.L.Yuan, et al. Form and texture control of free-form surface polishing[J]. Key Engineering Materials,2006,304-305:113-117
    [116]S.M. Ji. Y.Q. Shen, L. Zhang, et al. Research of the dynamic abrasive particles field [J]. Key Engineering Materials,2009,407-408:569-572
    [117]张银东.机器人辅助模具气囊抛光运动控制和轨迹规划研究[D].杭州:浙江工业大学,2009
    [118]沈亚琦.气囊抛光磨粒场形态与温度特性研究[D].杭州:浙江工业大学,2009
    [119]S.M. Ji, M.S. Jin, L. Zhang, et al. Design of spinning-inflated-gasbag polishing tool and its automated system for free-form mould [J]. WSEAS Transactions on Systems,2006,5(6):1448-1454
    [120]计时鸣,金明生,张宪,等.应用于模具自由曲面的新型气囊抛光技术[J].机械工程学报,2007,43(8):2-6
    [121]S.M. Ji, M.S. Jin, L. Zhang, et al. Track planning and pressure control of robotic gasbag polishing technique with improved polishing tool [A]. Proceedings of the 7th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision[C] 2007,161-166.
    [122]M.S. Jin, S.M. Ji, L. Zhang, et al. Effect of free abrasive particle in gasbag polishing technique [J]. Advanced Materials Research,2009,69-70:83-87
    [123]金明生.模具自由曲面气囊抛光机理及工艺研究[D].杭州:浙汀工业大学,2010
    [124]陈国达,计时鸣,金明生,等.面向等残余面形误差的分层修形模具气囊抛光轨迹规划方法[J].兵工学报.2012,33(6):724-729
    [125]计时鸣,郑高安,金明生,等.柔性抛光工具与工件接触区应力的测量方法与分布规律研究[J]中国机械工程,2011,22(9):1107-1111
    [126]S. Markus, R. Rolf, S. Richard, et al. Utilisation of time-variant influence functions in the computer controlled polishing [J]. Precision engineering-Journal of the international societies for precision engineering and nanotechnology,2008,32(1):47-54
    [127]李全胜.成晔,蔡复之,等.计算机控制光学表而成形驻留时间算法研究.光学技术[J].1999,(3):56-59
    [128]俞敏,杨力,万勇建.驻留时间参数优化分析[J].光学与光电技术,2006,4(1):5-7
    [129]彭小强.戴一帆,李圣怡,等.回转对称非球面光学零件磁流变成形抛光的驻留时间算法[J].国防科技大学学报,2004.26(3):89-92
    [130]孙希威,张飞虎,董申,等.磁流变抛光去除模型及驻留时间算法研究.新技术新工艺[J].机械加工工艺与装备,2006,(2):73-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700