光学曲面确定性抛光的面型精度控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学曲面零件是光学系统的关键元器件。近年来,随着光学曲面零件需求量的日趋增加和光学系统对其光学性能要求的不断提高,光学曲面零件在加工精度、轻量化程度、生产成本和生产效率等方面的要求越来越高。高精度光学曲面零件的生产效率和成本已经成为反映一个国家光学工业乃至整个制造业现代化水平的重要标志。抛光工艺常常作为光学曲面制造的最后一道工序,对光学曲面的表面质量、面型精度和使用寿命等起到至关重要的作用。本文结合国家重点基础研究发展计划(973计划)“光学自由曲面制造的基础研究”的子课题二“光学自由曲面成形过程的物理解析与精度控制”(课题编号:2011CB706702),以实现确定性抛光面型精度控制为主题,深入探讨了抛光过程的局部和整体材料去除理论、抛光力控制和抛光面型工艺控制策略等关键技术。
     目前,确定性抛光工艺研究的核心问题包括单位时间材料去除函数建模、驻留时间计算、抛光路径规划和材料去除量预测等。经典的抛光理论为,整体材料去除量等于单位时间材料去除函数与抛光轨迹上各抛光点的驻留时间的卷积。上述经典理论将抛光过程假设成一个线性移不变系统,即假设抛光工具单位时间内的材料去除量不随位置的移动而变化。对于低陡度的球面和非球面而言,运用该理论能够对抛光过程有很好的控制。但是,对于形状比较复杂的非球面和自由曲面,曲面曲率、抛光轨迹和抛光姿态的复杂性使得该理论的适用性降低。本文研究了抛光工艺参数(包括抛光力、主轴转速、进给速度、抛光姿态角等)、抛光工艺条件(包括抛光液和抛光垫条件等)、抛光轨迹、曲面几何/物理特性(曲率和弹性模量等)等一系列因素对抛光材料去除影响,构建了综合考虑以上各因素影响的抛光表面去除模型,揭示了工艺参数和条件变化对抛光材料去除的影响规律,实现了确定性材料去除的抛光工艺控制。在此基础上,构建了面向整体曲面面型改善的确定性抛光面型误差补偿模型,通过面型误差测量,余量分布提取以及进给速度优化,提高了确定性抛光整体材料去除的可控性。
     本文的研究工作主要包括以下几部分:
     1.传统的定点抛光材料去除模型只能预测定点抛光时的去除深度。针对以上不足,本文建立了移动抛光的材料去除廓形模型。将材料去除指数定义为单位轨迹长度的材料去除深度,根据Preston经验方程,接触区域内一点的材料去除指数与该点的接触压强,相对线速度和进给速度相关。根据抛光工具与工件曲面的局部接触和姿态的描述,对抛光区域的接触压强和相对线速度分布进行建模。在此基础上,利用对材料去除指数在接触区域内沿着抛光轨迹积分的方法,分别对球形工具和盘形工具的材料去除廓形进行理论推导,建立了综合考虑抛光力、抛光轴转速、抛光姿态、进给速度、工件/工具几何性质的材料去除廓形模型。实验结果显示,该模型具有很高的预测精度。
     2.抛光轨迹在抛光工艺规划中占有重要地位,为了增加轨迹覆盖曲面的均匀性,各种复杂抛光轨迹应运而生。根据材料去除指数的定义和去除廓形计算的基本方法,进一步研究复杂轨迹抛光的材料去除,从理论上揭示了抛光轨迹相关参数对材料去除廓形的影响。本文着重研究抛光轨迹大曲率过渡区域和螺旋线轨迹的材料去除廓形的理论,对实际抛光过程中的轨迹规划和工艺参数设计有重要的指导意义。其它复杂抛光轨迹均可运用类似方法对其材料去除进行建模与分析,优化抛光工艺。
     3.抛光时的抛光垫和抛光液性质对抛光质量和材料去除的影响是至关重要的,而利用Preston方程所建立的模型忽略了这两个因素。本文从抛光垫、自由磨粒和工件三者间的微观接触出发,分析了单个磨粒的材料去除体积、磨粒发生材料去除的临界条件和有效磨粒的数目,建立了基于自由磨粒材料去除机理的材料去除指数模型。对该材料去除指数在抛光区域进行积分,求得抛光后的材料去除深度和廓形。该预测模型不但包含了抛光工艺参数对材料去除的影响,并且创新性地将抛光垫拓扑参数、磨粒大小、磨粒物理性质和抛光液体积比浓度等参数对材料去除的影响也考虑在内,增强了抛光过程的可预测性。实验结果显示,所述的理论结果与实验结果有较好的一致性,验证了该理论的有效性。根据所述模型和实验结果,自由磨粒抛光时的材料去除深度正比于(法向抛光力)0.65、(抛光液体积比浓度)2/3和自由磨粒平均半径,反比于(抛光垫微观高度分布标准差)0.3。
     4.根据柔顺性抛光原理,设计和研制了基于气缸和压力比例阀的抛光力伺服控制系统。理论上推导了力控制系统的系统传递函数,并利用PRBS信号和最小二乘系统辨识方法对系统的模型进行辨识。分别利用PID、RST和ISMC控制算法对工具系统的抛光力输出进行控制。基于极点配置理论,设计了RST三相控制器;由于气动系统辨识模型的不确定性,RST控制器能够维持系统的稳定,但是稳态误差较大。在RST控制器设计的基础上,推导了非最小相位系统的ISMC控制器的控制结构,并利用根轨迹法确定了滑模控制参数。通过ISMC对工具系统的控制实验发现,由于加入了滑模趋近分量,ISMC能够抑制系统模型的不确定性和系统的扰动,稳态误差和超调量小。当抛光系统加入抛光轴转速后,ISMC控制器显示出比PID控制更好的抑制干扰的能力,输入力波动范围小,从而验证了利用ISMC控制器的有效性和实用性。
     5.通过对廓形测量方向与抛光轨迹方向关系的分析,建立了沿着廓形测量方向的局部材料去除模型。将沿着测量方向的各驻留点上的局部材料去除深度在廓形控制点上进行局部累加,提出了二维和三维整体材料去除的离散化矩阵预测模型。该模型中,整体材料去除深度矩阵等于材料去除影响矩阵与进给速度矩阵的乘积。本文利用非负最小二乘最优化方法,对模型中的进给速度进行求解,构建了确定性抛光面型误差补偿的策略。以此为指导,对一平面零件进行误差补偿抛光,经过一次抛光后的表面面型Wv值从抛光前的1.8989μm提高到了0.4251μm,而Wt值从28.4896μm提高到了9.3354μm。对一球面零件进行均匀性抛光,每个抛光周期的总体材料去除深度为3μm,经过抛光后的表面粗糙度从135.8nm提高到14.7nm,且整个曲面的表面质量具有较好的一致性。
Optical part surface is the key component for an optical system. In recent years, withthe improving requirement of the optical properties, the requests of accuracy, relativeaperture, weight reduction, production efficiency and cost of the optical part surfaces aregetting higher and higher. Nowadays, the production cost and efficiency of the optical partsurface has become one of the signs for a country reflecting the modern level of the opticalindustry and even the whole manufacturing ability. The polishing process is usually used asthe final step to fabricate the optical part surface, which has large effect on the accuracy andduration of the surface. This dissertation is supported by the Chinese National Program onKey Basic Research Project (973Program)[Grant number2011CB706702],“BasicResearch on the Fabrication of the Optical Freeform Surface—Project2: Physical Analysisand Accuracy Control Strategy for the Generation of the Optical Freeform Surface”. Thisstudy focused on the technical architecture of the deterministic polishing process and the keytechnologies of the deterministic polishing. The prediction of the local and glocal polishedprofiles, polishing force control, control strategy of the surface form, et al. are explored indepth both theoretically and experimentally.
     The core issues in the deterministic polishing process include modelling of the unitmaterial removal function, dwell time calculation, planning of the polishing path, predictionof the material removal depth, et al. For the fundamental principle of the polishing processcorrecting the surface form, the global removal depth is modelled as the convolution of theunit material removal function and the dwell time. It is assumed that the polishing process istime-invariant, which means the unit material removal function does not vary with themovement of the polishing tool. For the spherical optical surfaces and aspherical surfaceswith low gradient, this assumption is reasonable. However, for the high gradient asphericalsurfaces and the freeform surfaces, the surface curvature, tool path and polishing posture arevarying during the polishing, thus the unit material removal function is time variant. Thisdissertation addresses the problem of material removal in the polishing process. The effectsof some polishing conditions upon the material removal are analyzed, including not only theprocess parameters, which refer to the normal force, angular spindle velocity and angularfeed rate, but also the abrasive grain size, polishing slurry properties, topographicalparameters of the sub-aperture pad, as well as tool path curvature. Based on the analysis, anew control strategy to improve the surface form accuracy is proposed. The main researchcontents in this dissertation are as follows:
     (1) A new material removal model for the velocity-dwell-mode polishing process isproposed. The material removal index, which means the material removal depth at unitlength of polishing path, is defined and derived based on the Preston equation. Thedistribution of material remval index in the polishing contact is affected by the contact pressure and relative sliding velocity between the tool and the surface. The material removalprofile during the polishing can be obtained by intergrating the material removal index alongthe polishing path in the contact region. Based on the fundamental theory, the materialremoval models of the spherical tool and sub-aperture tool are proposed in this dissertation.Accordign to the models and experimental results, the polishing material removal is affectedby the polishing normal force, spindle velocity, polishing attitude, geometrical/physicalpropertities of the tool/surface, et al.
     (2) The effect of polishing path on the polishing material removal is modelled andanalyzed. Especially, the polished profiles as the sub-aperture polishes at the path corner andalong the trochoidal path were modeled by integrating the material removal index along thetool path in the contact region. The effects of the parameters of the polishing path on thepolished profile were considered in different cases. The theory in this paper is potentiallyuseful for the planning of tool path and processing parameters in the deterministic polishingprocess.
     (3) A novel mathematical model of the material removal profile for the free abrasivepolishing (FAP) is developed, which successfully explains the effects of the properties ofabrasive grains/slurry and topographical parameters of sub-aperture pad on the profile. Byanalyzing the interations among polishing pad, abrasive grain and workpiece surface in themicro level, the material removal for a single abrasive and the critical condition of materialremoval for the abrasives are modelled. On the basis of above, the material removal indexconsidering the removal mechanism of FAP is proposed to facilitate more accurate polishing.According to the simulation and experimental results, the removal depth is proportional to(normal polishing force)0.65,(volume concentration)2/3and the radius of abrasive grains, andinversely proportional to (deviation of pad asperity height)0.3.
     (4) The control system of polishing force composed by the pneumatic cylinder andpressure propotional valve is developed. The software platform of the control system isbased on the NI PCIe6321DAQ card and the real time module. The transfer function of thepolishing force control system is derived theoretically. Pseudo Random Binary Sequence(PRBS) signals were applied at the control input, and the output date was caputured. Withthe input and output data, the model of the system is identification by least square method.An integral sliding mode controller (ISMC) is proposed to control the polishing force inorder to improve the performace. Root locus is used to find an appropriate value of ki, theintergral control coefficient, to ensure the closed-loop stability. By compared with the RSTand PID controller, the robustness of the ISMC to the disturbance and model uncertainties isensured by the implementation of an integral sliding control action. The force controlexperiments show that the proposed algorithm is effective in improving the control accuracyof the polishing force.
     (5) By extending the theory of removal profile orthogonal to the tool path, the localpolished profile, which is defined as the polished depth in the measuring direction, ismodeled. According to the model, the local polished profile is determined not only by the process parameters, the tool attitude, the geometrical/mechanical properties of workpieceand tool, but also the measuring angle. The linear algebraic expression of the2D/3D globalpolished profile is derived by convoluting the local polished depth at each dwell point of thepolishing process. In this model, the matrix of the global polished depth equals to theproduct of influential matrix and feed rate matrix. On the basis of above, the errorcompensation method for the polishing process is developed as an optimition problem of thefeed velocity in polishing. The nonnegative least square method is used to solve this problem.The polishing experiments composed by polihsing of a flat surface and a spherical surfaceare conducted to verify the proposed model. After polishing for a cycle, the Wvvalue of theflat surface was improved from1.8989μm to0.4251, and Wtvalue from28.4896μm to9.3351μm respectively. The spherical surface was polished with the uniform materialremoval control method. For every polishing cycle, the global polished depth is3μm. Afterpolishing, the roughness of the spherical surface reduced from135.8nm to14.7nm, and theuniformity of the whole surface was guaranteed.
引文
[1]杨福兴.光学零件的超精密加工技术[J].航空制造技术,2004,5:81-83.
    [2]谢晋,阮兆武.光学自由曲面反射镜模芯的镜面成型磨削[J].光学精密工程,2007,15(3):344-349.
    [3]杜雪,王尔祺,李荣彬,等.自由曲面光学虚拟制造与检测系统的探讨[J].应用光学,2006,27(6):485-490.
    [4] Brinksmeier E, Mutlugünes Y, Klocke F, et al. Ultra-precision grinding [J]. CIRPAnnals-Manufacturing Technology,2010,59(2):652-671.
    [5]余景池,张学军.计算机控制光学表面成型技术综述[J].光学技术,1998,3:6-8.
    [6]张学军.数控光学成形的计算机模拟及工艺实验[J].光学精密工程,1993,1(5):64-68.
    [7]张峰,徐领娣,范镝,等.表面改性非球面碳化硅反射镜的加工[J].光学精密工程,2008,16(12):2479-2484.
    [8]李全胜,成晔.光学自由曲面数控加工方法[J].光学技术,1998,6:77-81.
    [9]王波,董申,赵万生.光学曲面超精密车削过程中的轮廓误差补偿控制方法[J].计算机辅助设计与制造,1999,7:32-34.
    [10]陈逢军,尹韶辉,范玉峰,等.一种非球面超精密单点磨削与形状误差补偿技术[J].机械工程学报,2010,46(23):186-192.
    [11] Savio G, Meneghello R, Concheri G. A surface roughness predictive model indeterministic polishing of ground glass moulds [J]. International Journal of MachineTools and Manufacture,2009,49(1):1-7.
    [12] Venkatesh K, Bobji M, Gargi R, et al. Genesis of workpiece roughness generated insurface grinding and polishing of metals [J]. Wear,1999,225:215-226.
    [13] Zhao J, Saito K, Kondo T, et al. A new method of automatic polishing on curvedaluminium alloy surfaces at constant pressure [J]. International Journal of MachineTools and Manufacture,1995,35(12):1683-1692.
    [14] Blackley W, Scattergood R. Ductile-regime machining model for diamond turning ofbrittle materials [J]. Precision Engineering,1991,13(2):95-103.
    [15] Fang F, Zhang G. An experimental study of edge radius effect on cutting single crystalsilicon [J]. The International Journal of Advanced Manufacturing Technology,2003,22(9-10):703-707.
    [16] Leung T, Lee W, Lu X. Diamond turning of silicon substrates in ductile-regime [J].Journal of Materials Processing Technology,1998,73(1):42-48.
    [17] Yan J, Syoji K, Kuriyagawa T, et al. Ductile regime turning at large tool feed [J].Journal of Materials Processing Technology,2002,121(2):363-372.
    [18]杜建军,高栋,王素娟,等.光学自由曲面飞刀加工刀位轨迹的生成算法[J].光学技术,2006,1:33-36.
    [19]李荣彬,张志辉,杜雪,等.自由曲面光学元件的设计,加工及面形测量的集成制造技术[J].机械工程学报,2010,11:137-148.
    [20] Yu D P, Wong Y S, Hong G S. A novel method for determination of the subsurfacedamage depth in diamond turning of brittle materials [J]. International Journal ofMachine Tools and Manufacture,2011,51(12):918-927.
    [21] Kong L, Cheung C. Prediction of surface generation in ultra-precision raster milling ofoptical freeform surfaces using an Integrated Kinematics Error Model [J]. Advances inEngineering Software,2012,45(1):124-136.
    [22]孟剑峰,李剑峰,葛培琪.脆性材料磨削模式与表面粗糙度[J].工具技术,2004,38(1):40-42.
    [23] Bifano T G, Dow T, Scattergood R. Ductile-regime grinding: a new technology formachining brittle materials [J]. Journal of engineering for industry,1991,113(2):184-189.
    [24] Lee K, Wong P, Zhang J. Study on the grinding of advanced ceramics with slotteddiamond wheels [J]. Journal of Materials Processing Technology,2000,100(1):230-235.
    [25] Chen F, Yin S, Huang H, et al. Profile error compensation in ultra-precision grindingof aspheric surfaces with on-machine measurement [J]. International Journal ofMachine Tools and Manufacture,2010,50(5):480-486.
    [26] Leadbeater P, Clarke M, Wills-Moren W, et al. A unique machine for grinding large,off-axis optical components: the OAGM2500[J]. Precision Engineering,1989,11(4):191-196.
    [27]王旭,张峰,张学军.固着磨料抛光碳化硅反射镜的去除函数[J].光学精密工程,2009,17(5):951-958.
    [28] Cheung C, Kong L, Ho L, et al. Modelling and simulation of structure surfacegeneration using computer controlled ultra-precision polishing [J]. PrecisionEngineering,2011,35(4):574-590.
    [29] Klocke F, Brecher C, Zunke R, et al. Corrective polishing of complex ceramicsgeometries [J]. Precision Engineering,2011,35(2):258-261.
    [30] Guo J, Suzuki H, Morita S Y, Yamagata Y, Higuchi T. A real-time polishing forcecontrol system for ultraprecision finishing of micro-optics [J]. Precision Engineering,2013,37(4):787-792.
    [31] Cheng H B, Feng Z J, Cheng K, Wang Y W. Design of a six-axis high precisionmachine tool and its application in machining aspherical optical mirrors [J].International Journal of Machine Tools and Manufacture,2005,45(9):1085-1094.
    [32] Schinhaerl M, Smith G, Stamp R, et al. Mathematical modelling of influence functionsin computer-controlled polishing: Part I [J]. Applied Mathematical Modelling,2008,32(12):2888-2906.
    [33] Schinhaerl M, Smith G, Stamp R, et al. Mathematical modelling of influence functionsin computer-controlled polishing: Part II [J]. Applied Mathematical Modelling,2008,32(12):2907-2924.
    [34] Shafrir S N, Lambropoulos J C, Jacobs S D. A magnetorheological polishing-basedapproach for studying precision microground surfaces of tungsten carbides [J].Precision engineering,2007,31(2):83-93.
    [35]周旭升.大中型非球面计算机控制研抛工艺方法研究[D].博士毕业论文,湖南:国防科学技术大学,2007.
    [36] Carter G, Nobes M, Katardjiev I. The theory of ion beam polishing and machining [J].Vacuum,1993,44(3):30330-30339.
    [37] Zhou L, Dai Y, Xie X, et al. Optimum removal in ion-beam figuring [J]. PrecisionEngineering,2010,34(3):474-479.
    [38] Soyama K, Ishiyama W, Murakami K. Enhancement of reflectivity of multilayerneutron mirrors by ion polishing: optimization of the ion beam parameters [J]. Journalof Physics and Chemistry of Solids,1999,60(8):1587-1590.
    [39] F hnle O W, Brug H, Frankena H J. Fluid jet polishing of optical surfaces [J]. AppliedOptics,1998,37(28):6771-6773.
    [40] Booij S M, Van B H, Braat J J, et al. Nanometer deep shaping with fluid jet polishing[J]. Optical engineering,2002,41(8):1926-1931.
    [41] Booij S M, Van B H, F hnle O W. A mathematical model for machining spot in FluidJet Polishing [J]. Optical Fabrication and Testing,2000,42:70-72.
    [42] Fang H, Guo P, Yu J. Surface roughness and material removal in fluid jet polishing [J].Applied optics,2006,45(17):4012-4019.
    [43] Wang T, Cheng H B, Dong Z C, et al. Removal character of vertical jet polishing witheccentric rotation motion using magnetorheological fluid [J]. Journal of MaterialsProcessing Technology,2013,213(9):1532-1537.
    [44] Tsai F, Yan B, Kuan C, et al. A Taguchi and experimental investigation into theoptimal processing conditions for the abrasive jet polishing of SKD61mold steel [J].International Journal of Machine Tools and Manufacture,2008,48(7):932-945.
    [45] Bingham R G, Walker D D, Kim D H, et al. Novel automated process for asphericsurfaces. International Symposium on Optical Science and Technolog, InternationalSociety for Optics and Photonics,2000:445-450.
    [46] Walker D D, Brooks D, King A, et al. The ‘Precessions’ tooling for polishing andfiguring flat, spherical and aspheric surfaces [J]. Opt Express,2003,11(8):958-964.
    [47] Jianfeng S, Yingxue Y, Dagang X, et al. Effects of polishing parameters on materialremoval for curved optical glasses in bonnet polishing [J]. Chinese Journal ofMechanical Engineering,2008,21(5):29-32.
    [48] Zhan J. An improved polishing method by force controlling and its application inaspheric surfaces ballonet polishing [J]. The International Journal of AdvancedManufacturing Technology,68(9-12):2253-2260.
    [49] Preston F. The Theory and Design of Glass Plate Polishing Machines [J]. J Soc GlassTechnology,1927,11:247.
    [50] Jones R A. Optimization of computer controlled polishing [J]. Applied optics,1977,16(1):218-224.
    [51] Jones R A. Computer-controlled optical surfacing with orbital tool motion [J]. Opticalengineering,1986,25(6):256785-256788.
    [52] Jones R A, Rupp W J. Rapid optical fabrication with computer-controlled opticalsurfacing [J]. Optical Engineering,1991,30(12):1962-1968.
    [53] Jones R A. Computer simulation of smoothing during computer-controlled opticalpolishing [J]. Applied optics,1995,34(7):1162-1169.
    [54] Jones R A, Rupp W J. Rapid optical fabrication with CCOS[C]//San Dieg-DLTentative. International Society for Optics and Photonics,1990:34-43.
    [55] Jones R A. Grinding and polishing with small tools under computer control[C]//LosAngeles Technical Symposium. International Society for Optics and Photonics,1979:102-107.
    [56]范镝.大口径碳化硅质反射镜数控光学加工的研究[D].长春:长春光学精密机械与物理研究所,2004.
    [57]王权陡.计算机控制离轴非球面制造技术研究[D].中国科学院长春光学精密机械与物理研究所,2001.
    [58]李全胜,成晔,蔡复之,等.计算机控制光学表面成形驻留时间算法研究[J].光学技术,1999,3(5):56-59.
    [59]王贵林. SiC光学材料超精密研抛关键技术研究[D].长沙:国防科技大学,2002.
    [60]冯之敬,吴鸿钟,赵广木,等.自由曲面透镜型面误差的压力抛光修正[J].清华大学学报(自然科学版),2000,40(8):69-72.
    [61]李全胜,成晔.光学自由曲面数控研磨技术研究[J].机械工艺师,1998(10):6-8.
    [62] Vadali M, Ma C, Duffie N A, et al. Pulsed laser micro polishing: Surface predictionmodel [J]. Journal of Manufacturing Processes,2012,14(3):307-315.
    [63] Ukar E, Lamikiz A, López de Lacalle L, et al. Laser polishing of tool steel with CO2laser and high-power diode laser [J]. International Journal of Machine Tools andManufacture,2010,50(1):115-125.
    [64] Suzuki H, Hamada S, Okino T, et al. Ultraprecision finishing of micro-asphericsurface by ultrasonic two-axis vibration assisted polishing [J]. CIRPAnnals-Manufacturing Technology,2010,59(1):347-350.
    [65] Xu W, Lu X, Pan G, et al. Ultrasonic flexural vibration assisted chemical mechanicalpolishing for sapphire substrate [J]. Applied Surface Science,2010,256(12):3936-3940.
    [66] Zhang L, He X S, Yang H R, et al. An integrated tool for five-axis electrorheologicalfluid-assisted polishing [J]. International Journal of Machine Tools and Manufacture,2010,50(8):737-740.
    [67] Kuriyagawa T, Saeki M, Syoji K. Electrorheological fluid-assisted ultra-precisionpolishing for small three-dimensional parts [J]. Precision engineering,2002,26(4):370-380.
    [68] Lu J, Yan Q, Tian H, et al. Polishing properties of tiny grinding wheel based on Fe3O4electrorheological fluid [J]. Journal of Materials Processing Technology,2009,209(11):4954-4957.
    [69]王贵林,戴一帆,李圣怡.光学非球面加工中研抛盘尺寸合理选择的研究[J].机械工程学报,2004,40(1):147-150.
    [70] Kim D W, Park W H, Kim S W, et al. Parametric modeling of edge effects forpolishing tool influence functions [J]. Opt Express,2009,17(7):5656-5665.
    [71] Roswell A, Xi F J, Liu G. Modelling and analysis of contact stress for automatedpolishing [J]. International Journal of Machine Tools and Manufacture,2006,46(3):424-435.
    [72] Yang M, Lee H. Local material removal mechanism considering curvature effect inthe polishing process of the small aspherical lens die [J]. Journal of Materialsprocessing technology,2001,116(2):298-304.
    [73]郑为民,曹天宁.高陡度精密光学非球面CAM系统[J].光学技术,1997(4):35-40.
    [74]尚文锦.计算机控制确定性研抛的建模与仿真[D].国防科学技术大学;2005.
    [75] Zheng L, Zhang X J. Novel resistance iterative algorithm for CCOS. Proceedings ofSPIE, the International Society for Optical Engineering, Society of Photo-OpticalInstrumentation Engineers.2006:62880N.1-N.9.
    [76]王毅,余景池.计算机控制光学表面抛光的磨头运动方式和参数的优化研究[J].光学技术,2003,29(3):258-265.
    [77] Chen X, Guo P, Ren J. Optimization of removal function in computer controlledoptical surfacing,5th International Symposium on Advanced Optical Manufacturingand Testing Technologies, International Society for Optics and Photonics.2010:76551Y-7.
    [78] Kim D W, Kim S W, Burge J H. Non-sequential optimization technique for acomputer controlled optical surfacing process using multiple tool influence functions[J]. Opt Express,2009,17(24):21850-21866.
    [79] Yu T K, Yu C C, Orlowski M. A statistical polishing pad model forchemical-mechanical polishing[C]//Electron Devices Meeting, IEDM'93. TechnicalDigest., International. IEEE,1993:865-868.
    [80] Klocke F, Zunke R. Removal mechanisms in polishing of silicon based advancedceramics [J]. CIRP Annals-Manufacturing Technology,2009,58(1):491-494.
    [81] Xie Y, Bhushan B. Effects of particle size, polishing pad and contact pressure in freeabrasive polishing [J]. Wear,1996,200(1):281-295.
    [82] Zhao Y, Chang L. A micro-contact and wear model for chemical–mechanicalpolishing of silicon wafers [J]. Wear,2002,252(3):220-226.
    [83] Lin T R. An analytical model of the material removal rate between elastic andelastic-plastic deformation for a polishing process [J]. The International Journal ofAdvanced Manufacturing Technology,2007,32(7-8):675-681.
    [84] Jin X, Zhang L. A statistical model for material removal prediction in polishing [J].Wear,2012,274:203-211.
    [85] Tam H Y, Lui C H, CK Mok A. Robotic polishing of free-form surfaces usingscanning paths [J]. Journal of Materials Processing Technology,1999,95(1):191-200.
    [86]周济,金属工艺,周艳红.数控加工技术[M]:国防工业出版社,2002.
    [87]姬俊锋,周来水,安鲁陵,等.自由曲面叶片数控加工刀具轨迹规划方法[J].机械科学与技术,2008,27(5):652-656.
    [88] Mizugaki Y, Sakamoto M, Sata T. Fractal path generation for a metal-mold polishingrobot system and its evaluation by the operability [J]. CIRP Annals-ManufacturingTechnology,1992,41(1):531-534.
    [89] Pessoles X, Tournier C. Automatic polishing process of plastic injection molds on a5-axis milling center [J]. Journal of Materials Processing Technology,2009,209(7):3665-3673.
    [90] Hauth S, Linsen L. Cycloids for polishing along double-spiral toolpaths inconfiguration space [J]. The International Journal of Advanced ManufacturingTechnology,2012,60(1-4):343-356.
    [91] Rososhansky M, Xi FJ. Coverage based tool-path planning for automated polishingusing contact mechanics theory [J]. Journal of Manufacturing Systems,2011,30(3):144-153.
    [92]林洁琼,赵继,王义强,等.虚拟轴机床研抛模具自由曲面的分片规划[J].农业机械学报,2005,36(9):123-127.
    [93]林洁琼,王义强.复杂自由曲面的分片规划[J].吉林大学学报(工学版),2007,37(2):386-390.
    [94] Zhang L, Tam H, Yuan C, et al. An investigation of material removal in polishing withfixed abrasives [J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2002,216(1):103-112.
    [95] Zhang L, Tam H, Yuan C, et al. On the removal of material along a polishing path byfixed abrasives [J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2002,216(9):1217-1225.
    [96] Tam H, Zhang L, Hua M. Material removal by fixed abrasives following curved paths[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal ofEngineering Manufacture,2004,218(7):713-720.
    [97] Lee H, Yang M. Dwell time algorithm for computer-controlled polishing of smallaxis-symmetrical aspherical lens mold [J]. Optical Engineering,2001,40(9):1936-1943.
    [98] Tam H Y, Hua M, Zhang L. Aspheric surface finishing by fixed abrasives [J]. TheInternational Journal of Advanced Manufacturing Technology,2007,34(5-6):483-490.
    [99] Ho L, Cheung C, To S. An experimental investigation of surface generation using anintegrated ultra-precision polishing process and different polishing trajectories [J].Proceedings of the Institution of Mechanical Engineers, Part B: Journal of EngineeringManufacture,2012,226(2):203-220.
    [100] Hung T C, Chang S H, Ding C H, et al. Improvement of residual error inhydrodynamic polishing by recursive error compensation strategy [J]. MicroelectronicEngineering,2012,93:27-34.
    [101]焦长君,李圣怡,解旭辉,等.基于Bayesian原理的低陡度光学镜面面形误差离子束修正驻留时间算法[J].机械工程学报,2009,45(11):253-259.
    [102] Li H, Zhang W, Yu G. Study of weighted space deconvolution algorithm in computercontrolled optical surfacing formation [J]. Chinese Optics Letters,2009,7(7):627-631.
    [103] Song C, Dai Y, Peng X. Model and algorithm based on accurate realization of dwelltime in magnetorheological finishing [J]. Applied optics,2010,49(19):3676-3683.
    [104]邓伟杰,郑立功,史亚莉,等.基于线性代数和正则化方法的驻留时间算法[J].光学精密工程,2007,15(7):1009-1015.
    [105]石峰,戴一帆,彭小强,等.基于矩阵运算的光学零件磁流变加工的驻留时间算法[J].国防科技大学学报,2009,31(2):103-106.
    [106] Tam H Y, Albert Mok C K, et al. Tool Dwell time computation incomputer-controlled surfacing based on constained optimization [J]. MachiningScience and Technology,2009,13(3):356-371.
    [107]张云飞,何建国,王亚军,等.计算机控制光学抛光驻留时间求解中两类优化算法的分析[J].强激光与粒子束,2012,23(12):32-39.
    [108]张云飞,王洋,王亚军,等.基于最优化思想的磁流变抛光驻留时间算法[J].应用光学,2010,31(4):657-662.
    [109]万勇建,范斌,袁家虎,等.大型非球面主镜细磨中的一种在线检测技术[J].光电工程,2005,32(1):1-4.
    [110]周林.光学镜面离子束修形理论与工艺研究[D].长沙:国防科技大学,2008.
    [111] Greenwood J. Formulas for moderately elliptical Hertzian contacts [J]. Journal oftribology,1985,107(4):501-504.
    [112] Greenwood J. Analysis of elliptical Hertzian contacts [J]. Tribology international,1997,30(3):235-237.
    [113] Johnson KL, Johnson KKL. Contact mechanics: Cambridge university press,1987.
    [114] Chen C A, Juang Y S, Lin W Z. Generation of fractal toolpaths for irregular shapes ofsurface finishing areas [J]. Journal of materials processing technology,2002,127(2):146-150.
    [115] Chaves-Jacob J, Linares J M, Sprauel J M. Improving tool wear and surface coveringin polishing via toolpath optimization[J]. Journal of Materials Processing Technology,2013,213(10):1661-1668.
    [116] Zheng L, Zhang X. A novel resistance iterative algorithm for CCOS[C]//SPIE Optics+Photonics. International Society for Optics and Photonics,2006:62880N-9.
    [117] Oh S, Seok J. An integrated material removal model for silicon dioxide layers inchemical mechanical polishing processes [J]. Wear,2009,266(7):839-849.
    [118] Seok J, Sukam C P, Kim A T, et al. Multiscale material removal modeling of chemicalmechanical polishing [J]. Wear,2003,254(3):307-320.
    [119] Greenwood J, Williamson J. Contact of nominally flat surfaces [J]. Proceedings of theRoyal Society of London Series A Mathematical and Physical Sciences,1966,295(1442):300-319.
    [120] Kanchana V, Vaitheeswaran G, Svane A, et al. First-principles study of elasticproperties of CeO2, ThO2and PoO2[J]. Journal of Physics: Condensed Matter,2006,18(42):9615-9624.
    [121] Shi F, Zhao B. Modeling of chemical-mechanical polishing with soft pads [J]. AppliedPhysics A: Materials Science&Processing,1998,67(2):249-252.
    [122] Proctor FM, Murphy KN. Keynote address: advanced deburring system technology.American Society of Mechanical Engineers Winter Annual Meeting, San Francisco,CA, Citeseer,1989.
    [123] Hogan N. Impedance control: An approach to manipulation: Part II-Implementation[J]. Journal of Dynamic Systems, Measurement, and Control,1985,107(1):8-16.
    [124] Khatib O. A unified approach for motion and force control of robot manipulators: Theoperational space formulation [J]. Robotics and Automation, IEEE Journal of,1987,3(1):43-53.
    [125] Yoshikawa T. Dynamic hybrid position/force control of robotmanipulators-description of hand constraints and calculation of joint driving force [J].Robotics and Automation, IEEE Journal of,1987,3(5):386-392.
    [126] Liu K. Adaptive Control of Pressure Tracking for Polishing Process [J]. Journal ofmanufacturing science and engineering,2010,132:011015-1-15.
    [127]段继豪,史耀耀,张军锋,等.航空发动机叶片柔性抛光技术[J].航空学报,2012,33(3):573-578.
    [128]李小彪,史耀耀,赵鹏兵,等.航空发动机叶片砂带抛光力控制技术[J].计算机集成制造系统,2012,18(6):1209-1214.
    [129] Shi Y, Zheng D, Hu L, et al. NC polishing of aspheric surfaces under control ofconstant pressure using a magnetorheological torque servo [J]. The InternationalJournal of Advanced Manufacturing Technology,2012,58(9-12):1061-1073.
    [130] Tressler J M, Clement T, Kazerooni H, et al. Dynamic behavior of pneumatic systemsfor lower extremity extenders[C]//Robotics and Automation,2002. Proceedings.ICRA'02. IEEE International Conference on. IEEE,2002,3:3248-3253.
    [131] Andersen B W, Binder R C. The analysis and design of pneumatic systems [J]. Journalof Applied Mechanics,1967,34:1055.
    [132] Güven L, Srinivasan K. Force controller design and evaluation for robot-assisted dieand mould polishing [J]. Mechanical systems and signal processing,1995,9(1):31-49.
    [133]杨承志,孙棣华,张长胜.系统辨识与自适应控制[M].重庆大学出版社,2003.
    [134] Ogata K, Yang Y. Modern control engineering [M].1970.
    [135] Xi X C, Hong G S, Poo A N. Improving CNC contouring accuracy by integral slidingmode control [J]. Mechatronics,2010,20(4):442-452.
    [136] Yu D P, Hogn G S, Wong Y S. Integral sliding mode control for fast tool servodiamond turning of micro-structured surfaces [J]. International Journal of AutomationTechnology,2011,5(1):4-10.
    [137] Landau Y D, Gianluca Z. Digital control systems: design, identification andimplementation [M]. Springer,2006.
    [138] Lawson C L, Hanson R J. Solving least squares problems [M]. SIAM,1974.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700