渗压作用下的有限应变固结理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对土坝粘土铺盖裂缝的淤填处理问题,对淤填粘土在渗压作用下的固结机理进行了研究。
    首先,通过分析渗压作用下的淤填粘土的固结机理,推导出以超孔隙水压力,孔隙比为控制变量的有限应变渗压固结微分方程。在理论模型推导中,考虑了固结过程中固结参数的变化(呈非线性关系),该固结为渗压体积力作用下的固结,不同于均布荷载作用下的固结求解过程。
    设计渗压固结试验确定理论模型中的待定系数-有限应变固结系数和有限应变固结对流项系数,这两个系数均为随有效应力和土层深度变化的量,并且体现软土初始孔隙比,压缩性、渗透性及其沿深度变化等因素的综合影响。
    提出精细积分半解析法求解变系数的以超孔压和孔隙比为控制变量的渗压固结微分方程。应用matlab语言编制计算程序对各种工况的超孔隙水压力消散、孔隙比随时间和空间的变化进行了求解,对各种计算工况得到的以孔压和变形表示的固结度的变化规律进行分析,说明渗压体积力作用下淤填粘土的固结随时间和空间的非线性分布特性。
    在给定条件下推导出渗压固结微分方程的解析解表达式。
    设计模型试验模拟渗压作用下淤填粘土的固结过程并对本文建立的理论模型和求解结果进行验证。将理论计算的超孔隙水压力、孔隙比、沉降-时间曲线和根据实测数据计算的这些量进行比较分析,说明文中建立的渗压作用下的有限应变固结理论模型及求解方法的合理性。
This thesis focused on the warping soil consolidation mechanism under osmotic pressure as to blanket cracks disposal in earth dam.
    Based on the consolidation mechanism analysis of the warping clay under osmotic pressure, a finite strain osmotic pressure consolidation equation, of which the excess pore-pressure or void ratio was selected as dependent variable, was derived. The non-linear relationships between the void ratio and effective stress as well as between the permeability coefficient and the void ratio were taking into account during the theoretical derivation. This kind of consolidation was induced by body face, which was different from the existed consolidation induced by surface load.
    The osmotic pressure test was developed to determine the unknown, finite strain consolidation coefficient and convection coefficient in the mathematical model. The two coefficients both varied with effective stress and depth and were functions of initial void ratio, compressibility, permeability and permeability derivative along depth.
    A precise time step integration method was proposed to solve the finite strain osmotic consolidation equation with varied coefficients. The corresponding programs in matlab language were presented for various operating mode computations. Thus, the excess pore-pressure and void ratio distribution along space-time could be derived. The degree of consolidation, which could be expressed by excess pore-pressure or deformation, was derived for various operating mode and its’ characteristics along space-time showed rules of warping soil consolidation under osmotic pressure.
    An analytic solution expression of osmotic consolidation differential equation was derived under certain condition.
    A model test was designed to simulate the consolidation process of warping soil, the validity of theoretical equation and the solution methods presented in this study. Actual measurements for excess pore-pressure, void ratio and settlement-time curves all showed good agreement with the corresponding computed values.
引文
[1] 毛昶熙,关于粘土铺盖裂缝问题,水利工程管理技术,1991,(6):2-5
    [2] 王益才,土石坝事故分析与处理(下),水利管理技术,1995,(5):55-62
    [3] 牛运光,试论病险水库加固措施,中国水利,2002,(6):57-59
    [4] 李思慎,徐隆庆,伍碧秀,深水抛填土的抗渗强度研究,水利学报,1984,(3):54-60
    [5] 周保中,吴文君,关于粘土铺盖裂缝的渗透固结变形分析,水利学报,1984,(3)29-36
    [6] 杨光煦,水下抛土铺盖防渗原理及其工程性质,设工设计研究,1989(1):23-32
    [7] 毛昶熙,关于粘土铺盖裂缝问题,水利工程管理技术,1991(1):2-5
    [8] 刘杰,天然淤积铺盖的防渗作用,人民黄河,1992,(10):47-51
    [9] 刘杰,傅裕,土的渗透压密性质,水利学报,1993,(5):76-81
    [10] 徐尚壁,论铺盖坝基渗流场的灌淤及场变,水利科技与经济,2001,(4):180-182
    [11] Richart, F.E., A review of the theories for sand drains, Proc.ASCE., 1989, SM3:1301-1311
    [12] Lo,K.Y.,Discussion on Rowe, Measurement of the coefficient of consolidation of lacustrine clay, Geotechnique, 1960,10(1): 36-39
    [13] Davis, E. H., Raymond, G. P., A non-linear theory of consolidation, Geotechnique, 1965,15(2):161-173
    [14] Janbu, N., Consolidation of clay layers based on nonlinear stress strain. Proc.6th International Conference Soil Mechanics, 1965, (2):83-87
    [15] Barden and Berry., Consolidation of normally consolidated clay, Journal of the Soil Mechanics and Foundation Division, 1965, 91(SM5):15-35
    [16] Schiffman,R.L., Finite and infinitesimal strain consolidation, Journal of Geotechnical Engineering,1980, 106(GT2):203-207
    [17] Samarasinghe, A. M. etc., Permeability and consolidation of normally consolidated soils, Journal of the Geotechnical Engineering Division, ASCE,1982,(6):835-849
    [18] McNabb, A., A mathematical treatment of one-dimensional soil consolidation, Quarterly of Applied Mathematics, 1960, (17):337-347
    
    
    [19] Mikasa, M., The consolidation of soft clay: A new consolidation theory and its application, Japanese Society Civil Engineers, 1965, 21-26
    [20] Monte, J.L., Krizek, R.L., One-dimensional mathematical model for large-strain consolidation, Geotechnique, 1976, 26(3):495-510
    [21] Lee, K., Sills, G.C., A moving boundary approach to large strain consolidation of a thin soil layer, Third International Conference on Numerical Methods in Geomechanics,1979,(2):163-173
    [22] McVay,M., Townsend, F., and Bloomquist, D., Quiescent consolidation of phosphatic waste clays, J. of Geotechnical Engineering, 1986, 112(11): 1033-1049
    [23] Pane, V., One-dimensional finite strain consolidation, M.S. Thesis, Department of Civil Engineering, Univ. of Colorado, Boulder, Colorado,1981
    [24] Pane, V., Schiffman, R.L., A comparison between two theories of finite strain consolidation, Soils and Foundation, 1981, 21(4): 81-84
    [25] Somogyi, F., Carrier, W.D., Lawver, J. E., et.al., Waste phosphatic clay disposal in mine cuts. In: Proc. Symp.on Sedimentation-Consolidation Models: Prediction and Validation. ASCE, San Francisco, Calif., 1984., 545-564
    [26] Schiffman,R.L., Pane, V., Gibson, R.E., The theory of one-dimensional consolidation of saturated clays. Part Ⅳ. An overview of nonlinear finite strain sedimentation and consolidation. Sedimentation and Consolidation Models, ASCE,1984,158-181
    [27] Gibson, R.E., England, G.L., Hussey, M.H.L., The theory of one-dimentional consolidation of saturated clays,Ⅰ.Finite nonlinear consolidation of thin homogeneous layers, Geotechnique, 1967, 17(3): 261-273
    [28] Gibson ,R. E., Schiffman, R.L., Cargill, K.W., The theory of one-dimentional consolidation of saturated clays, Ⅱ. Finite onolinear consolidation of thick homogeneous layers, Can, Geotech. J, 1981, 18(2): 280-293
    [29] Poskitt, The consolidation of saturated clay with variable permeability and compressibility, Geotechnique,1969, 19(2): 234-252
    [30] Mesri, G.., Rokhsar, A., Theory of Consolidation for clays, ASCE, 1974, (GT8): 889-903
    [31] Olson, R.E., Ladd, C.C., One-dimensional consolidation problems. Journal of Geotechnical Engineering, ASCE, 1979, 105(GT1):11-30
    
    
    [32] 洪振舜,吹填土的一维大变形固结计算模型,河海大学学报,1987,(6):27-53
    [33] 洪振舜,一维大变形固结方程的近似函数解,水利学报,1988,(5):49-54
    [34] Tan, T.S., Scott, R.F., Finite strain consolidation-A study of convection, Soils and Foundation, 1988, 28(3): 64-74
    [35] Cater, J.P., Booker, J.R., Davis, E, H., Finite deformation of an elasto-plastic soil. Int. J. For Numerical and Analytical Methods in Geotechnics, 1977, (1): 25-43
    [36] Cater, J.P., Small, J.C., Booker, J.R., A theory of finite elastic consolidation, Int. J. Solids Structures, 1977, (13): 467-478
    [37] Prevost, J.H., Nonlinear transient phenomena in saturated porous media, Computer Methods in Applied Mechanics & Engineering, 1982, (20): 3-18
    [38] 周正明,饱和土体大变形固结有限元分析,水利水运科学研究,1992,(1):72-84
    [39] 朱昊,袁建新,拖带坐标下的固结理论及其变分原理,岩土力学,1990,(1):11-17
    [40] Chopra, M.B., Dargush, G..F., Finite-element analysis of time-dependent large-deformation problems, Int. J. For Numerical and Analytical Methods in Geotechnics, 1992, (16): 101-130
    [41] 谢永利,潘秋元,一维大变形固结的空间描述和物质描述,西安公路学院学报,1993,(4):28-33
    [42] 谢永利,潘秋元,曾国熙,物质描述的大变形固结理论及有限元法,浙江大学学报(自然科学版),1995,(4):476-485
    [43] 谢新宇,谢永利,潘秋元,饱和土体一维大变形固结理论研究,西安公路交通大学学报,1996,(4):14-18
    [44] 谢新宇,朱向荣,谢康和,饱和土体一维大变形固结理论新进展,岩土工程学报,1997,(4):30-38
    [45] 谢新宇,夏建中,朱向荣,饱和土体一维大变形固结系数研究,浙江大学学报,1998,(3):319-324
    [46] 谢新宇,刘育民,潘秋元,渗透系数变化对一维大变形固结性状的影响,岩土工程学报,2000,(4):509-511
    [47] 李冰河,谢永利,谢康和,软粘土非线性一维固结半解析解,西安公路交通大学学报,1999,(1):24-29
    [48] 李冰河,谢康和,应宏伟等,变荷载下软粘土非线性一维固结半解析解,岩土工程学报,1999,(3):288-293
    
    
    [49] 李冰河,谢康和,应宏伟等,初始有效应力沿深度变化的非线性一维固结半解析解,土木工程学报,1999,(6):47-52
    [50] 李冰河,谢康和,应宏伟等,软粘土非线性一维大应变固结分析,岩土工程学报,2000,(3):368-370
    [51] 谢新宇,张继发,曾国熙,半无限体地基一维非线性大变形固结解析分析方法研究,2002,(7):16-22
    [52] 张继发,谢新宇,李群变换求解一维非线性有限变形问题,岩土工程学报,2001,(5):639-642
    [53] 谢新宇,张继发,饱和土体一维主固结解析方法研究,浙江大学学报(工学版),2002,(4):347-351
    [54] Schiffman, R.L., Cargill, K.W., Finite consolidation of sedimenting clay deposits. Proceedings of 10th International Conference on Soil Methanies and Founadation Engineering, 1981, (1): 239-242
    [55] Cargill, K.W., Prediction of consolidation of very soft soil, J. of Geotechnical Engineering, 1984, (GT6): 775-795
    [56] Znidarcic, D. Laboratory determination of consolidation properties of cohesive soil. Ph. D. Dissertation,Department of Civil Engineering, Univ. of Colorado, Boulder, Colorado,1982
    [57] Been, K., Sills, G.C. Self-weight consolidation of soft soil, an experimental and theoretical study. Geotechnique, 1981, 31(4): 519-535
    [58] Imai, G., Experimental studies on sedimentation mechanism and sediment formation of clay materials, Soils and Founadations, 1981, 20(2): 7-20
    [59] Krizek and Somogyi, Perspectives on modeling consolidation of dredged materials. Proc. Symp. on Sedimentation-Consolidation Models: Predictions and Validation, ASCE, 1984, San Francisco, Calif., 296-332
    [60] Aiban, S.A., Znidarcic, D., Evaluation of flow pump and constant head techniques for permeability measurements, Geotechnique, 1989, 39(4): 655-666
    [61] Znidarcic, D., Croce, P., Pane, V., et al., The theory of one-dimensional consolidation of saturated clays: Ⅲ, existing test procedures and analysis, Geotech. Testing. J. ASTM, 1984, 7(3): 123-133
    [62] Pane, V., Schiffman, R.L., A note on sedimentation and consolidation, Geotechnique, 1985, 35(1): 69-72
    [63] Cargill, K.W., The large strain, controlled rate of strain device for consolidation testing of soft fine-grained soils, Technical Report GL-86-13, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi. 1986
    
    
    [64] Znidarcic, D., Schiffman, R.L., Pane, V., et al., The theory of one-dimensional consolidation of saturated clays: Part Ⅴ, constant rate of deformation testing and analysis, Geotechnique,1986, 36(2): 227-237
    [65] Huerta, A., Kriegamann, G.A., Krizek, R.J., Permeability and compressibility of slurries from seepage-induced consolidation, J. of Geotech. Engrg,1988, 114(5): 614-627
    [66] Znidarcic, D., Liu, J.C., Consolidation characteristics determination for dredged materials, Proc., 22nd Annu. Dredging seminar, Texas A & M Univ., 1989,45-65
    [67] Imai, G., Development of a new consolidation test procedure using seepage force, Soils and Foundations, 1979, 19(3): 45-60
    [68] Abu-Hejleh, A.N., Znidarcic, D., Consolidation characteristics of phosphatic clays, Journal of Geotechnical Engineering, 1996, 122(4): 295-301
    [69] Fox, P.J., Baxter, C.D.P., Consolidation properties of soil slurries from hydraulic consolidation test, Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(8): 770-776
    [70] Carman, P.C., Flow of gases through porous media, New York: Academic Press Inc, 1956
    [71] Somogyi, F., Analysis and prediction of phosphatic clay consolidation, implementation package, Technical Report, Florida, Lakeland, 1979
    [72] Al-Tabbaa, A., Wood, D.M., Some measurements of the permeability of Kaolin, Geotechnique,1987, 37(4):499-503
    [73] Koppula, S.D., Morgenstern, N.R., On the consolidation of sedimenting clays, Can. Geotech. J, 1982, 19(2): 260-268
    [74] Carrier, W.D., Bromwell, L.G., Somogyi, F., Design capacity of slurried mineral waste ponds, J. of Geotechnical Engineering,1983, 109(GT5): 699-716
    [75] Carrier, W.D., Bromwell, L.G.., Disposal and reclamation of mining and dredging wastes, Proc. of the 7th Conference on Soil Mechanics and Foundation Engineering, Lima, Peru, 1983, 2: 727-738
    [76] Janbu, N., Soil compressibility as determined by oedometer and triaxial tests, Proc. European Conference on Soil Mechanics and Foundation Engineering, Wiesbaden, 1963, 1: 19-25
    [77] Butterfield, R., A natural compression law for soils (an advance on ), Geotechnique,1979, 29(4): 469-480
    
    
    
    [78] Feldkamp, J. R., Permeability measurement of clay pastes by a non-linear analysis of transient seepageconsolidation tests, Geotechnique,1989, 39(1): 141-145
    [79] Carrier, W.D., Discussion on prediction of consolidation of very soft soil by K.W. Cargill, J. of Geotechnical. Engineering, 1985, 111(GT11): 1358-1360
    [80] Hardin, B.O., 1-D strain in normally consolidated cohesive soils, J. of Geotechnical. Engineering, 1989, 115: 689-710
    [81] Liu, J.C., Znidarcic, D., Modeling 1-D compression characteristics of soils, J. of Geotechnical Engineering, 1991, 117(1): 162-169
    [82] Mikasa, M. and Takada, N. Selfweight consolidation of very soft clay by centrifuge. Proc. Symp. on Sedimentation-Consolidation Models: Predictions and Validation, ASCE, San Francisco, Calig., 121-140
    [83] 孙钧,地下工程结构设计理论的若干进展,地下结构及岩土工程新进展,中国工程建设地下结构新进展及新规范学术报告会暨全国桩基施工与监理学术研讨会论文集,杭州,1998,1-30
    [84] 谢康和,双层地基一维固结理论及应用,岩土工程学报,1994,16(5):24-35
    [85] 谢康和,潘秋元,变荷载下任意层地基一维固结理论,岩土工程学报,1995,17(5):
    [86] Koppula, S.D., Discussion of ‘Prediction of consolidation of very soft soil,’ by K.W. Cargill, J. Geotechnical. Engineering, 1985, 111(11): 1360-1363
    [87] Cargill, K.W., Closure of discussion of ‘Prediction of consolidation of very soft soil,’ by K.W. Cargill, J. Geotechnical Engineering, 1985, 111(11): 1363-1364
    [88] 弗洛林 B A, 土体压密理论,中国科学院水利部北京水利科学研究院译,新1版,北京:中国工业出版社,1964
    [89] Mesri G., Choi Y K., Settlement analysis of embankment on soft clays, Journal of Geotechnical Engineering, 1985,Vol, 111:441-464
    [90] Duncan J M., Limitation of conventional analysis of consolidation settlement. Journal of Geotechnical Engineering,1993,119(9): 1333-1359
    [91] 陈景仁,流体力学及传热学,北京:国防工业出版社,1984
    [92] 陆君安,陈桂兴,石岗,解Burgers方程的混合有限解析法,武汉水利电力学院学报,1990,23(2-3):33-42
    [93] 钟万勰,朱建平,对差分时程积分的反思,应用数学与力学,1995,16(8):663-668
    [94] 钟万勰,子域精细积分及偏微分方程数值解,计算结构力学及其应用,1995,12(3):253-259
    
    [95] 蔡志勤,钟万勰,子域精细积分的稳定性分析,水动力学研究与进展,1995,10(6):588-593
    [96] 钟万勰,单点子域积分与差分,力学学报,1996,28(2):159-163
    [97] 沈为平,扩散方程单内点精细积分法与差分法比较研究,计算结构力学及其应用,1996,13(3):359-363
    [98] 曾文平,对流-扩散方程精细积分法与差分法比较,华侨大学学报(自然科学版),2001,22(1):20-25
    [99] 周正明,饱和土体大变形固结有限元分析。岩土力学数值方法的工程应用-第二届全国岩石力学数值方法与模型实验学术研讨会论文集,1990,上海:同济大学出版社,291-298,
    [100] 蓝柳和,谢康和,半解析法在成层软粘土地基固结问题中的应用,岩石力学与工程学报,2003,22(2):327-331
    [101] 张力霆,齐清兰等,土坝粘土铺盖裂缝淤填过程的试验研究,河北工程技术高等专科学校学报,2003,11(3):7-11
    [102] 吴崇礼,郭述军,软土固结系数确定方法的分析与改进,第五届土力学及基础工程学术会议论文集,北京:中国建筑工业出版社,1990,140-146
    [103] 郭述军,吹填土的固结分析方法与加速固结措施:[硕士学位论文],天津:天津大学,1987
    [104] 李冰河,成层饱和软粘土地基大应变固结理论研究:[浙江大学博士论文],浙江大学,1999
    [105] Tan, T. S, Scott, R.F., Finite Strain consolidation- A study of convection, Soils and Foundations, 1988, 28(3):64-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700