七种地被植物在边坡绿化专用基材中的适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以高羊茅、紫花苜蓿、中华结缕草、黑麦草、白三叶、“胭脂红”景天和“金娃娃”萱草等七种地被植物为研究对象,对其在岩石专用护坡喷播基材中的生长数量特征和适应性指标进行统计分析。选取主要评价指标,建立边坡植物适应性评价体系,运用层次分析法确定权重,对研究对象进行适应性评价。主要结论如下:
     1、供试植物的发芽能力依次为:景天>萱草>苜蓿>黑麦草>白三叶>结缕草>高羊茅;在一个生长周期内的绿期长短顺序为:景天>高羊茅>黑麦草>苜蓿>萱草>白三叶>结缕草。
     2、夏至(6月21日)时苜蓿的地上生物量平均值显著高于其它植物,其次为高羊茅和白三叶,而结缕草、景天和萱草之间则差异不显著,且它们的生物量值远小于其它三种植物;秋分(9月23日)时苜蓿地上生物量平均值显著高于其它植物。从夏至到秋分,结缕草单位面积地上生物量横向增加量最大,白三叶最少。夏至时高羊茅、苜蓿、萱草的地下生物量显著高于其他植物;秋分时萱草的地下生物量显著高于其它植物,其次为高羊茅和苜蓿;到秋分时,各供试植物地下生物量较夏至时均有较大增幅。
     3抗旱性能力为:景天>结缕草>高羊茅>萱草>苜蓿>黑麦草>白三叶。
     4、供试植物在相同覆盖度下的抗雨水冲刷能力顺序为:结缕草>白三叶>景天>黑麦草>高羊茅>苜蓿>萱草。
     5、选取出苗率、抗旱性、覆盖速度、越冬性、地上生物量、使用年限、地下生物量、景观效果、绿期、主根长、建设成本、养护成本等十二个重要指标,构建边坡植物适应性评价体系,对供试植物进行适应性评价和质量等级划分,结果为:结缕草得分最高,综合分值约7.6,质量等级良。可大量的单播或混播应用;质量等级为一般的有苜蓿、高羊茅、景天和萱草;可根据他们不同特性结合工程实际进行有选择的应用;黑麦草得分小于6分,质量等级为差;白三叶得分最低,质量等级为极差。黑麦草和白三叶在专用护坡基材进行边坡防护中是不能作为保留种大量应用,可利用它们成坪快的特点作为先锋植物进行应用。
The ecology compatibility of plants used in green slope is directly related to the display of landscape function and ecology function of virescence projects, which is an important attribute of restoring the side slope ecosystem and improving ecological environment. Taking Festuca arundinace, Medicago sativa, Zoysia japonica, Lolium perenne, Trifolium repens, Sedum spurium and Hemerocallis fuava as the research objects, the growth characteristic, drought resistance and anti-rain wash ability of the senen ground covers were studied in the special base material of green slope. Choosing the main evaluating indexes and establishing the compatibility evaluation system of side slope plants, the compatibility evaluation of the plants was carried on with analytic hierarchy process determining weight. The results were as follow:
     Firstly, the germinative capacity of the seven plant was as follows: Sedum spurium‘Coccineum’> Hemerocallis fuava> Medicago sativa> Lolium perenne> Trifolium repens> Zoysia japonica> Festuca arundinacea. The length of green time in a vegetative cycle was as follows: Sedum spurium‘Coccineum’> Festuca arundinacea> Lolium perenne> Medicago sativa> Hemerocallis fuava> Trifolium repens > Zoysia japonica.
     Secondly, the average aboveground biomass of Medicago sativa on summer solstice (June 21st) was particularly higher than other plants, and the following was that of Festuca arundinacea and Trifolium repens. But there was no significant diference between Zoysia japonica, Sedum spurium‘Coccineum’, Hemerocallis fuava, and their average aboveground biomass was far lower than that of the other three. On autumnal equinox (September 23rd), the average aboveground biomass of Medicago sativa was particularly higher than other plants, and the following was that of Festuca arundinacea and Zoysia japonica.During the time from summer solstice to autumnal equinox, the transverse increase of aboveground biomass in unit area of Zoysia japonica was the most,while that of Trifolium repens was the least. On summer solstice, the underground biomass of Festuca arundinacea, Medicago sativa, Hemerocallis fuava was significantly higher than other plants. On autumnal equinox, the underground biomass of Hemerocallis fuava was significantly higher than other plants, and the following was that of Festuca arundinacea and Medicago sativa. Compared with the time of summer solstice, the underground biomass of the seven plants had great increase than on autumnal equinox.
     Thirdly, the drought resistance was as follows: Sedum spurium‘Coccineum’> Zoysia japonica > Festuca arundinacea > Hemerocallis fuava> Medicago sativa > Lolium perenne > Trifolium repens.
     Fourthly, the anti-rain wash ability under the same degree of coverage was as follows: Zoysia japonica> Trifolium repens> Sedum spurium‘Coccineum’> Lolium perenne > Festuca arundinacea> Medicago sativa > Hemerocallis fuava.
     Fifth, taking plant emergence rate, drought resistance, cover speed, winter hardiness,ground biomass,underground biomass, ages, landscape effect, green time, construction cost and maintenance cost as variables, compatibility evaluation system of side slope plants was established, through which the adaptability evaluation and quality grades division of the seven ground covers were carried on. The results suggested that the quality grade of Zoysia japonica was good with the highest score of 7.6, while that of Medicago sativa, Festuca arundinacea, Sedum spurium‘Coccineum’and Hemerocallis fuava was moderate. However, the quality grade of Trifolium repens was worst with the lowest score.
引文
[1]安保昭.坡面绿化法[M].北京:人民出版社, 1988.
    [2]陈戈.厚层基材喷播植草护坡在西南铁路的应用[J].路基工程, 2005(3):97-101
    [3]陈振盛.泥岩边坡植生技术研究[J].水土保持研究, 1995, 2(3): 68-75.
    [4]杜娟.客土喷播施工法在日本的应用发展[J].公路, 2000(7): 72-73.
    [5]韩烈保.草坪管理学[M].北京:北京农业大学出版社, 1994.
    [6]黄尊景,陈孟达.台湾特殊地质区水土保持工法之运用[J].水土保持研究, 1995, 2(3): 76-82.
    [7]刘德荣,马永林,韩烈保等.坡面液压喷播绿化草种及组合的筛选[J].北京林业大学学报, 2000, 22(2): 41-45.
    [8]刘军,罗成荣,慕长龙.四川盆地高速公路绿化树种的选择[J].四川农业大学学报, 1998, 16(3): 385-389.
    [9]陆庆轩,纪凯.草坪建植与养护管理[M].沈阳:辽宁科学技术出版社, 2000: 264-265.
    [10]刘本同,钱华,何志华等.我国岩石边坡植被修复技术现状和展望[J].浙江林业科技, 2004(3): 47.
    [11]李旭光,毛文碧,徐福有.日本的公路边坡绿化与防护—1994年赴日本考察报告[J].公路交通科技, 1995(2): 59.
    [12]罗军,朱开明,李轩等.高速公路坡面防护草种选择和应用技术研究[J].湖南林业科技,2001(2):56-59.
    [13]任继周.草业科学研究方法[M].北京:中国农业出版社, 1998: 56-57.
    [14]舒翔,曹映泓,廖晓瑾等.岩石边坡喷混植生设计施工[J].中外公路, 2001, 21(4): 45-48.
    [15]孙江岷,张群英,王文秀等,河道堤防植物护坡综述[J].黑龙江水专学报1998(2):67
    [16]彭燕.高速公路草坪建植技术初探[J].中国草地, 2001, 23(5): 52-55.
    [17]山寺喜成.恢复自然环境绿化工程概论——坡面绿化基础与模式设计[M].北京:中国林业出版社, 1997: 93-97. [18 ]苏翔,杜娟,曹映泓等.生态工程在高速公路岩石边坡防护工程中的应用[J].公路, 2001(7): 86-89.
    [19]孙宏义,徐增友,董治宝等.黄土高原北部风沙区喷播植物护坡研究[J].西安科技学院学报, 2004, 24(1): 86-89.
    [20]汤健,河道护坡草坪喷播技术的应用[J]新技术应用·北京水利2002(3):35-36.
    [21]王铁桥,许文年,叶建军.挖方岩石边坡绿化技术与方法探讨[J].三峡大学学报(自然科学版), 2003(2): 101-104.
    [22]王辉珠.草地分析与生产设计[M].北京:中国农业出版社, 1997: 110-111.
    [23]吴长文,章梦涛,付奇峰.斜坡喷播绿化技术的研究[J].中国水土保持,2000(4): 24-26.
    [24]魏永幸.植被护坡技术发展趋势初探[J].路基工程, 2004(1): 41.
    [25]席嘉宾等.几种混播绿化组合对高等级公路边坡防护效益的研究[J].草业科学, 2000, 17(4): 57-60.
    [26]席嘉宾.高等级公路边坡牧草绿化混播试验的研究[J].甘肃农业大学学报, 1997, 32(3): 271-275.
    [27]许文年等.工程边坡绿化技术初探[J].三峡大学学报, 2001, 23(6): 512-513.
    [28]许文年,王铁桥,叶建军.岩石边坡护坡绿化技术应用研究[J].水利水电技术, 2002, 33(7): 35-40.
    [29]杨永兵,施斌,杨卫东等.边坡治理中的植物固坡法[J].水文地质工程地质, 2002(1): 64.
    [30]赵焕胤,朱劲伟,王维华林网内蒸发水平分布规律的研究[J]应用生态学报,1994,5(2):138-143.
    [31]周德培,张俊云.植被保护工程技术[M].北京:人民交通出版社, 2002.
    [32]张俊云,周德培,李绍才.岩石边坡生态护坡研究简介[J].水土保持通报, 2000, 20(4): 36-38.
    [33]张俊云.厚层基材喷射植被护坡植物选型设计研究.
    [34]张俊云,周德培,李绍才.岩石边坡生态种植基试验研究[J].岩石力学与工程学报, 2001, 20(2): 239-242.
    [35]张俊云,周德培,李绍才.厚层基材喷射护坡试验研究[J].水土保持通报,2001,21(4): 44-46.
    [36]张俊云,周德培、李绍才.高速公路岩石边坡绿化方法探讨[J].岩石力学与工程学报, 2002, 21(9): 1400-1403.
    [37]章梦涛,付奇峰,吴长文.岩质坡面喷混快速绿化新技术浅析[J].水土保持研究, 2000, 7(3): 65-75.
    [38]周颖,曹映泓,廖晓瑾等.喷混植生技术在高速公路岩石边坡防护和绿化中的应用[J].岩土力学, 2001, 22(3): 353-356.
    [39]孙书存,包维楷.恢复生态学[M].北京:化学工业出版社,2005:128—170.
    [40]杨春时.美学[M].北京:高等教育出版社,2004:5—10.
    [41]胥晓刚.高速公路路域生态恢复研究[D].四川农业大学博士学位论文,2004.
    [42] Endo, T.,Tsuruta, T. The ehffect of tree roots upon the shearing strength of siol.Annual report of the Hokkaido Branch, Tokyo Forest Experinment station,Tokyo, Japan. 1969,(18):168-179
    [43] Manbeian, T. The influence of soil moisture suction, cyclic wetting and drying,and plant roots on the shear strength of a cohesive siol. University of California,at Berkeley, Ca1if..1973
    [44] Ziemer, R. R. Roots and stability of forested slopes. Publication No. 132, lnt.Assoc. Of Hydrologic Sciences. 1981:343-361
    [45] Wu, T. H.,Beal, P. E.,Lan, C. In-situ test of soil一root systems.J. of Geotech.Engrg.,ASCE. 1988, 114(12):1376 }-1394
    [46] Waldron, L. J.,Dakessian, S. Soil reinforcement by roots, calculation of increased soil shear resistance from root properties. Soil Science. 1981:132,427-435
    [47] Gray D. H, Ohashi,H. Mechanics of fiber reinforcements in sand. J. Geotech.Engrg. . 1983, 109 (3):335-353
    [48] Barker, D. H. Enhancement of slope stability by vegetation. Ground Engineering.1986, 19 (3):11-15
    [49] Shewbridge, S. The influence of fiber properties on the deformation characteristics of a reinforced sand.Univ. of Calif.,Berkeley, Calif.1987
    [50] Coutts MP. 1987. Developmental process in tree root systems. Canadian Journal of Forest Research 17:761-767.
    [51] Goodman, A. M.,Crook, M. J.&Ennos, A. R. (2001) Anchorage mechanics of the tap root system of winter-sown oil seed rape (Brasslca napus L.).Anna I s of Botany 87, 397-404.
    [52] Nicoll BC, Ray D (1996) Adaptive growth of tree root systems inresponse to wind action and site conditions. Tree Physiol 16:891-898

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700