保水剂不同配比在岩壁复绿基质中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在室内大棚中,采用工程实践中常用的喷播基质材料和配比比例,并在控制其他基质材料比例一定的条件下,对保水剂含量设置了8个不同梯度,每个梯度均栽植4种植物种进行分析比较和研究,结果表明:
     (1)添加一定量保水剂后,能有效改良基质结构,延长植物耐旱时间。不同保水剂含量对基质各项物理性质指标影响不相同,保水剂含量与基质总孔隙度显著正相关,与基质容重显著负相关。
     (2)保水剂含量小于0.3%时,基质抗冲性指数、抗剪切强度、种子发芽率和苗高均随保水剂含量增加而增强或增大;等于0.3%时,达到最大峰值;大于0.3%时,反而下降。
     (3)总体上,保水剂含量越高,相同干旱时间内含水量越高,幼苗枯萎率越低。萌发期,白三叶、紫穗槐、波斯菊和黑麦草,分别在连旱后的第43、44、30和40d水分散失量趋向于0,此时各植物种的枯萎率已经分别达到了80%、75%、95%和80%,大部分已经枯萎并死亡;
     (4)各植物种12:00~16:00时间段内基质失水量最多,其次是8:00~12:00,夜间无冷凝现象,但仍有较高失水量;基质0~5cm层初始含水量最高,但失水速率快,连旱20d后,基质各层次含水量大小为5~10cm>10~15cm>0~5cm。
     (5)8个不同保水剂梯度基本分为四个类别组:第一组0%、0.05%、0.1%、0.15%;第二组,0.2%和0.3%;第三组,05%;第四组,1%;Topsis法综合评价保水剂含量的最优区间为0.2%~0.3%,较差区间或梯度为0.5%~1%和0%。
The experimental was in greenhouse and used common base materials and rate which being used in project practices. The Water Holding Agent was sated eight gradients, and the other materials were controlled in the same rate. Research and analysis the base materials with different gradients of Water Holding Agent and four different plants, the results showed that:
     (1)Adding a certain quantity of Water Holding Agent could improve the structure of base material and prolong the drought tolerance time of plants. Different Water Holding Agent contents had different influences of physical properties of base material. Water Holding Agent contents had a significant positive correlation with total porosity, and significant negative correlation with bulk density of the base materials.
     (2)Anti-scouring index, shear strength, germination rate and seedling height would be enhancing or higher with Water Holding Agent contents increasing when the contents less than 0.3%, at he summit when the content was 0.3% and be decreasing with contents increasing when the contents more than 0.3%.
     (3)Generally, the higher of the Water Holding Agent contents, the higher of the water contents, the lower of wither rate of the same plant in the same drought times. In germination stage, after forty-three, forty-four, thirty and forty drought days, the Trrifolium repens L., Amorpha fruticosa, Cosmos bipinnatus Cav and Lolium perenne would almost have no water to lose, the evaporation tended to zero, the wither rates were: 80%, 75%, 95% and 80%, and most of them had already dead.
     (5)Water losing of the base material was highest in 12:00-16:00, and second highest in 8:00-12:00 in one day. There was water losing but no condensation at night in greenhouse. 0-5cm base material layers had highest initial water content, but it also had the fastest water losing rate. After twenty drought days , the water content sequence of different layers was : 5-10cm>10-15cm>0-5cm.
     (6)The eight different gradients of Water Holding Agent could be defined four different groups: the first group include gradient 0%, 0.05%, 0.1% and 0.15%; the second group included gradient 0.2% and 0.3%; the third group was gradient 0.5%; the fourth was 1%. Using the Topsis comprehensive evaluation to analyze the optimum interval of Water Holding Agent contents was 0.15 %to 0.3%, and the inferior interval was 0.5% to 1% and gradient 0%.
引文
[1]吴和政,郑薇.我国矿山生态环境及生态恢复技术的现状[J].探矿工程(岩土钻掘工程):2008,(7):46~47.
    [2]袁希平.浅谈矿山环境恢复治理[J].湖北社会科学,2008,(2):178~180.
    [3]武强.矿山环境研究理论与实践[M].北京:地质出版社,2005,128~130.
    [4]阎敬,杨福海,李福平.冶金矿山土地复垦综述[J].河北理工学院学报,1999,21(5):41~47.
    [5]葛伟亚,周洁.矿山环境管理保护研究进展分析[J].西部探矿工程,2008(11):128~130;
    [6]隋凤良.德国矿山复垦[J].森林与人类,1999(3):47.
    [7]Bradshaw A.Restoration of mined lands-using natural processes[J].Ecological Engineering,1997,8:255 ~269.
    [8]Baath E.Effect of heavy metals in soil on microbial processes and pollution [J].Water,Air and Soil Pollution,1989,58:1 722~1 736.
    [9]孙一琳.北京矿山废弃地植被恢复技术定额初步研究[D].北京:北京林业大学,2007,7.
    [10]徐曙光.澳大利亚的矿山环境恢复技术与生态系统管理[J].国土资源情报,2003,(2):1~8.
    [11]王永生.国外矿山环境恢复的标准与技术要求[J].国土资源导刊,2009,(4):59~60.
    [12]马丹丹.阜新矿业废弃地现状及生态恢复技术[D].吉林:东北师范大学,2006,7
    [13]赵永军,刘启虎,翟利,等.破坏山体植被恢复中新技术的应用[J].山东林业科技,2006,(4):58~60.
    [14]叶建军,周明涛,许文年.谈喷射护坡绿化技术[J].水土保持研究,2004,11(2):194~197.
    [15]方华,林建平.植被护坡现状与展望[J].水土保持研究,2004,11(3):283~255,292.
    [16]周德培,张俊云.植被护坡工程技术[M].北京:人民交通出版社,2003.7.
    [17]杜娟.客土喷播施工法在日本的应用与发展[J].公路,2000(7):72~73.
    [18]李绍才,孙海龙.中国岩石边坡植被护坡技术现状及发展趋势[J].资源科学,2004,26:61~66.
    [19]沈毅,晏晓林,梁爱学,等.厚层基材喷播边坡防护技术研究[J].公路交通科技,2007,24(2):151~154.
    [20]张俊云,李绍才,周德培.岩石边坡植被护坡技术(2)—厚层基材的组成及特性[J].路基工程,2005,(5):4~6.
    [21]张俊云,周德培,李绍才.岩石边坡生态种植基试验研究[J].岩石力学与工程学报,2001,20(2):239~232.
    [22]张俊云,周德培.厚层基材喷射植被护坡基材混合物的收缩恢复性研究[J].岩石力学与工程学报,2004,23(7):1203~1208.
    [23]周中,巢万里,刘宝琛,等,岩石边坡生态种植基强度的正交试验[J].中南大学学报(自然科学版),2005,36(6):1112~1116.
    [24]苗蕾,唐妍,杨喜田,等.厚层客土喷播基质中不同有机质添加物对护坡植物早期生长的影响[J].河南农业大学学报,2008,42(1):57~60.
    [25]王志玉,刘作新.高吸水性树脂的性能及其在农业上的应用[J].土壤通报,2004,35(3):352~356.
    [26]芦海宁,韩烈保,苏德荣.保水剂在草坪中的应用研究进展[J].节水灌溉,2005,(1):14~17,30.
    [27]James EA, Richard D.The influence of iron fertilizers on hydrogel performance [J].Australian Horticulture,1985,(12):29~33.
    [28]Johnson MS.Effect of Soluble salts on water absorption by Gel-forming soil conditioners[J].Journal of the Science of Food and Agriculture,1984,35:1063~1066.
    [29]党秀丽,张玉龙,黄毅.保水剂对土壤持水性能影响的模拟研究[J].农业工程学报,2005,21(4):191~192 .
    [30]林文杰,马焕成,周蛟,等.干旱胁迫下保水剂对苗木生长及生理的影响[J].干旱区研究,2004,21(4):353~357 .
    [31]都市绿化技术开发机构,地面植被共同研究会.地面绿化手册[M].北京:中国建筑工业出版社, 2003.
    [32]L Gugliemelli,MO Weaver,CR Russell,etal.Base-hydrolyzed starch-polyacrylonitrile (S-PAN) graft copolymer[J]. Appl.Polymer Sc.1996,13(6):2007~2017.
    [33]周德培,张俊云.植被护坡工程技术[M].北京:人民交通出版社,2003,7.
    [34]周跃.植被与侵蚀控制:坡面生态工程基本原理探索[J].应用生态学报,2000,11(2):42~46.
    [35]楚海林.四川红层人工边坡喷植绿化技术的研究[D].成都:西南交通大学,2000,7.
    [36]杨喜田,赵宁,董惠英.论厚层客土喷播技术的植物群落目标设定和植物种选配[J].中国水土保持科学,2006,4(1):70~74.
    [37]朱峪增.客土喷播施工工艺技术要点[J].草业科学,2003,20 (11):76~78.
    [38]张俊云,周德培,武小菲.厚层基材喷射植被护坡的水分常数分析[J].水土保持通报,2000,25(1):44~50.
    [39]Horn R,Taubner H,Wuttke M.Soil physical properties related to soil structure [J].Soil and Tillage Research ,1994,30(2):187~216.
    [40]罗盛国,乔红霞,魏自民,等.高分子树脂保水效果研究[J].东北农业大学学报,2000,31(l):7~13.
    [41]山寺喜成,安保昭,吉田宽.恢复自然环境绿化工程概论[M].罗晶,张学培译.北京:中国科学技术出版社,1997.
    [42]孙健.吸水剂对土壤某些物理特性影响的初步研究[J].北京林学院学报,1985(4):38~44.
    [43]何腾兵.高吸水剂的吸水能力及其对土壤水分物理性质的影响[J].耕作与栽培,1996,(5):57~59
    [44]杨茂秋,王川质,刘景富.吸水剂及其在农业中的应用[J].新疆农业科学,1987,(4):14~16
    [45]张宏伟,龙明杰,曾繁森.腐植酸接枝共聚物对土壤物理性能的影响研究初报[J].东农业科学,2001(1):33~35.
    [46]林杰,柯金炼,刘鸿洲,等.高吸水树脂对侵蚀性土壤物理性状的影响[J].福建农林大学学报(自然科学版),2002,31(2):259~261.
    [47]孙福强.高吸水性树脂对土壤的水肥性质及土壤结构的影响研究[D].广东:广东工业大学,2003.
    [48]肖辉杰.土壤保水剂持水特性及对土壤结构和林木生长的影响研究[D].北京:北京林业大学,2004.
    [49]张明柱,黎庆淮,石秀兰..土壤学与农作学[M].北京:中国水利水电出版社,1994,16-19.
    [50]丁访军,钟洪明,潘明亮,等.赤水河下游不同林地类型土壤物理特性及其水源涵养功能[J].水土保持学报,2009,23(3):179~183,231.
    [51]张爱国,张平仓,杨勤科.区域水土流失土壤因子研究[M].北京:地质出版社,2003.
    [52]景可,王万忠,郑粉莉.中国土壤侵蚀与环境[M].北京:科学出版社,2005.
    [53]胡建忠,周心澄,李文忠,等.退耕地青海云杉人工林土壤抗冲性试验研究[J].水土保持学报,2004,18(6):6~10.
    [54]杨学春,董希斌,肖生灵.森林采伐学CAJ课件的研制及应用效果[J].黑龙江教育学院学报,2004 (5):57-59.
    [55]江浩浩,董希斌,王海飙.边坡土壤含水率对不同植被土壤抗剪强度的影响森[J].林工程,2009,25 (3):77~80.
    [57]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展,1999,10(03):311~318.
    [58] Krebs CJ.Ecology:The experimental analysis of distribution and abundance[J].New York:Fairfield Graphics, 1978:225~228.
    [59]STEKAUEROVA V,NAGY V,KOTOROVA D.Soil water regime of agricultural field and forest ecosystems[J].Biologia,2006,61(19):300~304.
    [60]吴长文,章梦涛,付奇峰.斜坡喷播绿化技术的研究[J].中国水土保持,2000,(4):24~26.
    [61]李保国,龚元石,左强,等.农田土壤水动态模型及应用[M].北京:科学出版社,2000,107~131.
    [62]吕岁菊,李春光.土壤水-盐运移规律数值模拟研究综述[J].农业科学研究,2005,26(1):107~131.
    [63]DANE JH,MATHIS FH,An adaptive finite difference scheme for the one dimensional water flow equation[J].Soil Sci,1981,45:1048~1054.
    [64]PANL,WARRICK A W,WIERENGA P J.Finite elements methods for simulation water flow in variably saturated porous media:numerical oscillation and mass distributed schemes[J].Water Resources Research,1996,32:1883~1889.
    [65]雷志栋,杨诗秀.非饱和土壤水一维流动的数值计算[J].土壤学报,1982,19(2):141~153.
    [66]谢正辉,曾庆存,戴永久,等.有限元集中质量法在非饱和土壤水流中的应用[J].气候与环境研究,1998,3(1):73~8.
    [67]李宏艳,梁冰,苏荣华.土壤水热迁移问题的混合有限元法[J].灌溉排水,2002,21(1):49-52.
    [68]李毅,王全九,王文焰,等.入渗、再分布和蒸发条件下一维土壤水运动的数值模拟[J].灌溉排水学报,2007,26(1):5~8.
    [69]陆垂裕,裴源生.适应复杂上表面边界条件的一维土壤水运动数值模型[J].水利科学,2007,38(2):136~142.)
    [70]周凌云,陈志雄,李卫民.TDR法测定土壤含水量的标定研究[J].土壤学报,2003,40(1):59-64.
    [71]谢正辉,曾庆存,戴永久,等.非饱和流问题的数值模拟研究[J].中国科学(D辑),1998,28(2):175~180.
    [72]王声锋,张展羽,段爱旺,等.豫北地区降水的时间序列特性分析[J].中国农村水利水电,2008,(3):13~16.
    [73]谢锦升,李春林,陈光水,等.花岗岩红壤侵蚀生态系统重建的艰巨性探讨[J].福建水土保持,2000,12(3):3~4.
    [74]黄占斌,朱书全,张铃春,等.保水剂在农业改土节水中的效应研究[J].水土保持研究,2004,11(3):57~60.
    [75]D希勒尔.土壤和水—物理原理和过程[M].华孟,叶和才译.北京:农业出版社,1981.
    [76]Topp G.C,J.L Davis,A.P Annan.Electromagnetic determination of soil water content: measurements in coaxial transmission lines[J].Water Resources Research,1980,V.16. No.3:574~58
    [77]Ledieu J,PD Ridder, PD Clerck,etal.1986. A method of measuring soil moisture by time-domain reflectometry [J].Hydrol,88:319~328.
    [78]陈家宙,陈明亮,陈圆球.各具特色的当代土壤水分测量技术[J].湖北农业科学,2001(3):25~28.
    [79]姜小三,倪绍祥,潘剑君,等.温度条件对TDR测定土壤水分的影响[J].江苏农业科学,2004(4):102~104.
    [80]BOX GP,JENKINS GM,REINSEL GC.Time Series Analysis:Forecasting and Control[M].The third edition.NY:Prentice-HallInc,1994.
    [81]DERVOOT MV,DOUGHERTY M,WATSON S.Combining KO-HOEN maps with ARIMA time series model to forecast traffic flow[J].Transportation Research,1996,4(5):307~318.
    [82]黄进,张金池.苏州市空气质量的时间序列变化过程研究[J].环境科学与技术,2009,32(6):49~52.
    [83]吴月茹,王维真,晋锐,等.TDR测定土壤含水量的标定研究[J].冰川冻土,2009,31(2):262~267.
    [84]李辉华,郭弘艺,唐文乔,等.ARIMA模型在预测长江靖江段沿岸鱼类渔获量时间格局中的应用[J].水产学报,2008,32(6):899~905.
    [85]唐启义,冯明光.DPS数据处理系统[M].北京:科学出版社,2006.
    [86]胡永红,吴志峰,李定强,等.基于ARIMA模型的区域水生态足迹时间序列分析[J].生态环境,2006,15(1):94~98.
    [87]王志,刘秀菊,王树林,等.黄河流域棉花品种产量性状时间序列的ARIMA模型预测研究[J].棉花学报,2007,19(3):220~226.
    [88]王瑞庆,王晛,李渝曾.基于时间序列ARMAX模型的短期电价预测方法[J].华东电力,2009,37(5):727~730.
    [89]陈平雁,黄浙明.spss10.0统计软件高级应用教程[M].北京:人民军医出版社,2004.
    [90]陈平雁,黄浙明.spss13.0统计软件应用教程[M].北京:人民卫生出版社,2005.
    [91]范爱武,刘伟,王崇琦.土壤温度有约土壤温度和水分日变化实验[J].太阳能学报m2002,23(6):721~724.
    [92]刘炳成,刘伟,杨金国.湿分分层土壤中热湿迁移与水分蒸发的实验研究[J].工程热物理学报,2004,25(6):1004~1006.
    [93]夏自强.温度变化对土壤水运动影响研究地[J].球信息科学,2001,(4):19~24.
    [94]时新玲,张富仓,王国栋.土壤失水干燥的动力学实验研究[J].应用基础与工程科学学报, 2006,14(3):333~339.
    [95]曾亦键,万力,王旭升,等.浅层包气带地温与含水量昼夜动态的实验研究[J].地学前缘(中国地质大学(北京);北京大学),2006,13(1):52~57.
    [96]GuoYuQiu,TomohisaYano.An Improved Methodology to Measure Evaporation from Bare Soil Based on Comparison of Surface Temperature with a Dry Soil Surface[J].Journal of Hydrology,1998,210(1~4):93~105.
    [97]川岛和夫.农田土壤改良剂—新型保水剂[J].土壤学进展,1986(3):4~9.
    [98]李景生,黄韵竹.土壤保水剂的吸水保水性能研究动态[J].中国沙漠,1996,16(1):86~91.
    [99]王振宇,包怡红.生物活性保水剂对模拟沙化土地治理效果的分析[J].东北林业大学学报,2003,31(3): 27~28.
    [100]王斌瑞,贺康宁.保水剂在造林绿化中的应用[J].北京林业大学学报,2000(4):22~24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700