外墙外保温系统的地震作用分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国人均能源资源拥有量小于全世界人均水平的一半,为了实现经济可持续发展战略,在建筑节能方面,中国政府给予了足够的重视,特别是近期颁布的《节能中长期专项规划》明确规定:“十一五”期间,新建筑要严格执行节能标准,现有建筑要逐步实施节能改造。目前,我国应用较多的建筑保温技术为安装在结构墙体之外的外墙外保温系统,但对这种非结构构件在地震作用下的安全性能研究还较少,因此进行外墙外保温系统的地震作用分析具有重要的现实意义。本文通过理论分析和ANSYS有限元计算分别研究了外墙外保温结构在多遇地震作用下的弹性反应及在罕遇地震作用下的弹塑性反应,并得到如下主要成果。
     (1)通过建立外墙外保温结构力学模型,推导出外墙外保温结构在地震作用下的运动方程,并采用Matlab语言编制了地震作用下时程分析的计算程序。
     (2)通过分析保温系统对结构周期的影响发现,保温系统将使建筑结构各阶振型所对应的结构周期变大,因此在进行结构设计时,要特别注意保温系统对建筑结构周期的影响。
     (3)通过对外墙外保温系统进行多遇地震作用下时程分析得到,主体结构中间层在多遇地震作用下所产生的地震作用较大;各层保温系统处加速度最大值要明显大于各层主体结构处加速度最大值;主体结构和保温系统位移最大值均发生在中间层;高层处保温系统与主体结构之间相对位移较大。
     (4)当主体结构刚度由小变大时,各层主体结构和保温系统最大位移均逐渐减小;随着主体结构刚度的增大,保温系统加速度逐渐减小;保温系统质量的变化几乎对各层主体结构及保温系统最大位移不产生影响;保温系统质量的改变对主体结构各楼层最大加速度没有影响;随着保温系统质量的增加,对保温系统各层最大加速度有增大的趋势。
     (5)通过ANSYS有限元分析得到,在罕遇地震作用下,主体结构最大弹塑性位移出现在高层处,而保温系统最大弹塑性位移则发生在中间层处;在较高层时主体结构与对应的保温系统之间发生弹塑性变形所产生的最大相对位移值很大。
The percapita availability of energy in China is lower than half of the average level in the world. To realize sustainable development of economic society, Chinese government has paid enough attention to the aspect of building enery conservation, especially for the'Energy saving medium-long term special planning'. It has been clearly stipulated that the energy saving standard and transformation should be strictly carried out in the new and existing bulidings, respectively. At present, exterior wall external insulation system is widely used in our country. But, there is less study on safety of exterior wall external insulation system under earthquake action. Thus, it is of great practical significant on asismic analysis of exterior wall external insulation system. Based on theoretical and FEM methods, the present paper investigates the elastic and elastic-plasic response of exterior wall external insulation structure under frequently and rare occurred earthquake. The following conclusions can be drawn:
     (1) Based on the proposed mechanic model of exterior wall external insulation system, the corresponding motion equation is deduced under earthquake action, and a time history program is also developed by Matlab software.
     (2) The insulation system can increase the vibration periods of structure modes and should be taken into serious consideration.
     (3) A time history analysis of exterior wall external insulation system under frequently occurred earthquake is carried out. The results show that the maximum earthquake action occurs at the mid-floor of the main structure; the maximum acceleration of insulation system at every floor is much bigger than that of the main structure; the maximum displacements of both main structure and insulation system are occur at the mid floor, and the maximum relative displacement between main structure and insulation system is on the top floor.
     (4) The maximum displacement and acceleration of insulation system at every floor decreases gradually with increasing the structure stiffness. There is no significant influence of the mass of insultion system on the maximum displacement of main structure and insulation system at every floor. The maximum acceleration of insulation system will increase due to the greater mass of insulation system, but mass of insulation system has no effect on the maximum acceleration of main structure.
     (5) A FEM analysis on the overall structure under the action of rare occurrence earthquake is finished. The results show that the top floor has the maximum elastic-plastic displacement of the main structure; however, the maximum elastic-plastic displacement of the insulation system occurs at the mid floor. In addition, the maximum relative displacement takes place at the upper floor.
引文
[1]林宪德.绿色建筑生态·节能·减废·健康[M].中国建筑工业出版社,2007.
    [2]祝英杰,尹续峰,王士风.新型住宅建筑结构抗震节能体系应用与研究[J].工业建筑,2004,12(34):73-75.
    [3]张绍兰,杨松.外墙节能技术的发展与应用[J].吉林水利,2007(4):95-97.
    [4]王健.外墙外保温在工程实践中的应用[J].潍坊学院学报,2007,2(7):126-130.
    [5]王美君.当前外保温技术发展中的问题与展望[J].行业观点,124-125.
    [6]孙晶莹.管窥外墙外保温技术在我国的发展及应用[J].科技创新导报,2008,3:8-9.
    [7]冯冰,熊影,张声光.国内外外墙外保温发展现状[J].江西建材,2007,3:3-4.
    [8]龚雁,毛明富,张建荣,刘士荣,倪忠斌,陈清明.外墙外保温技术的现状和发展[J].节能环保,2008,4:44-47.
    [9]宋金萍.浅析建筑外墙外保温的优势及其施工方法[J].建筑施工,2008,982(35):91.
    [10]刘朋,张大为.外墙外保温技术在北方区域建筑中应用的前景与展望[J].辽宁建材,2009,4:30-31.
    [11]周广德.解析外墙外保温的承重与安全性研究[J].技术交流,2009,4(84):26-28.
    [12]程文斌.外墙外保温的承重与安全性[J].保温材料与节能技术,2009,2:30-31.
    [13]杨宗焜,耿承达,杨玉楠.浅论当前我国外墙外保温防火安全体系的研究方向[J].墙体与设计,2008,12(36):1-5.
    [14]宋长友,陈丹林,黄振利,季广其.高层建筑耐火外墙保温系统技术研究[J].建筑科学,2008,2(24)93-104.
    [15]马宝联.外墙外保温技术现状及相关问题探讨[J].建筑与结构设计,2009,5:47-50.
    [16]尹洪东.外墙外保温防水技术措施[J].建筑施工,2009(34):87.
    [17]王鲲,张晟,王晓亭.外墙外保温的工程应用[J].上海建材,2008,5:17-18.
    [18]王玉萍.浅谈外墙外保温裂缝产生的原因及防治措施[J].建筑施工,2008(35):96.
    [19]陈玉浩.外墙外保温工程质量控制探讨[J].中州建设,2007,9:25.
    [20]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,2002,5.
    [21]俞宏伟.我国外墙外保温技术的应用安全分析[J].住宅科技,2005,10:32-34.
    [22]王亚杰.在建筑节能设计中外墙外保温技术的探讨[J].山西建筑,2006,21(32):239-240.
    [23]建设部标准定额研究所,RISN-TG001-2005,建筑外墙外保温工程技术导则,中国建筑工业出版社,2006,05.
    [24]建设部标准定额研究所,7-112-08141-6,《外墙外保温工程技术规程》(JGJ144),中国建筑工业出版社,2006,05.
    [25]赵秀峰,刘开平,关博文.浅谈建筑墙体的保温节能技术[J].应用能源技术,2008(1):1-4.
    [26]徐峰.对外墙外保温应用中有关问题的分新[J].技术交流,2007,3:6-10.
    [27]李华忠,匡立涛,黄威.外墙外保温技术的应用现状及发展[J].建筑与结构设计, 2008.10:42-45.
    [28]刘登航.浅谈建筑墙体外墙外保温系统[J].山西建筑,2008,5(34):260-261.
    [29]王工.谈外墙外保温抗裂技术[J].科技信息(建筑工程),191.
    [30]张德信.建筑保温隔热材料[M].化学工业出版社,2006.
    [31]王立久,李洪义.我国新型住宅结构体系及其墙体材料现状[J].建筑技术,2001,(10):3-7.
    [32]郭永彦.四川省建筑节能工程地震灾害调研及分析[J].科技论坛,2009(02):72-73.
    [33]刘晖,张剑峰,于忠,冯玉秋,张红.汶川地震破坏建筑墙体保温调查[J].建设科技,2008:62-65.
    [34]郭永彦.外墙外保温工程震害调查及抗震性能初步分析[D].重庆:重庆交通大学,2009.
    [35]王汝恒,贾彬,张誉,雷劲松.绵阳城区各类建筑在汶川地震中的震害坏特征[J].工程抗震与加固改造,2008,4(30).
    [36]任普亮,曹慧,田立奇.地震灾害对陕西省建筑节能工程的影响及分析[J].建设科技,2008,18.
    [37]华玉斌.EPS板外墙外保温系统采用饰面砖可行性分析[J].辽宁建材,2008,8.
    [38]赵宏伟,王少营,杜鹤松,张兆弟.EPS外墙外保温系统采用饰面砖可行性分析[J].辽宁建材,2008,8.
    [39]李俊,王秀丽.膨胀聚苯板薄抹灰保温系统粘贴瓷砖可行性研究[J].建筑节能,2006,1.
    [40]宁健,李明云,孟相柯.外墙外保温粘贴瓷砖的可行性分析[J].上海节能,2000,4.
    [41]吴大明,郭志刚.瓷砖饰面外墙外保温体系的安全性问题[J].砖瓦,2006,6.
    [42]张碧茹.以陶瓷面砖为外饰面的外墙外保温系统[J].建设科技,2007,121.
    [43]Zheng Z H, Fenldman D. Synthetic fiber reinforced concrete[J]. Progressin Polymer Science, 1995,20(2):185-210.
    [44]Tauke S, Kjmura H. Principles of coordination polymerization[J]. Makromol. Chem,1978, 179:2603-2612.
    [45]D.T.Clark, H.R.ThPmas. Journal of Polymer Science[J] Chem.Ed,1978,16:791.
    [46]Mirmian A, and Shahawy M. A new concrete-fieled hollow FRP composite column[J]. Composites: Part B,27B,263-268.
    [47]Jones C. The effect of low powder plasmas on carbon fiber surface[J]. Cadrbon,1990,28(1):21.
    [48]L.Bandt, Cellulose Ethers. Ullmawn's Encyclopedia of Industrial Chemistry[J]. Vd.A5, 1986:461-488.
    [49]D.Briggs. Utraviplet Phtoeletrom Spectroscopy[M]. Heyden, London,1997.
    [50]Ingham J M, priestly J N, Sieble F. Cyelic response of bridge knee joints with circular Columns[J], Eng,1998(2):35-390.
    [51]R.Iwamoto; K.Ohta. Utraviplet Phtoeletrom Spectroscopy[M]. Heyden, London,1985.
    [52]Zanni A, and Norris M S. FRP jacketed concrete under flexure and conbined flexure compression[J]. Construction and building materials,1995,9(5):273-281.
    [53]沈聚敏,周锡园等.抗震工程学[M].北京:地震出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700