流化床燃煤固硫灰渣几种特性利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流化床燃煤固硫技术是为了适应环境保护的要求而发展起来的先进煤燃烧技术,但由于目前对其副产物,即流化床燃煤固硫灰渣(以下简称固硫灰渣)的特性了解有限,在一定程度上影响了其资源化利用,甚至影响到了该技术的进一步推广。固硫灰渣的几种特性如吸水性能、水化膨胀性能等严重影响了其在水泥混凝土领域的应用,论文选择多种固硫灰渣,针对这些不利特性,研究了固硫灰渣的资源化利用方式,并探讨了抑制固硫灰渣膨胀的方法。
     固硫灰渣颗粒形貌极其不规则且疏松多孔,堆积密度较小;固硫灰的标准稠度需水量比粉煤灰高很多,固硫渣的吸水率也很高;固硫灰渣具有较强的水化自硬性。固硫灰渣稳定固化污泥可以充分利用这些特性,并且能够取得较理想的稳定固化效果。(1)固硫渣与污泥质量比为2:1,固硫灰与污泥质量比为1:1即可取得较好的固化效果。固化体系在前7d内pH值能够保持在11以上,这样的强碱性环境能够保证固化体系对污泥的杀菌效果;28d时固化体系pH值在9左右,为植被恢复提供了必要的条件。(2)固硫渣污泥固化体系28d强度能够达到2MPa左右,固硫灰污泥固化体系28d强度为1MPa左右。固硫灰渣污泥稳定固化体系重金属浸出毒性满足国家标准要求。(3)固硫灰渣污泥固化体系中加入固硫灰渣质量20%的石灰,能够提高固硫灰渣污泥固化体系的杀菌效果。
     固硫灰渣的火山灰活性较高,自身水化后会发生明显的体积膨胀,根据这些特性可以利用固硫灰渣配制建筑膨胀砂浆。(1)对于固硫渣而言,最佳配比如下:胶凝材料中固硫渣:水泥:粉煤灰=0.56:0.2:0.24,此时强度发展和膨胀率都较理想。(2)固硫灰建筑砂浆胶凝材料配比为固硫灰:水泥:粉煤灰=0.56:0.2:0.24或固硫灰:水泥=0.8:0.2,两组配比的强度发展和膨胀率都比较理想。(3)固硫灰渣配制所得建筑砂浆粘结强度、干密度、抗压强度、抗折强度满足《蒸压加气混凝土用砌筑砂浆与抹灰砂浆》(JC 890-2001)标准要求。
     固硫渣胶砂体系中加入固硫渣质量1%的CaCl2或Na2CO3都能够抑制固硫渣的膨胀,28d自由线性膨胀率能够减少19%左右,对胶砂强度影响较小,但这种抑制膨胀的方法效果并不明显。
Fluidized bed combustion (FBC) technology is advanced because it can meet the demand of environment protection, but the byproducts, namely FBC ashes, are still something new to most people. As a result, the utilization of them and even the further promotion of the technology are seriously hampered. Some properties of FBC ashes such as water absorbing abilities and expansion have seriously affected their application in the cement concrete. Several kinds of FBC ashes are chosen in the paper. The recycle treatment of FBC ashes are mainly studied in the paper. Meanwhile, the ways to reduce the expansion ratio of FBC ashes are mentioned.
     The particles of FBC ashes are irregular and loose textured, so the water requirement of normal consistency of FBC fly ashes is much higher than that of PC fly ash, and the water absorption of FBC bottom ashes is very high. FBC ashes can be used for stabilization and solidification of sewage sludge. (1) For the bed ash, the appreciate mix proportion to sludge is 2:1.For the fly ash, the mix proportion is 1:1.The pH value of solidification admixture can keep above 11 at the first 7 days. The alkaline environment can guarantee the sterilization effect. At 28d, the pH value is about 9. This can offer the essential condition for the vegetation resumes. (2) At 28d, the strength of solidification admixtures of bed ash and sludge is about 2MPa and fly ash is about 1MPa. The heavy metal leaching properties of stabilized/solidified admixture of FBC ashes and sludge can meet Chinese standard.(3) The addition of twenty percent of lime in the stabilized/solidified admixture can improve the sterilization effect.
     The pozzolanic reactivity of FBC ash is high and great expansion takes place when it hydrates. Mortars can be produced with FBC ashes. (1) The best proportion of binding material for FBC bed ash is FBC bed ash: PC fly ash: cement is 0.56:0.24:0.2.The appreciate strength and expansion ratio can be got with this mix proportion.(2) The available proportion for FBC fly ash is FBC fly ash: PC fly: and cement is 0.56:0.24:0.2 or 0.8:0:0.2.(3) The strength and dry density can meet Chinese standard JC 890一2001.
     The addition of 1% CaCl2 or Na2CO3 can reduce the expansion ratio and do little effect on the strength. But it is not desirable to reduce expansion of FBC ashes.
引文
[1] 国家环境保护总局. 中国环境统计年报[R], 2004.
    [2] 王智. 流化床燃煤固硫渣特性及其建材资源化研究[D]. 重庆: 重庆大学, 2002
    [3] 屈卫东, 杨建华. 循环流化床锅炉设备及运行[M]. 郑州: 河南科学技术出版社, 2003: 6–8.
    [4] 刘妮,路春美,骆仲泱等.石灰石颗粒固硫反应特性的模型研究[J]. 环境科学学报, 2001, 21(2): 172–177.
    [5] Cille E, Belens L W. 石灰[M]. 陆 华, 武洞明译. 北京: 中国建筑工业出版社, 1981: 151–160.
    [6] 杨静. 建筑材料[M]. 北京: 中国水利水电出版社, 2004: 41–42.
    [7] Anthony E J, Granatstein D L. Sulfation phenomena in fluidized bed combustion systems[J]. Prog Energy Combust Sci,2001(27):215–236.
    [8] Edward J. Anthony, Lufei Jia, Yinghai Wu.CFBC ash hydration studies[J].Fuel,2005(84):1393-1397
    [9] 杨文, 谢晓闻, 黄羽雕等.循环流化床锅炉飞灰综合利用初探[J]. 工业锅炉, 1999, (1): 52–53.
    [10] 雒国忠. 循环流化床锅炉灰渣物化性能分析[J]. 电力环境保护, 2001, 17(4): 24–26.
    [11] 李登新, 吕俊复, 郭庆杰等. 循环流化床灰渣利用研究进展[J]. 热能动力工程, 2003, 103(18): 5–8.
    [12] Shah N D. Fluidized bed combustion –a review[J]. Chemical Engineering World, 1985, 20(11): 37–45.
    [13] Fox E C, Krishnan R P, Daw C S, etal. A review of fluidized bed combustion technology in the United States[J]. Energy, 1986, 11(11-12): 1 183–1 200.
    [14] Topper J M, Cross P J I, Goldthorpe S H. Clean coal technology for power and cogeneration[J]. Fuel, 1994, 73(7): 1 056–1 063.
    [15] Beer J M. Combustion technology developments in power generation in response to environmental challenges[J]. Progress in Energy and Combustion Science, 2000, 26(4-6): 301–327.
    [16] Everett A S, Steven A B, John P H, etal. Review of advances in combustion technology and biomass cofiring[J]. Fuel Processing Technology, 2001, 71(1-3): 7–38.
    [17] Takada T, Hashimoto I, Tsutsumi K.Utilization of coal ash from fluidized bed combustion boilers as road base material[J]. Resources Conservation and Recycling, 1995, 14(2): 69–77.
    [18] Pandey K K, Canty G A, Atalay A. Fluidized bed ash as a soil stabilizer in highway construction[J]. Geotechnical Special Publications, 1995, 46(2): 1 422–1 436.
    [19] Havlica J, Brandstetr J, Odler I.Possibilities of utilizing solid residues from pressured fluidized bed coal combustion (PSBC) for the production of blended cements[J]. Cement and Concrete Research, 1998, 28(2): 299–307.
    [20] Nader G, Garcia M C A. CoMPacted non-cement concrete utilizing fluidized bed and pulverized coal combustion by-products[J]. ACI Materials Journal, 1998, 95(5): 582–591.
    [21] 闫维勇, 高廷源, 熊仁森. 循环流化床锅炉固硫灰渣综合利用研究[J]. 洁净煤技术, 2000, 6(1): 31–33, 36.
    [22] Demir I, Hughes R E, DeMaris P J. Formation and use of coal combustion residues from three types power plants burning Illinois coals[J].Fuel, 2001, 80(11): 1 659–1 673.
    [23] 万百千, 路新瀛. 用固硫渣作土壤固化剂的可行性研究[J]. 粉煤灰综合利用, 2002, (3): 21–22.
    [24] 王文龙, 施正伦, 骆仲泱等. 流化床固硫灰渣的特性与综合利用研究[J]. 电站系统工程, 2002, 18(5): 1–3.
    [25] Siriwardane H J, Ziemkiewicz P F, Kannan R S S. Use of waste materials for control of acid mine drainage and subsidence[J].Journal of Environmental Engineering, 2003, 129(10): 910–915.
    [26] Rio S, Delebarre A. Removal of mercury in aqueous solution by fluidized bed plant fly ash[J]. Fuel, 2003, 82(2): 153–159.
    [27] 郑洪伟,王智,董孟能. 流化床燃煤固硫灰渣的综合利用[J]. 粉煤灰综合利用, 2004, (4): 53–56.
    [28] 王卫良,吕俊复等.还原条件夏煤中硫的转化[J].动力工程,2006,(6):427-431
    [29] 王迎华. 用于水泥中的固硫渣标准制定的技术研究[D]. 北京: 清华大学, 1995: 19–28.
    [30] 王智, 钱觉时, 汪宏涛. 流化床燃煤固硫渣的物理特性[J]. 粉煤灰综合利用, 2003, (5): 32–33.
    [31] 余方喜, 严生, 蔡安兰等. 高钙固硫粉煤灰的物性及活性研究[J]. 新型建筑材料, 2003, (7): 8–10.
    [32] 关建适.煤炭灰渣的活性[J].硅酸盐学报,1980,8(4):425-429
    [33] 高琼英,张智强.高岭石矿物相变及其火山灰活性[J].硅酸盐学报,1989,17(6):541-548
    [34] 白志民等.低温煅烧高岭土火山灰活性对水泥石结构的影响 [J] .硅酸盐学报,2003(7):715~720.
    [35] 张长森.低温煅烧煤矸石火山灰活性研究[J].硅酸盐通报,2004(5):112~115.
    [36] Cheriaf M, Cavalamte R J.Pozzolanic properties of pulverized coal combustion bottomash[J].Cement and Concrete Research,1999(29):1387~1391
    [37] 徐银芳,许谦,闻心春,孙学信.粉煤灰活化机理及胶凝材料的研究[J].华中理工大学学报,1994,22(4):119-124
    [38] 李国栋.结构因素对粉煤灰活性激发的影响[J].粉煤灰综合利用,1998(4):3-7
    [39] 钱觉时,郑洪伟,王 智,宋远明,杨 娟. 流化床燃煤固硫灰渣活性评定方法[J]. 煤炭学报,2006,31(4):506-510
    [40] Iribarne A P, Iribarne J V, Anthony E J. Reactivity of calcium sulfate from FBC systems[J]. Fuel, 1997, 76(4): 321–327.
    [41] 赵丽君,张大群,陈宝柱. 污泥处理与处置技术的进展[J].中国给水排水. 2001,17(6):23-25
    [42] 杨小文,杜英豪. 污泥处理与资源化利用方案选择[J]. 中国给水排水.2002,18(4):31-33
    [43] 王晓.活性污泥的稳定化处理技术及其发展[J].青海大学学报(自然科学版),2001(1):35-37
    [44] M.V.Boost, C.S.Poon. THE STABILIZATION OF SEWAGE SLUDGE BY PULVERIZED FUEL ASH AND RELATED MATERIALS[J]. Environment International,1996(6):705-710
    [45] M.V. Boost,C.S. Poon.THE EFFECT OF A MODIFIED METHOD O LIME- STABILISATION SEWAGE TREATMENT ON ENTERIC PATHOGENS[J]. Environment International, 1998(7):783-788
    [46] S. Valls,E. Va`zquez.Leaching properties of stabilised/solidified cement-admixtures-sewage sludges systems[J].Waste Management,2002(22):37–45
    [47] S.Valls,E.Vaázquez.Stabilisation and solidification of sewage sludges with Portland cement[J]. Cement and Concrete Research,2000(30):1671-1678
    [48] O. Malliou, M. Katsioti,A. Georgiadis,A. Katsiri.Properties of stabilized/solidified admixtures of cement and sewage sludge[J].Cement & Concrete Composites,2007(29): 55-61
    [49] 田 秋 玉 , 徐 忠 昆 , 王 君 达 . 砂 浆 组 成 与 其 收 缩 性 能 的 关 系 [J]. 建 筑 材 料 学 报 . 1998,1(3):219-294
    [50] 陈恩义.钙矾石类膨胀剂各组分作用机理及其应用的研究.清华大学博士学位论文[D],1995.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700