密闭电石炉尾气中低浓度HCN吸附及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氰化氢(HCN)是一种来源广泛的“非常规”有毒有害气态污染物。废气中HCN深度净化是目前我国化工、冶金、碳纤维、化工中间体等重要行业为适应更为严格的环境保护要求而急需解决的技术问题。尤其在乙炔化工行业产生的密闭电石炉尾气中,CO含量高,O2含量低,是一类典型的含高浓度CO的工业废气(CO占70~90%),且伴有HCN、H2S、PH3、COS等有毒有害气态污染物,尾气成分复杂,净化和利用难度大。目前专门针对含HCN废气开发的净化技术较少,尤其是对含高浓度CO工业废气中HCN的脱除,国内外未见报道。应用吸附剂对模拟废气中低浓度HCN进行低温吸附(吸附温度<100℃),可在解决HCN高效净化的同时满足电石炉尾气深度净化和资源化需要,又可节约净化工艺带来的能耗,是较有应用前景的HCN净化技术。
     鉴于此,论文以密闭电石炉尾气中低浓度HCN为研究对象,模拟尾气中HCN浓度范围,开发出分子筛型和活性炭纤维(ACF)型系列低温吸附剂,研究了其吸附性能和对HCN的低温吸附净化机理。通过载体的选择实验、活性组分的筛选实验制备出分子筛型和ACF型吸附剂,讨论了制备条件和操作条件对吸附剂性能的影响,并进行了吸附剂的优化和再生;同时通过吸附剂的等温吸附实验得到其吸附等温线,并通过其计算得到等量吸附热、从而判定HCN在吸附剂上的吸附类型;然后通过TG、SEM/EDS、N2-BET、XRD、XPS对吸附HCN前后的吸附剂进行表征,探讨吸附剂在制备过程和吸附过程中结构的变化和失活机理。最后应用真实电石炉尾气对吸附剂的低温净化脱除HCN的性能进行了检验。
     研究结果表明,Zn(NO3)2可选择作为较优的改性剂制备用于脱除含高浓度CO气体中HCN的分子筛型吸附剂。21.34%的Zn为Zn/13X吸附剂的最佳负载量,15000h-1的空速、3%的氧含量、20℃的吸附温度为吸附HCN的最佳操作条件,Freundlich等温方程适用于该吸附剂吸附等温线的拟合,等量吸附热为29.71~62.71kJ/mol. ZnO是Zn/13X型吸附剂用于吸附脱除HCN的活性组分,吸附温度越高,气流中的CO在吸附剂表面越容易发生歧化分解积碳,HCN和积碳分解产生的CO2能与活性组分ZnO发生竞争化学吸附,吸附生成物ZnCO3、Zn(CN)2与歧化分解产物C共同堵塞、填充了吸附剂孔径为59.5A-133.8A的中孔,造成Zn/13X吸附剂失活。
     以ACF作为载体制备吸附剂时,Zn(NO3)2、Cu(NO3)2复合改性后的ACF型吸附剂对HCN可达到最佳的吸附效果。Zn(NO3)2、Cu(NO3)2改性剂浓度均为0.1mol/L、 Zn/Cu=5:1、焙烧时间为0.5h、焙烧温度为300℃时,Zn/Cu/ACF复合型吸附剂的制备性能达到最佳,20。C的吸附温度和2%的氧含量为吸附HCN试验时的最佳操作条件。Freundlich等温方程较适合于描述HCN在该吸附剂上的吸附过程,等量吸附热大小为43.99-67.54kJ/mol。改性液与ACF载体之间存在较强的相互作用,能使改性ACF吸附剂的热稳定性降低。ZnO和CuO为Zn/Cu/ACF型吸附剂用于吸附脱除HCN的主要活性组分,化学吸附后的产物Zn(CN)2和Cu(CN)2共同堵塞、填充了吸附剂孔径为24.2A~120A的中孔上的吸附活性位。
     失活的分子筛型和ACF型吸附剂的再生后,ACF型吸附剂的再生效率较高,平均再生效率可达80.2%。而两种类型的吸附剂均可进行多次再生使用。
     经过真实电石炉尾气净化的小试、中试实验,表明前期研究的活性炭型和现阶段研究的Zn/13X型吸附剂均能用于低温下尾气中HCN的净化脱除,而Zn/13X型吸附剂的净化效率较优。工业应用表明:活性炭型吸附剂的净化密闭电石炉尾气时,吸附剂使用寿命长,稳定性高,净化后尾气中杂质含量均低于0.5mg/m3。
Hydrogen cyanide (HCN) is an unconventional, toxic and hazardous gaseous pollutant and generated in multitudinous sources. Deeply removed HCN from exhaust gas is needed to solve technical problems in China's chemical industry, metallurgy, carbon fiber, chemical intermediates and other important industries for meeting environmental requirements. Closed calcium carbide furnace off-gas is a kind of typical exhaust gas which contained a large amount of CO (70-90%). The off-gas can not be recycled due to the existence of HCN, H2S, PH3, COS and other impurities. Nowadays, there is a less purification technology to remove HCN from off-gas. Especially, at low temperatures, HCN removal from industrial off-gas, which contains high concentration of CO, has not been reported. For low-concentration HCN in model off-gas low temperature adsorption (adsorption temperature<100℃), some typical adsorbents can resolve HCN efficient removing from calcium carbide furnace off-gas while meeting the needs of deep purification and recycle, but also bring energy savings. Therefore, the low temperature adsorption technical is possessing broad application prospect.
     In view of this, the paper took removal of low-concentration HCN in calcium carbide furnace off-gas as the research object, and developed series of adsorbents, such as molecular sieve adsorbent and activated carbon fiber (ACF) adsorbent, studied its adsorption properties and the purification mechanism of HCN at low temperature. Molecular sieve adsorbent and ACF adsorbent were prepared through selecting experiment of supports and active components, and discussed the influence of the preparation conditions and operation conditions on the properties of the adsorbents, and optimized and regenerated the adsorbents. The adsorption isotherms is also obtained by isothermal adsorption experiment of adsorbents. and the adsorption isosteric heat was got by calculation, thus the type of adsorption of HCN on the adsorbent was determined. Then adsorbents before and after adsorbing HCN were characterized by TG, SEM/EDS, N2-BET, XRD, XPS. The structure of adsorbents in the preparation process, adsorption process, and deactivation mechanism were discussed. Finally, the real calcium carbide furnace off-gas was used to test the properties of the adsorbent for removing HCN at low temperature.
     The results show that, Zn (NO3)2can be selected as relatively optimal modifier for preparation of molecular sieve adsorbent used for removing HCN from the tail gas which contains high concentration of CO. The highest performance of Zn/13X adsorbent is observed at the Zn loading on13X is21.34%(w/w), the optimal conditions are as follows: space velocity is15000h'', oxygen content is3%, adsorption temperature is20℃. The adsorption isotherm of the adsorbent is conformed to the Freundlich isotherm equation, and isosteric heat is29.71-62.71kJ/mol. ZnO is the active component in Zn/13X adsorbent for removing HCN. CO is more likely to disproportionate and decompose produce carbon(C) and carbon dioxide(CO2) in the adsorbent surface with higher adsorption temperature in gas flow. And CO2can compete with HCN in reacting and adsorbing with ZnO, the adsorption products ZnCO3, Zn (CN)2and C jointly block and fill the mesopore with pore diameter ranging from59.5A to133.8A in the adsorbent, thus Zn/13X adsorbent deactivate.
     ACF type of adsorbent can reach the highest adsorption efficiency for adsorbing HCN through modifying with ACF as support, Zn (NO3)2and Cu (NO3)2as modifier. Zn/Cu/ACF composite adsorbent reaches the optimal performance, when the preparation conditions are as follows:both the concentration of Zn (NOs)2and Cu (NO3)2are0.2mol/L, Zn/Cu=5:l,0.5h of calcination time, calcination temperature of300℃. The optimal operating conditions are that adsorption temperature is20℃and oxygen content is2%. The Freundlich isotherm equation was suitable for describing the adsorption process of HCN on the adsorbent, and the isosteric heat is between43.99kJ/mol and67.54kJ/mol. There is a strong interaction between the modified solution and ACF support, it decrease the heat stability of the modified ACF adsorbent. ZnO and CuO are the main active component of Zn/Cu/ACF adsorbent for removing HCN, the chemical adsorption products are Zn (CN)2and Cu (CN)2which block and fill the active adsorption sites on the mesopore with pore diameter ranging from24.2A to120A.
     After regeneration of deactivated adsorbents, ACF type adsorbent has a high regeneration rate reaching80.2%. And both the two adsorbents can be reutilized many times.
     The field small and pilot-plant experiment of the calcium carbide furnace off-gas have been studied. The results show that activated carbon (AC) adsorbent gained from previous studies and Zn/13X type adsorbent obtained at the present stage can be used for removal of low-concentration HCN in calcium carbide furnace off-gas at low temperature. Zn/13X adsorbent has a ideal purification efficiency. When AC adsorbent was used to purify calcium carbide furnace off-gas, the adsorbent has a long lifetime and high stability. After the purification, the outlet concentration of all impurities in calcium carbide furnace off-gas was less than0.5mg/m3.
引文
[1]Yi H H, Yu Q F, Tang X L, et al. Phosphine adsorption removal from yellow phosphorus tail gas over CuO-ZnO-La2O3/activated carbon[J]. Industrial & Engineering Chemistry Research,2011, 50(7):3960-3965.
    [2]Wang Z H, Jiang M, Ning P, et al. Thermodynamic modeling and gaseous pollution prediction of the yellow phosphorus production[J]. Industrial & Engineering Chemistry Research,2011, 50(21):12194-12202.
    [3]Ning P, Wang X Y, Bart H J, et al. Removal of phosphorus and sulfur from yellow phosphorus off-gas by metal-modified activated carbon[J]. Journal of Cleaner Production,2011,19(13): 1547-1552.
    [4]Wang X Q, Ning P, Chen W. Studies on purification of yellow phosphorus off-gas by combined washing, catalytic oxidation, and desulphurization at a pilot scale[J]. Separation and Purification Technology,2011,80(3):519-525.
    [5]Gao H P, Ning P, Wu C F, et al. Corrosion of different materials in combustion chamber of yellow phosphorus tail gas in industrial boiler[J]. Journal of Wuhan University of Technology-Materials Science Edtion,2010,25(1):53-57.
    [6]Wang X Q, Ning P, Shi Y, et al. Adsorption of low concentration phosphine in yellow phosphorus off-gas by impregnated activated carbon[J]. Journal of Hazardous Materials,2009,171(1-3): 588-593.
    [7]Ma L P, Ning P, Zhang Y Y, et al. Experimental and modeling of fixed-bed reactor for yellow phosphorous tail gas purification over impregnated activated carbon[J]. Chemical Engineering Journal,2008,137(3):471-479.
    [8]Jiang M, Ning P, Wang Z H, et al. Preparation and adsorption property of modified activated carbon for purification of HCN in closed carbide furnace tail gas[J]. Advanced Material Research, 2012,476-478:1862-1866.
    [9]Liu X Y, Zhu B, Zhou W J, et al. CO2 emissions in calcium carbide industry:An analysis of China's mitigation potential[J]. International Journal of Greenhouse Gas Control,2011,5(5): 1240-1249.
    [10]Goto K, Okabe H, Chowdhury F A, et al. Development of novel absorbents for CO2 capture from blast furnace gas[J]. International Journal of Greenhouse Gas Control,2011,5(5):1214-1219.
    [11]Chen W H, Lin M R, Leu T S, et al. An evaluation of hydrogen production from the perspective of using blast furnace gas and coke oven gas as feedstocks[J]. International Journal of Hydrogen Energy,2011,36(18):11727-11737.
    [12]Hou S S, Chen C H, Chang C Y, et al. Firing blast furnace gas without support fuel in steel mill boilers[J]. Energy Conversion and Management,2011,52(7):2758-2767.
    [13]Chu M, Nogami H, Yagi I. Numerical analysis on blast furnace performance under operation with top gas recycling and carbon composite agglomerates charging[J]. ISIJ International,2004,44(12): 2159-2167.
    [14]Lampert K, Ziebik A, Stanek W. Thermoeconomical analysis of CO2 removal from the Corex export gas and its integration with the blast-furnace assembly and metallurgical combined heat and power (CHP) plant[J]. Energy,2010,35(2):1188-1195.
    [15]Ziebik A, Lampert K, Szega M. Energy analysis of a blast furnace system operating with the Corex process and CO2 removal[J]. Energy,2008,33(2):199-205.
    [16]何希甫.用天然气制合成气代替ATR转化气优化乙炔尾气甲醇装置运行研究[J].天然气化工(C1化学与化工),2012,37(6):48-52.
    [17]陈仕萍.乙炔尾气制甲醇和天然气制甲醇的比较[J].天然气化工,2006,31(1):51-54.
    [18]Yang Z B, Ding W Z, Zhang Y Y, et al. Catalytic partial oxidation of coke oven gas to syngas in an oxygen permeation membrane reactor combined with NiO/MgO catalyst[J]. International Journal of Hydrogen Energy,2010,35(12):6239-6247.
    [19]Zhang J Y, Zhang X H, Chen Z, et al. Thermodynamic and kinetic model of reforming coke-oven gas with steam[J], Energy,2010,35(7):3103-3108.
    [20]Yang Z B, Zhang Y Y, Wang X G, et al. Steam reforming of coke oven gases for hydrogen production over a NiO/MgO solid solution catalyst[J]. Energy & Fuels,2010,24(2):785-788.
    [21]Zhang G J, Dong Y, Feng M R, et al. CO2 reforming of CH4 in coke oven gas to syngas over coal char catalyst[J]. Chemical Engineering Journal,2010,156(3):519-523.
    [22]Bermudez J M, Fidalgo B, Arenillas A, et al. Dry reforming of coke oven gases over activated carbon to produce syngas for methanol synthesis[J]. Fuel,2010,89(10):2897-2902.
    [23]刘宝庆,张义堃,蒋家羚,等.连续化回收黄磷尾气副产甲酸的新系统[J].化工学报,2012,63(6):1872-1876.
    [24]Chen Y R, Ning P. Xie Y C. et al. Pilot-scale experiment for purification of CO from industrial tail gases by pressure swing adsorption[J]. Chinese Journal of Chemical Engineering,2008,16(5): 715-721.
    [25]Ning P, Bart H J, Ma L P, et al. Removal of P4, PH3 and H:S from yellow phosphoric tail gas by a catalytic oxidation process[J]. Engineering Science,2004,2(4):20-27.
    [26]GB 16297-1996.大气污染物综合排放标准[S].
    [27]GB 21900-2008.电镀污染物排放标准[S].
    [28]GB 16171-2012.炼焦化学工业污染物排放标准[S].
    [29]Tuovinen H, Blomqvist P, Saric F. Modelling of hydrogen cyanide formation in room fires [J]. Fire Safety Journal,2004,39(8):737-755.
    [30]陈冠荣.化工百科全书[M].北京:化学工业出版社,1997,13:143-161.
    [31]Geng Y, Sarkis J. Achieving National Emission Reduction Target-China's New Challenge and Oppprtunity [J]. Environmental Science & Technology,2012,46(1):107-108.
    [32]Yang Y, Suh S W. Environmental Impacts of Products in China[J]. Environmental Science & Technology,2011,45(9):4102-4109.
    [33]Chen B H, Kan H D, Chen R J, et al. Air Pollution and Health Studies in China-Policy Implications[J]. Journal of the Air & Waste Management Association,2011,61(11):1292-1299
    [34]Dagaut P, Glarborg P, Alzueta M U. The oxidation of hydrogen cyanide and related chemistry[J]. Progress in Energy and Combustion Science,2008,34(1):1-46.
    [35]徐明艳,崔银萍,秦玲丽,等.含铁煤热解过程中HCN形成的主要影响因素分析[J].燃料化学学报,2007,35(1):5-9.
    [36]Schafer S, Bonn B. Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidised combustion. Part Ⅱ:heterogeneous reactions involving limestone[J].Fuel,2002,81(13): 1641-1646.
    [37]赵炜,常丽萍,谢克昌,等.煤燃烧过程生成氮氧化物前驱体的研究[J].燃料化学学报,2004,32(4):385-389.
    [38]Hayhurst A N, Lawrence A D. Emissions of nitrous oxide from combustion sources[J]. Progress in Energy and Combustion Science,1992,18(6):529-552.
    [39]Nelson P F, Kelly M D, Wornat M J. Conversion of fuel nitrogen in coal volatiles to NOx precursors under rapid heating conditions[J]. Fuel,1991,70(3):403-407
    [40]Tan L L, Li C Z. Formation of NOx and SO, precursors during the pyrolysis of coal and biomass. Part Ⅰ. Effects of reactor configuration on the determined yields of HCN and NH3 during pyrolysis[J]. Fuel,2000,79(15):1883-1889.
    [41]Tan L L, Li C Z. Formation of NOx and SOX precursors during the pyrolysis of coal and biomass. Part Ⅱ. Effects of experimental conditions on the yields of NOx and SOX precursors from the pyrolysis of a Victorian brown coal[J]. Fuel,2000,79(15):1891-1897.
    [42]Li C Z, Tan L L. Formation of NOx and SOX precursors during the pyrolysis of coal and biomass. Part Ⅲ. Further discussion on the formation of HCN and NH3 during pyrolysis[J]. Fuel,2000, 79(15):1899-1906.
    [43]Wu Z H, Ohtsuka Y. Remarkable formation of N2 from a Chinese lignite during coal pyrolysis[J]. Energy & Fuel,1996,10(6):1280-1281.
    [44]Wu Z H, Ohtsuka Y. Nitrogen distribution in a fixed-bed pyrolysis of coals with different ranks: formation and source of N2[J]. Energy & Fuel,1997,11(2):477-482.
    [45]Johnsson J E. Formation and reduction of nitrogen oxides in fluidized-bed combustion [J]. Fuel, 1994,73(9):1398-1415.
    [46]冯志华,常丽萍,任军,等.煤热解过程中氮的分配及存在形态的研究进展[J].煤炭转化,2000,23(3):6-12.
    [47]Wang W X, Thomas K M. The release of nitrogen species from carbons during gasification: models for coal Chargasification[J]. Fuel,1992,71(8):871-877.
    [48]谭洪波.分光光度法测定焦炉煤气中的氰化氢[J].燃料与化工,2008,39(2):41-44.
    [49]Aho M J, Hamalainen J P, Tummavuori J L. Importance of solid fuel properties to nitrogen oxide formation through HCN and NH3 in small particle combustion[J]. Combustion and Flame,1993, 95(1-2):22-30.
    [50]Leppalahti J. Formation of NH3 and HCN in slow-heating-rate inert pyrolysis of peat, coal and bark[J]. Fuel,1995,74(9):1363-1368.
    [51]Tian F J, Yu J L, McKenzie L J, et al. Conversion of Fuel-N into HCN and NH3 During the Pyrolysis and Gasification in Steam:A Comparative Study of Coal and Biomass[J]. Energy & Fuels,2007,21(2):517-521
    [52]Hansson K M, Amand L E, Habermann A, et al. Pyrolysis of poly-L-leucine under combustion-like conditions[J]. Fuel,2003,82(6):653-660.
    [53]Leppalahti J, Koljonen T. Nitrogen evolution from coal, peat and wood during gasification: Literature review[J]. Fuel Processing Technology,1995,43(1):1-45.
    [54]Yuan S, Zhou Z J, Li J, et al. HCN and NH3 Released from Biomass and Soybean Cake under Rapid Pyrolysis[J]. Energy & Fuels.2010,24(11):6166-6171.
    [55]Jong W D, Pirone A, Wojtowicz M A. Pyrolysis of Miscanthus Giganteus and wood pellets: TG-FTIR analysis and reaction kinetics[J]. Fuel,2003,82(9):1139-1147.
    [56]Li Q B, Jacob D J, Bey I, et al. Atmospheric Hydrogen Cyanide(HCN):Biomass Burning Source, Ocean Sink?[J]. Geophysical Research Letters,2000,27(3):357-360.
    [57]Baker R R, Pereira da Silva J R, Smith G. The effect of tobacco ingredients on smoke chemistry. Part I:Flavourings and additives[J]. Food and Chemical Toxicology,2004,42(1):3-37.
    [58]Rodgman A, Green C R. Toxic chemicals in cigarette mainstream smoke-hazard and hoopla[J]. Beitrage zur Tabakforschung international,2003.20(8):481-545.
    [59]Agency for Toxic Substances and Disease Registry. Toxico-logical profile for cyanide[R]. Atlanta: US Department of Health and Human Services, Public Health Service,1997.
    [60]Johnson W R, Kang J C. Mechanism of hydrogen cyanide formation from the pyrolysis of amino acids and related compounds[J]. Journal of Organic Chemistry,1971,36(1):189-192.
    [61]谢剑平,刘惠民,朱茂祥,等.卷烟烟气危害性指数研究[J].烟草科技,2009,(2):5-15.
    [62]许永,张霞,刘巍,等.抽吸条件对卷烟主流烟气氢氰酸释放量影响的研究[J].烟草科技,2011.(3):50-54.
    [63]Wendt J O L, Strenling C V, Matovich M A. Reduction of sulfur trioxide and nitrogen oxides by secondary fuel injection[J]. Symposium (International) on Combustion,1973,14(1):897-904.
    [64]Smoot L D. Hill S C, Xu H. NOx control through reburning[J]. Progress in Energy and Combustion Science,1998,24(5):385-408.
    [65]苏亚欣,Gathitu B B, Chen W X. Fe2O3控制再燃脱硝中间产物HCN[J].环境科学学报,2011,31(6):1181-1186.
    [66]Liu I O Y. Cant N W. The formation and reactions of hydrogen cyanide during isobutane-SCR over Fe-MFI catalysts[J]. Catalysis Surveys from Asia,2003,7(4):191-202.
    [67]Liu I O Y. Cant N W, Kogel M, et al. The formation of HCN during the reduction of NO by isobutane over Fe-MFI made by solid-state ion exchange[J]. Catalysis Letters,1999,63(3-4): 214-244.
    [68]Baum M M, Moss J A. Pastel S H. et al. Hydrogen Cyanide Exhaust Emissions from In-Use Motor Vehicles[J]. Environmental Science & Technology,2007,41(3):857-862.
    [69]Duquesne S, Bars M L, Bourbigot S, et al. Analysis of fire gases released from polyurethane and fire-retarded polyurethane coatings[J]. Journal of Fire Sciences,2000,18(6):456-482.
    [70]Pottel H. Quantitative models for prediction of toxic component concentrations in smoke gases from FTIR spectra[J]. Fire and Materials,1996,20(6):273-291.
    [71]Chaturvedi A K, Sanders D C, Endecott B R. et al. Exposures to carbon monoxide, hydrogen cyanide and their mixtures:interrelationship between gas exposure concentration, time to incapacitation, carboxyhemoglobin and blood cyanide in rats[J]. Journal of Applied Toxicology, 1995,15(5):357-363.
    [72]Wang Y Z, Zhu B, Wang Y X, et al. Study on the preparing of polyacrylonitrile-based carbon fibers[J]. New Carbon Materials,2001,16(4):12-17.
    [73]Rahaman M S A, Ismail A F, Mustafa A. A review of heat treatment on polyacrylonitrile fiber[J]. Polymer Degradation and Stability,2007,92(8):1421-1432.
    [74]张奉民.燃烧法脱除氰化氢废气的研究[D].山西:中国科学院山西煤炭化学研究所,2003.
    [75]骞伟中,刘唐,王雷,等.中试规模间二甲苯氨氧化过程研究[J].化学工程,2003,31(6):26-28.
    [76]张尔兵.百菌清生产废气的综合治理[J].中国氯碱,2011,(9):44-46.
    [77]蒋明,宁平,王重华,等.黄磷尾气中氰化氢的测定[J].现代化工,2011,31(4):92-95.
    [78]《环保工作者实用手册》编写组.环保工作者实用手册[M].北京:冶金工业出版社,1984:456-458.
    [79]赵国庆,杜有录,李立峰.碱性氯化法处理高浓度CN-高炉煤气洗涤水工程实践[J].环境工 程,2002,20(6):72-76.
    [80]张红波,徐仲榆,莫孝文.流态化电极电解法处理含氰废水[J].化工环保,1995,15(4):224-227.
    [81]黄会静,韦朝海,吴超飞,等.焦化废水生物处理A/O/H/O工艺中氰化物的去除特性[J].化工进展,2011,30(5):1141-1145.
    [82]党晓娥,兰新哲,董缘,等.离子交换纤维对金属氰络合物吸附性能的研究[J].环境污染治理技术与设备,2006,7(8):40-43.
    [83]王伟,贾丽芳.膜分离技术在氰化物回收中的应用[J].医药工程设计杂志,2001,22(6):21-23.
    [84]Xie F, Dreisinger D. Copper solvent extraction from waste cyanide solution with LIX 7820[J]. Solvent Extraction and Ion Exchange,2009,27(4):459-473.
    [85]何冰,汪晓海.888法脱硫新进展(上)[J].化工催化剂及甲醇技术,2007,(2):24-25.
    [86]Hagans P L, Guo X, Chorkendorff I, et al. Adsorption and dissociation of HCN on the Pt(111) and Pt(112) surface [J]. Surface Science,1988,203(1-2):1-16.
    [87]Guo X, Winkler A, Chorkendorff I, et al. Oxidation of HCN on the Pt(111) and Pt(112) surface [J]. Surface Science,1988,203(1-2):17-32.
    [88]张奉民,钱桂海,李开喜,等.氰化氢在废气中的催化燃烧性能研究[J].合成纤维工业,2004,27(2):27-28.
    [89]Tan H Z, Wang X B, Wang C L, et al. Characteristics of HCN Removal Using CaO at High Temperatures[J]. Energy & Fuels,2009,23(3):1545-1550.
    [90]王聪玲,谭厚章,王学斌,等.CaO高温脱除氰化氢试验研究[J].工程热物理学报,2009,30(11):1977-1979.
    [91]Gimenez-Lopez J, Millera A, Bilbao R, et al. HCN oxidation in an O2/CO2 atmosphere:An experimental and kinetic modeling study[J]. Combustion and Flame,2010,157(2):267-276.
    [92]Zhao H B, Tonkyn R G, Barlow S E, et al. Fractional Factorial Study of HCN Removal over a 0.5% Pt/Al2O3 Catalyst:Effects of Temperature, Gas Flow Rate, and Reactant Partial Pressure[J]. Industrial & Engineering Chemistry Research,2006,45(3):934-939.
    [93]Zhao H B, Tonkyn R G, Barlow S E, et al. Catalytic oxidation of HCN over a 0.5%P t/Al2O3 catalyst[J]. Applied Catalysis B:Environmental,2006,65(3-4):282-290.
    [94]日挥株式会社,日产苏德-凯米触媒株式会社.混合气体中的氧硫化碳和/或氰化氢的转化方法:中国,CN1273595[P].2000-11-15.
    [95]中国科学院山西煤炭化学研究所.铂铑催化剂脱除含HCN废气的方法:中国,CN1404904A[P].2003-03-26.
    [96]中国科学院山西煤炭化学研究所.铂铑钯催化剂脱除含HCN废气的方法:中国,CN1404900A[P].2003-03-26.
    [97]中国科学院山西煤炭化学研究所.一种铂铑催化剂脱除含HCN废气的方法:中国,CN1404905A[P].2003-03-26.
    [98]Marsh J D F, Newling W B S, Rich J. The catalytic hydrolysis of hydrogen cyanide to ammonia[J]. Journal of Applied Chemistry,1952,2(12):681-684
    [99]国际壳牌研究有限公司.从气流中除去SO2、HCN和H2S及任选的COS、CS2和NH3的方法:中国,CN1798600A[P].2006-07-05.
    [100]Krocher O, Elsener M. Hydrolysis and oxidation of gaseous HCN over heterogeneous catalysts[J]. Applied Catalysis B:Environmental,2009,92(1-2):75-89.
    [101]湖北省化学研究院.煤制燃气中HCN于COS的净化方法:中国,CN101050389A[P]. 2007-10-10.
    [102]昆明理工大学.一种工业废气中氰化氢的净化和回收方法:中国,CN101284205A[P].2008-10-15.
    [103]昆明理工大学.一种工业废气中氰化氢的催化氧化净化方法:中国,CN101269297[P].2008-09-24.
    [104]Wang H Y, Yi H H, Ning P, et al. Calcined hydrotalcite-like compounds as catalysts for hydrolysis carbonyl sulfide at low temperature[J]. Chemical Engineering Journal,2011,166(1):99-104.
    [105]梁秀俊,高正阳,阎维平.煤粉再燃过程中HCN与NH3的反应机理分析[J].华北电力技术,2004,(4):19-21.
    [106]钟北京,傅维标.再燃燃料中HCN对NOx还原的影响[J].热能动力工程,2000.15(1):4-8.
    [107]Cant N W, Liu I O Y. The mechanism of the selective reduction of nitrogen oxides by hydrocarbons on zeolite catalysts[J]. Catalysis Today,2000,63(2-4):133-146.
    [108]Liu I O Y, Cant N W. The Formation and Reactions of Hydrogen Cyanide under the Conditions of the Selective Catalytic Reduction of NO by Isobutane on Cu-MFI[J]. Journal of Catalysis,2000, 195(2):352-359.
    [109]Krocher O, Elsener M, Jacob E. A model gas study of ammonium formate, methanamide and guanidinium formate as alternative ammonia precursor compounds for the selective catalytic reduction of nitrogen oxides in diesel exhaust gas[J]. Applied Catalysis B:Environmental,2009, 88(1-2):66-82.
    [110]Colin-Garcia M. Ortega-Gutierrez F, Ramos-Bernal S, et al. Heterogeneous radiolysis of HCN adsorbed on a solid surface[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers. Detectors and Associated Equipment.2010,619(1-3):83-85.
    [111]Hou H M, Zhu Y. Tang G L. et al. Lamellar γ-AlOOH architectures:Synthesis and application for the removal of HCN[J]. Materials Characterization,2012.68:33-41.
    [112]Kotdawala R R, Kazantzis N, Thompson R W. Molecular simulation studies of adsorption of hydrogen cyanide and methyl ethyl ketone on zeolite NaX and activated carbon[J]. Journal of Hazardous Materials,2008,159(1):169-176.
    [113]Seredych M, Van der Merwe M, Bandosz T J. Effects of surface chemistry on the reactive adsorption of hydrogen cyanide on activated carbons[J]. Carbon,2009,47(10):2456-2465.
    [114]Brown P N, Jayson G G, Thompson G, et al. Adsorption characteristics of impregnated activated charcoal cloth for hydrogen cyanide[J]. Journal of Colloid and Interface Science,1987,116(1): 21-220.
    [115]Rossin J A, Morrison R W. Spectroscopic analysis and performance of an experimental copper/zinc impregnated, activated carbon[J]. Carbon,1991,29(7):887-892.
    [116]Nickolov R N, Mehandjiev D R. Comparative study on removal efficiency of impregnated carbons for hydrogen cyanide vapors in air depending on their phase composition and porous textures[J]. Journal of Colloid and Interface Science,2004,273(1):87-94.
    [117]Hudson M J, Knowles J P, Harris P J F, et al. The trapping and decomposition of toxic gases such as hydrogen cyanide using modified mesoporous silicates[J]. Microporous and Mesoporous Materials,2004,75(1-2):121-128.
    [118]Barnes P A, Chinn M J, Dawson E A. et al. Preparation, Characterisation and Application of Metal-doped Carbons for Hydrogen Cyanide Removal [J]. Adsorption Science & Technology,2002. 20(9):817-833.
    [119]宁平,蒋明,王学谦,等.低浓度氰化氢在浸渍活性炭上的吸附净化研究[J].高校化学工程学报,2010,24(6):1038-1045.
    [120]蒋明,宁平,王重华,等.改性活性炭吸附脱除氰化氢[J].中南大学学报(自然科学版),2012,43(8):3294-3299.
    [121]Demir B, Salmas R E, Goktug Ahunbay M, Yurtsever M. Monte Carlo Simulations of HCN Adsorption in LTA zeolites[C]. International Conference on innovations in Chemical Engineering and Medical Sciences(ICICEMS 2012), Dubai:11-15.
    [122]Pera-Titus M, Bausach M, Llorens J, et al. Preparation of inner-side tubular zeolite NaA membranes in a continuous flow system[J]. Separation and Purification Technology,2008,59(2): 141-150.
    [123]Hoof V V, Dotremont C, Buekenhoudt A. Performance of mitsui NaA type zeolite membranes for the dehydration of organic solvents in comparison with commercial polymeric pervaporation membranes[J]. Separation and Purification Technology,2006,48(3):304-309.
    [124]Sullivan P, Moate J, Stone B, et al. Physical and chemical properties of PAN-derived electrospun activated carbon nanofibers and their potential for use as an adsorbent for toxic industrial chemicals[J]. Adsorption,2012,18(3-4):265-274.
    [125]吴金凤,李学刚,王鹏,等.黄连生物碱复合滤嘴选择性降低卷烟烟气中的HCN[J].烟草科技,2012,(9):58-61.
    [126]王桂茹.催化剂与催化作用[M].大连:大连理工大学出版社,2006:62.
    [127]Yang R T. Adsorbents:fundamentals and applications[M]. Hoboken, New Jersey:John Wiley & Sons, Inc,2003:159.
    [128]Barrer R M. Zeolites and clay minerals[M]. New York:Academic Press,1978.
    [129]Breck D W. Zeolite molecular sieves[M]. New York:Wiley,1978.
    [130]Barrer R M, Marschall D J. Hydrothermal chemistry of silicates, Part XIII. Synthetic barium aluminosilicates[J]. Journal of Chemical Society,1964,7:2296-2305.
    [131]Barrer R M."New selective sorbents:porous crystals as molecular filters"[J]. British Chemical Engineering,1959,4(5):267-279.
    [132]Weisz P B, Frilette V J. Intracrystalline and molecular-shape-selective catalysis by zeolite salts[J]. The Journal of Physical Chemistry,1960,64(3):382-382.
    [133]Abbott W F. Method for carbonizing fibers:US,3053775[P].1962-09-11.
    [134]Suzuki M. Activated carbon fiber:fundamentals and applications[J]. Carbon,1994,32(4): 577-586.
    [135]Suzuki M.活性炭纤维-基础和应用[J].新型炭材料,1994,2:24-32.
    [136]Arons G N, Macnair R N. Activated carbon fiber and fabric achieved by pyrolysis and activation of phenolic precursors[J]. Textile Research Journal,1972,42(1):60-63.
    [137]Thrower P A. In chemistry and physics carbon[M]. New York:Dekker,1984, Vol 19:163.
    [138]Goethel P J, Yang R T. Mechanism of catalyzed graphite oxidation by monolayer channeling and monolayer edge recession[J]. Journal Catalysis,1989,119(1):201-214.
    [139]Yang R T. Adsorbents:fundamentals and applications[M]. Hoboken, New Jersey:John Wiley & Sons, Inc,2003:106.
    [140]Cloirec P L. Adsorption onto activated carbon fiber cloth and electrothermal desorption of volatile organic compound (VOCs):a specific review[J]. Chinese Journal of Chemical Engineering,2012, 20(3):461-468.
    [141]Petrovska M, Tondeur D, Grevillot G, et al. Temperature-swing gas separation with electrothermal desorption step[J]. Separation Science Technology,1991,26(3):425-444.
    [142]Burchell T D, Judkins P R, Rogers M R, et al. A novel process and material for the separation of carbon dioxide and hydrogen sulfide gas mixtures[J]. Carbon,1997,35(9):1279-1294.
    [143]Subrenat A, Baleo J N, Le Cloirec P, et al. Electrical behaviour of activated carbon cloth heated by the joule effect:desorption application[J]. Carbon,2001,39(5):707-716.
    [144]李开喜,凌立成,刘朗,等.热处理对含氮活性炭纤维脱除S02能力的影响[J].环境科学,1999,20(2):22-25.
    [145]Wang J Y, Zhao F Y, Hu Y Q, et al. Modification of activated carbon fiber by loading metals and their performance on SO2 removal[J]. Chinese Journal of Chemical Engineering,2006,14(4): 478-485.
    [146]Raymundo-Pinero E, Cazorla-Amoros D, Linares-Solano A. Temperature programmed desorption study on the mechanism of SO2 oxidation by activated carbon and activated carbon fibres[J]. Carbon,2001,39(2):231-242.
    [147]Gaur V, Asthana R, VermaN. Removal of SO? by activated carbon fibers in the presence of O2 and H2O[J]. Carbon,2006,44(1):46-60.
    [148]Xu L S, Guo J. Jin F.et al. Removal of SO2 from O2-containing flue gas by activated carbon fiber (ACF) impregnated with NH3[J]. Chemosphere,2006,62(5):823-826.
    [149]安慧,赵东风,赵朝成,等.过渡金属浸渍改性ACF去除H2S研究[J].环境工程学报,2011,5(7):1581-1585.
    [150]Bouzaza A, Laplanche A. Marsteau S. Adsorption-oxidation of hydrogen sulfide on activated carbon fibers:effect of the composition and the relative humidity of the gas phase[J]. Chemosphere,2004,54(4):481-488.
    [151]Yang J, Juan P, Shen Z M, et al. Removal of carbon disulfide (CS2) from water via adsorption on active carbon fiber (ACF)[J]. Carbon,2006,44(8):1367-1375.
    [152]谢遵园,李军平,赵宁,等.活性炭纤维(ACF)吸附二硫化碳(CS2)的研究[J].新型炭材料,2009,24(3):260-264.
    [153]方磊,张永春,郭金涛.改性活性炭纤维脱除COS的研究[J].化工中间体,2010,7:40-45.
    [154]方磊,张永春,周锦霞,等.改性活性炭纤维脱除低浓度COS后的再生研究[J].广州化学,2008,33(3):23-27.
    [155]Shirahama N, Moona S H, Choia K H, et al. Mechanistic study on adsorption and reduction of NO2 over activated carbon fibers[J]. Carbon,2002,40(14):2605-2611.
    [156]Yun J H, Hwang K Y, Choi D K. Adsorption of benzene and toluene vapors on activated carbon fiber at 298,323. and 348 K[J]. Journal of Chemical & Engineering Data,1998,43(5):843-845。
    [157]刘振宇,郑经堂,刘平光,等.粘胶活性炭纤维的吸附性能及其孔结构表征[J].合成纤维工业,1998,21(2):24-26.
    [158]李昌耀,张丽娜,周文勃,等.活性炭纤维处理甲苯废气试验研究[J].能源环境保护,2007,21(3):33-36.
    [159]Rochereau A, Marc B, Laurence L C, et al. Combined air treatment:Effect of composition of fibrous filters on toluene adsorption and particle filtration efficiency[J]. Chemical Engineering Research and Design,2008,86(6):577-584.
    [160]陶阳宇,康娟,徐泽林,等.活性炭纤维对氯仿气体动态吸附的研究[J].环境工程,2007,25(4):44-45.
    [161]迟广俊,焦婷婷,范君,等.改性活性炭纤维对含乙醇有机废气的吸附性能研究[J].环境科学与技术,2010,33(12):160-163.
    [162]余阳,周美华,吴小倩.两种超细活性碳纤维的制备及其甲醛吸附性能[J].材料科学与工程学报,2011,29(2):177-182.
    [163]F-HZ-HJ-DQ-0112.环境空气-氰化氢-离子选择电极法[S].
    [164]HJ 484-2009.水质氰化物的测定容量法和分光光度法[S].
    [165]国家环境保护总局空气和废气分析方法编委会.空气和废气监测分析方法[M].第四版增补版.北京:中国环境科学出版社,2008,79-82.
    [166]Hernandez-Maldonado A J, Yang F H, Qi G S, et al. Desulfurization of transportation fuels by π-complexation sorbents:Cu(Ⅰ)-, Ni(Ⅱ)-, and Zn(Ⅱ)-zeolites[J]. Appl. Catal. B:Environmental, 2005,(1-2):111-126.
    [167]Tamon H, Kitamura K, Okazaki M. Adsorption of carbon monoxide on activated carbon impregnated with metal halide[J]. AIChE Journal,1996,42(2):422-430.
    [168]Wang Y H, Yang R T. Desulfurization of liquid fuels by adsorption on carbon-based sorbents and ultrasound-assisted sorbent regeneration[J]. Langmuir,2007,23(7):3825-3831.
    [169]Chiang H L, Tsai J H, Chang G M, et al. Comparison of a single grain activated carbon and column adsorption system[J]. Carbon,2002,40(15):2921-2930.
    [170]肖永厚.王树东,袁权.无氧下低浓度硫化氢在浸渍活性炭上的吸附研究[J].燃料化学学报,2006,34(6):730-734.
    [171]居沈贵,闫武敏,曾勇平.载金属离子的13X分子筛吸附噻吩的动态特性[J].高校化学工程学报,2007,21(1):159-162.
    [172]HJ/T28-1999.固定污染源排气中氰化氢的测定异烟酸-吡唑啉酮分光光度法[S].
    [173]赵振国.应用胶体与界面化学[M].北京:化学工业出版社,2008:294.
    [174]郭锴,唐小恒,周绪美.化学反应工程[M].北京:化学工业出版社,2003:184.
    [175]王桂茹.催化剂与催化作用[M].大连:大连理工大学出版社,2006:196.
    [176]Li W C, Bai H, Hsu J N, et al. Metal loaded zeolite adsorbents for phosphine removal [J]. Industrial & Engineering Chemistry Research,2008,47(5):1501-1505.
    [177]Wilkes M F, Hayden P, Bhattacharya A K. Catalytic studies on ceria lanthana solid dolutions Ⅰ. oxidation of methane[J]. Journal of Catalysis,2003,219(2):286-294.
    [178]Xie Y C, Tang Y Q. Spontaneous monolayer dispersion of oxides and salts onto surfaces of supports:applications to heterogeneous catalysis[J]. Advances in Catalysis,1990,37:1-43.
    [179]Mekhemer G A H, Ismail H M. Dspersion of ceria and lanthana on silica and alumina supports-X-ray diffractometry and nitrogen sorptometry studies[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2004,235(1-3):129-136.
    [180]王春明,赵璧英,谢有畅.盐类和氧化物在载体上自发单层分散研究新进展[J].催化学报,2003,24(6):475-482.
    [181]刘金红,张倩,姚虎卿.Ni/AC催化剂的分散阈值及阈值效应[J].催化学报,2006,27(12):1139-1143.
    [182]Yu Q F, Tang X L, Yi H H, et al. Equilibrium and heat of adsorption of phosphine on CaCl2-modified molecular sieve[J]. Asia-Pacific Journal of Chemical Engineering,2009,4(5): 612-617.
    [183]Higgins J B, Lapierre R B, Schlenker J L, et al. The framework topology of zeolite beta[J]. Zeolites,1988,8(6):446-452.
    [184]Melo D M A, de Souza J R, Melo M A F, et al. Evaluation of the zinox and zeolite materials as adsorbents to remove H2S from natural gas[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,272(1-2):32-36.
    [185]Ross S. Olivier J P. On physical adsorption[M]. New York:Interscience Publishers Wiley,1964.
    [186]Roine A. Outokumpu HSC chemistry for windows:chemical reaction and equilibrium software with extensive thermochemical data base [DB]. Finland:Outokumpu Research Oy,1997.
    [187]Bale C W, Chartrand P, Degterov S A. Eriksson G, Hack K, Mahfoud R B, Melancon J, Pelton A D, Petersen S. FactSage Thermochemical Software and Databases[J]. Calphad,2002,26(2):189-228.
    [188]Bale C W, Belisle E, Chartrand P, Degterov S A, Eriksson G, Hack K, Jung I H, Kang Y B, Melancon J, Pelton A D, Robelin C, Petersen S. FactSage Thermochemical Software and Databases-Recent Developments[J]. Calphad,2009,33(2):295-311.
    [189]候朝鹏,夏国富,李明丰,聂红,李大东.F-T合成催化剂羰基硫中毒热力学分析[J].燃料化学学报,2012.40(1):68-74.
    [190]候朝鹏,夏国富,李明丰,聂红,李大东.F-T合成催化剂H2S中毒热力学和抗硫可行性预测[J].化工学报,2011,62(3):598-603.
    [191]夏国富,候朝鹏,李明丰,聂红,李大东.COS和H2S毒化F-T合成催化剂热力学分析[J].计算机与应用化学,2011,28(10):1275-1280.
    [192]Sasaoka E, Hirano S, Kasaoka S, Sakata Y. Characterization of reaction between zinc oxide and hydrogen sulfide[J]. Energy & Fuel,1994.8(5):1100-1105.
    [193]樊惠玲.郭汉贤.李春虎,谢克昌.一氧化碳和氧对氧化锌脱硫行为的影响[J].复口.学报(自然科学版).2003,42(3):274-279.
    [194]徐小云,伏义路.CO的吸附、歧化及其与水反应得程序升温研究[J].燃料化学学报.1987,15(1):42-49.
    [195]Moulder J F, Stickle W F, Sobol P E. Handbook of X-Ray Photoelectron Spectroscopy[M]. Montreal:Perkin-Elmer Corporation Publisher,1992.
    [196]Su C Y, Goforth A M, Smith Mark D, et al. Exceptionally stable, hollow tubular metal-organic architectures:synthesis, characterization, and solid-state transformation study[J]. Journal of the American Chemical society,2004,126(11):3576-3586.
    [197]Quinn R, Dahl T A, Toseland B A. An evaluation of synthesis gas contaminants as methanol synthesis catalyst poisons[J]. Applied Catalysis A:General,2004,272(1-2):61-68.
    [198]Mariot J M, Dufour G. Binding and L23 MM auger energies in atomic and metallic zinc[J]. Chemical Physics Letters,1977,50(2):218-212.
    [199]Dake L S, Baer D R, Zachara J M. Auger parameter measurements of zinc compounds relevant to zinc transport in the environment[J]. Surface and Interface Analysis,1989.14(1-2):71-75.
    [200]Wieczorek-Ciurowa K, Kozak A J. The thermal decomposition of Fe(NO3)3-9H2O[J]. Journal of Thermal Analysis and Calorimetry,1999,58(3):647-651.
    [201]Yuvaraj S, Yuan L F, Huei C T, et al. Thermal decomposition of metal nitrates in air and hydrogen environments[J]. Journal of Physical Chemistry B,2003,107(4):1044-1047.
    [202]Zivkovic Z D, Zivkovic D T, Grujicic D B. Kinetics and mechanism of the thermal decomposition of M(NO3)2·nH2O (M=Cu, Co, Ni)[J]. Journal of Thermal Analysis and Calorimetry,1998,53(2): 617-623.
    [203]Maneva M, Petrov N. On the thermal decomposition of Zn(NO3)2·6H2O and its deuterated analogue[J]. Journal of Thermal Analysis and Calorimetry,1989,35(7):2297-2303.
    [204]杨全红,郑经堂,王茂章,等.二次炭化对PAN-ACF结构和性能的影响[J].离子交换与吸附,1999,15(5):385-390.
    [205]况敏,杨国华,陈武军,等.吸汞载银活性炭纤维和吸汞活性炭纤维的热脱附特性研究[J].燃料化学学报,2008,36(4):468-473.
    [206]马晓迅,张美华.改性活性炭吸附H2S总传质系数的测定及动力学研究[J].化学工程,1993,21(2):60-66.
    [207]蒋明,宁平,王重华,等.无氧及微氧下H2S与PH3在改性分子筛上的等温吸附[J],中南大学学报(自然科学版),2013,44(2):854-861.
    [208]任建莉,罗誉娅,陈俊杰,等.汞吸附过程中载银活性炭纤维的表面特征[J].中国电机工程学报,2009,29(35):71-76.
    [209]唐一科,许静,韦立凡.纳米材料制备方法的研究现状与发展趋势[J].重庆大学学报:自然科学版,2005,28(1):5-10.
    [210]程抗,王祖武,左蓉,等.等离子体改性对活性炭纤维表面化学结构的影响[J].环境工程,2009,27(1):100-103.
    [211]Stohr B, Boehm H P, Schlogl R. Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate[J]. Carbon,1991,29(6):707-720.
    [212]Bohland H, Hanay W, Meisel A, et al. ESCA-Untersuchungen an Magnesium-und Berylliumthiocyanatverbindungen[J]. Zeitschrift fur Chemie,1981,21(10):372-373.
    [213]Camalli M, Caruso F, Mattogno G, et al. Adducts of tin(IV) and organotin(Ⅳ) derivatives with 2,2'-azopyridine II. Crystal and molecular structure of SnMe2Br2AZP and further mossbauer and photoelectronic spectroscopic studies[J]. Inorganica Chimica Acta,1990,170(2):225-231.
    [214]杨全红,郑经堂,王茂章.由含氮官能团的演变考察PAN-ACF的改性[J].炭素,1998,(1):707-712.
    [215]Narayana M, Contarini S, Kevan L. X-ray photoelectron and electron spin resonance spectroscopic studies of Cu NaY zeolites[J]. Journal of Catalysis,1985,94(2):370-375.
    [216]Contarini S, Kevan L. X-ray photoelectron spectroscopic study of copper-exchanged X-and Y-type sodium zeolites:resolution of two cupric ion components and dependence on dehydration and x-irradiation[J]. The Journal of Physical Chemistry,1986,90(8):1630-1632.
    [217]Shpiro E S, Grunert W, Joyner R W, et al. Nature, distribution and reactivity of copper species in over-exchanged Cu-ZSM-5 catalysts:an XPS/XAES study[J]. Catalysis letters,1994,24(1-2): 159-169.
    [218]李忠,文春梅,王瑞玉,等.醋酸铜热解制备无氯Cu2O/AC催化剂及其催化氧化羰基化[J].高等学校化学学报,2009,30(10):2024-2031.
    [219]李忠,文春梅,郑华艳,等.载体表面性质对Cu2O/AC催化剂结构和活性的影响[J].高等学校化学学报,2010,31(1):145-152.
    [220]马清祥,赵天生.电石炉气的综合利用[J].聚氯乙烯,2007,(12):40-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700