反应型相容剂与复合型相容剂对共连续相形态影响规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不同的聚合物材料进行共混可以获得性能互补而且具有新性能的共混聚合物材料。共混聚合物的性质不仅与共混物自身的性质相关,与聚合物体系自身的相态也密切相关。绝大多数聚合物体系是不相容体系,共混聚合物体系的相态也呈现多样性。共连续相是不同聚合物相之间相互贯穿并且在空间呈现三维连续的特殊相态,往往可以表现出原来的组分聚合物材料自身所不具备的性能。影响共连续相共混聚合物材料性能的主要因素是共连续相的相尺寸和相态稳定性。反应相容过程生成的界面相容剂可以减小不相容聚合物相界面张力和共连续相的相尺寸,稳定共连续相。限制共连续相应用范的一个重要因素是共连续相组成范。在不相容聚合物体系中加入复合型相容剂可以在不相容聚合物相界面处形成新的聚合物界面层,拓宽共连续相组成范,减小界面张力并稳定共连续相态。本论文考察了两种不同类型的相容剂体系对共连续相态的影响规律。
     反应相容将聚合物的共混与不相容聚合物相的相容结合成为一个步骤,提高了共混的效率;而且相容剂是在聚合物的相界面处产生的,不需要考虑相容剂的扩散问题,相容效率较高。为了考察反应相容剂的反应效率和相容特性,以PS/PA6/PS-co-TMI为实验体系研究了反应相容的规律。DSC和FTIR的结果都表明共混过程中生成了相容剂(PS-co-TMI]-g-PA6。考察了三种具有不同TMI含量的PS-co-TMI的相容效率以及不同PS-co-TMI用量下聚合物体系的相态的演变规律。结果发现TMI含量最小的PS-co-TMI-2具有最好的相容效果,该聚合物体系共混后的共连续相具有最小的相尺寸,静态热退火后的相态的变化程度也最小,共连续相的稳定性最好。TMI含量最高的PS-co-TMI-8在共混结束后残留未参与相容反应的PS-co-TMI,而且生成的(PS-co-TMI)-g-PA6上也残留未参与反应的-NCO活性官能团,降低了反应相容剂的使用效率。
     接枝型相容剂可以减小界面张力和共连续相的相尺寸,但是单一的接枝共聚物加入到聚合物体系中会导致共连续相组成范变窄,限制了共连续相共混聚合物的应用范。而复合相容剂的加入可以拓宽共连续相的组成范,稳定高温下的共连续相态。本文考察了在PP/PS体系中加入不同组合的PP-g-PA6/PS-g-PA6复合相容剂体系后,共连续相组成范的变化以及复合相容剂的加入对共连续相稳定性的影响。复合相容剂的加入降低了PP/PS共混体系的表面张力,使得共连续相的组成范至少被拓宽了5%。加入复合相容剂后共连续相的热稳定性也有一定程度的增加。接枝密度高的复合相容剂体系具有较高的相容效率,静态热退火后的相形态变化幅度较小。实验发现复合相容剂体系的接枝密度对共连续相态稳定性的影响要大于接枝链长的影响。
Mixing different polymer materials together would not only achieve new materials with combination of complementary properties but also polymers with novel properties. The performances of polymer materials not only have relevance with the original polymer materials, but also the final morphology of polymer system. Most polymer systems are immiscible and the final morphology varies. While co-continuous morphology is a special morphology in which polymer materials interpenetrate with each other and exhibits three-dimensional continuity. And novel properties that the original polymer materials don't have could be gained occasionally. Factors affecting properties of co-continuous morphology polymer systems are mainly co-continuous phase size and stability of co-continuous morphology. Compatibilizer generated in reactive mixing process would reduce interfacial tension and co-continuous phase size and stabilize co-continuous morphology. The factor that limits the application of co-continuous morphology on industrial fields is co-continuous morphology composition range. Adding complex compatibilizer into polymer mixing system would form new polymer interface between immiscible polymer interface, broaden the co-continuous composition range, reduce interfacial tension and stabilize co-continuous morphology. The thesis mainly discusses the rules of effects of two different compatibilizer systems on co-continuous morphology development.
     Reactive mixing process combines polymer mixing and compatibilizing process together thus enhances polymer mixing efficiency; compatibilizer is generated in the interface and there is no need to concern for diffusion of compatibilizer, therefore high compatibilizing efficiency could be obtained. In order to investigate the reactive and compatibilizing efficiency, PS/PA6/PS-co-TMI polymer system was chosen to study compatibilizing rules of reactive compatibilizer. DSC and FTIR results both showed that (PS-co-TMI)-g-PA6 was generated in the mixing process. PS-co-TMI with different TMI content were chosen to investigate compatibilizing efficiency of different PS-co-TMI and rules of co-continuous morphology development. It was being found out that PS-co-TMI-2 had the best compatibilizing efficiency. Polymer system containing PS-co-TMI-2 were found to have the smallest co-continuous phase size and most stable co-continuous morphology after quiescent annealing in the oil bath under high temperature. Polymer system containing PS-co-TMI-8 were found to contain unreacted PS-co-TMI, and even (PS-co-TMI)-g-PA6 generated in the system were found to contain unreacted -NCO groups, accordingly reduce the compatibilizing efficiency of PS-co-TMI-8.
     Addition of single graft compatibilizer into polymer mixing system would reduce interfacial tension and co-continuous phase size. However, single graft compatibilizer would also narrow co-continuous composition range. Adding complex compatibilizer into polymer system would both stabilize the co-continuous morphology under high temperature and broaden co-continuous composition range. This thesis mainly discusses variations of co-continuous composition range and effects of stability of co-continuous morphology after adding PP-g-PA6/PS-g-PA6 complex compatibilizer into PP/PS polymer system. Addition of complex compatibilizer reduced interfacial tension of PP/PS polymer system and broadened co-continuous composition range at least 5%. Stability of co-continuous morphology has also been increased after adding complex compatibilizer into the polymer system. Complex compatibilizer with the higher graft density had better compatibilizing efficiency and morphology-stabilizing effects than other complex compatibilized polymer systems. The results also showed that graft density had more pronounced effects on morphology stability than the length of graft chains.
引文
[1] Hara, M.; Sauer, J. A., Synergism in mechanical properties of polymer/polymer blends. J. Macrom. Sci. Rev. Macromol. Chem 1998, C38, 327-362.
    [2] Veenstra, H.; van Lent, B. J. J.; van Dam, J.; de Boer, A. P., Co-continuous morphologies in polymer blends with SEBS block copolymers. Polymer 1999,40 (24), 6661-6672.
    [3] Willemse, R. C, Co-continuous morphologies in polymer blends : stability. Polymer 1999, 40(8), 2175-2178.
    [4] Arns, C. H.; Knackstedt, M. A.; Roberts, A. P.; Pinczewski, V. W., Morphology, Cocontinuity, and Conductive Properties of Anisotropic Polymer Blends. Macromolecules 1999,32(18), 5964-5966.
    [5] Meincke, O.; Kaempfer, D.; Weickmann, H.; Friedrich, C; Vathauer, M.; Warth, H., Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 2004,45 (3), 739-748.
    [6] Pemot, H.; Baumert, M.; court, F.; Leibler, L., Design and properties of co-continuous nanostructured polymers by reactive blending. Nature 2002,1, 54-58.
    [7] Zhang, C. L.; Feng, L. F.; Zhao, J.; Huang, H.; Hoppe, S.; Hu, G. H., Efficiency of graft copolymers at stabilizing co-continuous polymer blends during quiescent annealing. Polymer 2008,49 (16), 3462-3469.
    [8] Pu, G. W.; Luo, Y. W.; Lou, Q. C; Li, B. G, Co-Continuous Polymeric Nanostructures via Simple Melt Mixing of PS/PMMA. Macromolecular Rapid Communications 2009, 30 (2), 133-137.
    [9] Weber, M., Engineering polymer alloys by reactive extrusion. Macromolecular Symposia 2002,181 (1), 189-200.
    [10] Tsou, A. H.; Favis, B. D.; Hara, Y.; Bhadane, P. A.; Kirino, Y, Reactive Compatibilization in Brominated Poly(isobutylene-co-p-methylstyrene) and Polyamide Blends. Macromolecular Chemistry and Physics 2009,210 (5), 340-348.
    
    [11] Shashidhara, G; Biswas, D.; Shubhalaksmi Pai, B.; Kadiyala, A.; Wasim Feroze, G.; Ganesh, M., Effect of PP-g-MAH compatibilizer content in polypropylene/nylon-6 blends. Polymer Bulletin 2009, 63 (1), 147-157.
    
    [12] Shabbir, S.; Zulfiqar, S.; Lieberwirth, I.; Kausar, A.; Sarwar, M. I., Compatibilizing effect of functionalized polystyrene blends: a study of morphology, thermal, and mechanical properties. Surface and Interface Analysis 2008, 40 (5), 906-913.
    [13] Bakar, M.; Duk, R.; Przybylek, M.; Kostrzewa, M., Mechanical and Thermal Properties of Epoxy Resin Modified with Polyurethane. Journal of Reinforced Plastics and Composites 2009, 28 (17), 2107-2118.
    [14] Rios-Soberanis, C. R.; Ley-Bonilla, R. A.; Cruz-Estrada, R. H.; Cupul-Manzano, C. V.; Rangel-Rodriguez, L. M.; Caballero-Can, A., Microstructure formation in polymer composites prepared with polypropylene and a polyaniline complex. Polymer International 2009, 58 (7), 817-825.
    [15] Malchev, P. G.; de Vos, G; Norder, B.; Picken, S. J.; Gotsis, A. D., Evolution of the morphology and the mechanical properties of ternary PE/PA6/GF composites during annealing. Polymer 2007, 48 (21), 6294-6303.
    [16] Ikehara, T.; Jinnai, H.; Kaneko, T.; Nishioka, H.; Nishi, T., Local lamellar structures in banded spherulites analyzed by three-dimensional electron tomography.Journal of Polymer Science Part B-Polymer Physics 2007,45(9),1122-1125.
    [17]Plivelic,T.S.;Cassu,S.N.;Goncalves,M.D.;Torriani,I.L.,Structure and morphology of poly(epsilon-caprolactone)/chlorinated polyethylene(PCL/PEC1) blends investigated by DSC,simultaneous SAXS/WAXD,and elemental mapping by ESI-TEM.Macromolecules 2007,40(2),253-264.
    [18]Gergen,W.P.;Lutz,R.G.;Davison,S.,Hydrogenated block copolymers in thermoplastic elastomer interpenetrating polymer networks.2nd ed.;Hanser Publ.:Munich:1996.
    [19]Lyngaae-Jφrgensen;J.;Utracki,L.A.,Makromol Chem.,Macromol.Syrup.1991;Vol.48/49.
    [20]Lyngaae-J(?)rgensen,J.;Rasmussen,K.L.;Chtcherbakova,E.A.;Utracki,L.A.,Flow induced deformation of dual-phase continuity in polymer blends and alloys.Part Ⅰ.Polymer Engineering & Science 1999,39(6),1060-1071.
    [21]Potschke,P.;Paul,D.R.,Formation of Co-continuous Structures in Melt-Mixed Immiscible Polymer Blends.Polymer Reviews(Reviews) 2003,43(1),87-141.
    [22]Scott,C.E.;Macosko,C.W.,Morphology Development during the Initial-Stages of Polymer-Polymer Blending.Polymer 1995,36(3),461-470.
    [23]Sundararaj,U.;Dori,Y.;Macosko,C.W.,Sheet Formation in Immiscible Polymer Blends -Model Experiments on Initial Blend Morphology.Polymer 1995,36(10),1957-1968.
    [24]Nair,S.V.;Oommen,Z.;Thomas,S.,Phase morphology development and melt rheological behavior in nylon 6/polystyrene blends.Journal of Applied Polymer Science 2002,86(14),3537-3555.
    [25]Thomas,S.;Groeninckx,G,Nylon 6/ethylene propylene rubber(EPM) blends:Phase morphology development during processing and comparison with literature data.Journal of Applied Polymer Science 1999,71(9),1405-1429.
    [26]Matin,N.;Favis,B.D.,Co-continuous morphology development in partially miscible PMMA/PC blends.Polymer 2002,43(17),4723-4731.[
    27]Gonzalez-Nunez,R.;Forts,C.F.C.M.;Favis,B.D.;Kee,D.D.,Deformation of drops in extensional viscoelastic flow.Journal of Applied Polymer Science 1996,62(10),1627-1634.
    [28]Delaby,I.;Ernst,B.;Froelich,D.;Muller,R.,Droplet deformation in immiscible polymer blends during transient uniaxial elongational flow.Polymer Engineering & Science 1996,36(12),1627-1635.
    [29]Avgeropoulos,G.N.;Wieissert,F.C.;Biddigon,P.H.;Bohm,G.G.A.,Heterogeneous blends of polymers Rheology and morphology.Rubber Chemistry and Technology 1976,49,93-104.
    [30]Jordhamo,G.M.;Manson,J.A.;Sperling,L.H.,Phase Continuity and Inversion in Polymer Blends and Simultaneous Interpenetrating Networks.Polymer Engineering and Science 1986,26(8),517-524.
    [31]Ho,R.M.;Wu,C.H.;Su,A.C.,Morphology of Plastic Rubber Blends.Polymer Engineering and Science 1990,30(9),511-518.
    [32]Kitayama,N.;Keskkula,H.;Paul,D.R.,Reactive compatibilization of nylon 6/styrene-acrylonitrile copolymer blends.Part 1.Phase inversion behavior.Polymer 2000,41(22),8041-8052.
    [33]Utracki,L.A.,On the Viscosity-Concentration Dependence of Immiscible Polymer Blends.Journal of Rheology 1991,35(8),1615-1637.
    [34]Metelkin,V.I.;Belekht,V.P.,Formation of a continuous phase in heterogeneous polymer mixtures.Colloid dournal of the USSR 1984,46,425-429.
    [35]Tomotica,S.Proceedings of Royal Society A,1935;pp 322-337.
    [36]Luciani,A.;Jarrin,J.,Morphology development in immiscible polymer blends.Polymer Engineering & Science 1996,36(12),1619-1626.
    [37]Favis,B.D.;Chalifoux,J.P.,Influence of Composition on the Morphology of Polypropylene Polycarbonate Blends.Polymer 1988,29(10),1761-1767.
    [38]Bourry,D.;Favis,B.D.,Cocontinuity and phase inversion in HDPE/PS blends:Influence of interracial modification and elasticity.Journal of Polymer Science Part B-Polymer Physics 1998,36(11),1889-1899.
    [39]Bourry,D.;Favis,B.D.,Cocontinuity and phase inversion in HDPE/PS blends:Influence of interracial modification and elasticity.Journal of Polymer Science Part B:Polymer Physics 1998,36(11),1889-1899.
    [40]Steinmann,S.;Gronski,W.;Friedrich,C.,Cocontinuous polymer blends:influence of viscosity and elasticity ratios of the constituent polymers on phase inversion.Polymer 2001,42(15),6619-6629.
    [41]Chen,T.H.;Su,A.C.,Morphology of Poly(P-Phenylene Sulfide) Polyethylene Blends.Polymer 1993,34(23),4826-4831.
    [42]Janssen,J.M.H.;Meijer,H.E.H.,Dynamics of Liquid-Liquid Mixing - a 2-Zone Model.Polymer Engineering and Science 1995,35(22),1766-1780.
    [43]Li,J.;Li,X.;Toh,K.C.;Ni,X.P.;Zhou,Z.H.;Leong,K.W.,Inclusion complexation and formation of polypseudorotaxanes between poly[(ethylene oxide)-ran-(propylene oxide)]and cyclodextrins.Macromolecules 2001,34(26),8829-8831.
    [44]Willemse,R.C.;de Boer,A.P.;van Dam,J.;Gotsis,A.D.,Co-continuous morphologies in polymer blends:a new model.Polymer 1998,39(24),5879-5887.
    [45]Veenstra,H.;Norder,B.;van Dam,J.;de Boer,B.P.,Stability of co-continuous polystyrene/poly(ether-ester) blends in shear flow.Polymer 1999,40(18),5223-5226.
    [46]赵剑;许忠斌;冯连芳,PA6/PS双连续相的临界组分比及相形态研究.材料工程2006,(8),36-44.
    [47]Moreira,A.C.E;Jr.,E O.C.;Soares,B.G,Cocontinuous morphologies in polystyrene/ethylene-vinyl acetate blends:The influence of the processing temperature.Journal of Applied Polymer Science 2003,89(2),386-398.
    [48]Veenstra,H.;Van Dam,J.;de Boer,A.P.,On the coarsening of co-continuous morphologies in polymer blends:effect of interracial tension,viscosity and physical cross-links.Polymer 2000,41(8),3037-3045.
    [49]Sarazin,P.;Favis,B.D.,Influence of temperature-induced coalescence effects on co-continuous morphology in poly(epsilon-caprolactone)/polystyrene blends.Polymer 2005,46(16),5966-5978.
    [50]Yu,W.;Zhou,C.X.;Inoue,T.,A coalescence mechanism for the coarsening behavior of polymer blends during a quiescent annealing process.I.Monodispersed particle system.Journal of Polymer Science Part B-Polymer Physics 2000,38(18),2378-2389.
    [51]Wallheinke,K.;Potschke,P.;Macosko,C.W.;Stutz,H.,Coalescence in blends of thermoplastic polyurethane with polyolefins.Polymer Engineering and Science 1999,39(6),1022-1034.
    [52]Willemse,R.C.;Ramaker,E.J.J.;Van Dam,J.;De Boer,A.P.,Coarsening in molten quiescent polymer blends:The role of the initial morphology.Polymer Engineering and Science 1999,39(9),1717-1725.
    [53]Fortelny,I.;Zivny,A.,Coalescence in Molten Quiescent Polymer Blends.Polymer 1995,36(21),4113-4118.
    [54]Zhenhua Yuan,B.D.F.,Coarsening of immiscible co-continuous blends during quiescent annealing.AIChE Journal 2005,51(1),271-280.
    [55]Mcmaster,L.P.,Aspects of Liquid-Liquid Phase-Transition Phenomena in Multicomponent Polymeric Systems.Advances in Chemistry Series 1975,(142),43-65.
    [56]Yoshida,H.;Zhang,G.;Kitamura,T.;Kawai,T.,Compatibility of Polymer Blends Evaluated by Crystallization Dynamics.Simultaneous DSC-FTIR method.Journal of Thermal Analysis and Calorimetry 2001,64(2),577-583.
    [57]Heikens,D.;Barentsen,W.,Particle Dimensions in Polystyrene-Polyethylene Blends as a Function of Their Melt Viscosity and of Concentration of Added Graft Copolymer.Polymer 1977,18(1),69-72.
    [58]Eastmond,G.C.;Jiang,M.;Malinconico,M.,Morphologies and Properties of Polyblends.1.Blends of Poly(Methylmethacrylate) and a Chlorine-Containing Polycarbonate.Polymer 1983,24(9),1162-1170.
    [59]Edgecombe,B.D.;Stein,J.A.;Frechet,J.M.J.;Xu,Z.H.;Kramer,E.J.,The role of polymer architecture in strengthening polymer-polymer interfaces:A comparison of graft,block,and random copolymers containing hydrogen-bonding moieties.Macromolecules 1998,31(4),1292-1304.
    [60]Lyatskaya,Y.;Jacobson,S.H.;Balazs,A.C.,Effect of composition on the compatibilizing activity of comb copolymers.Macromolecules 1996,29(3),1059-1061.
    [61]Lyatskaya,Y.;Balazs,A.C.,Using copolymer mixtures to compatibilize immiscible homopolymer blends.Macromolecules 1996,29(23),7581-7587.
    [62]Israels,R.;Foster,D.P.;Balazs,A.C.,Designing Optimal Comb Compatibilizers - Ac and Bc Combs at an a/B Interface.Macromolecules 1995,28(1),218-224.
    [63]Gersappe,D.;Irvine,D.;Balazs,A.C.;Liu,Y.;Sokolov,J.;Rafailovich,M.;Schwarz,S.;Peiffer,D.G.,The Use of Graft-Copolymers to Bind Immiscible Blends.Science 1994,265(5175),1072-1074.
    [64]Litmanovich,A.D.;Plat6,N.A.;Kudryavtsev,Y.V.,Reactions in polymer blends:interchain effects and theoretical problems.Progress in Polymer Science 2002,27(5),915-970.
    [65]Kim,S.;Kim,J.K.;Park,C.E.,Effect of molecular architecture of in situ reactive compatibilizer on the morphology and interfacial activity of an immiscible polyolefin/polystyrene blend.Polymer 1997,38(8),1809-1815.
    [66]Lim,J.G.;Baik,J.H.;Zhang,X.Q.;Son,Y.;Choi,W.M.;Park,O.O.,A novel preparation method of maleic anhydride grafted syndiotactic polystyrene and its blend performance with nylon6.Polymer Bulletin 2002,48(4-5),397-405.
    [67]Monticciolo,A.;Cassagnau,P.;Michel,A.,Fibrillar morphology development of PE/PBT blends:Rheology and solvent permeability.Polymer Engineering and Science 1998,38 (11),1882-1889.
    [68]Hu,G.H.;Li,H.X.;Feng,L.F.,A two-step reactive extrusion process for the synthesis of graft eopolymers with polyamides as grafts.Macromolecules 2002,35(22),8247-8250.
    [69]Shashidhara,G.M.;Biswas,D.;Pai,B.S.;Kadiyala,A.K.;Feroze,G.S.W.;Ganesh,M.,Effect of PP-g-MAH compatibilizer content in polypropylene/nylon-6 blends.Polymer Bulletin 2009,63(1),147-157.
    [70]Hu,G.H.;Sun,Y.J.;Lambla,M.,Devolatilization:A critical sequential operation for in situ eompatibilization of immiscible polymer blends by one-step reactive extrusion.Polymer Engineering and Science 1996,36(5),676-684.
    [71]Hu,G.H.;Cartier,H.;Plummer,C.,Reactive extrusion:Toward nanoblends.Macromolecules 1999,32(14),4713-4718.
    [72]Lyatskaya,Y.;Gersappe,D.;Gross,N.A.;Balazs,A.C.,Designing eompatibilizers to reduce interfacial tension in polymer blends.J Phys Chem-Us 1996,100(5),1449-1458.
    [73]Sikka,M.;Pellegrini,N.N.;Sehmitt,E.A.;Winey,K.I.,Modifying a polystyrene/poly(methyl methaerylate) interface with poly(styrene-co-methyl methaerylate) random copolymers.Macromolecules 1997,30(3),445-455.
    [74]Noel,O.F.;Carley,J.F.,Properties of Polypropylene-Polyethylene Blends.Polymer Engineering and Science 1975,15(2),117-126.
    [75]Lovinger,A.J.;Williams,M.L.,Tensile Properties and Morphology of Blends of Polyethylene and Polypropylene.Journal of Applied Polymer Science 1980,25(8),1703-1713.
    [76]Dai,C.A.;Osuji,C.O.;Jan&,K.D.;Dair,B.J.;Ober,C.K.;Kramer,E.J.;Hui,C.Y.,Effect of the monomer ratio on the strengthening of polymer phase boundaries by random copolymers.Macromolecules 1997,30(22),6727-6736.
    [77]G,R.,Collodial and morphological behaviour of block and graft copolymers.Plinum Press:New York,1971.
    [78]Fayt,R.;Jer(?)me,R.;Teyssie,P.,Molecular design of multieomponent polymer systems.I.Emulsifying effect of poly(hydrogenated butadiene-b-styrene) eopolymers in LDPE/PS blends.Journal of Polymer Science:Polymer Letters Edition 1981,19(2),79-84.
    [79]Noolandi,J.;Hong,K.M.,Effect of Block Copolymers at a Demixed Homopolymer Interface.Macromolecules 1984,17(8),1531-1537.
    [80]Noolandi,J.,Recent Advances in the Theory of Polymeric Alloys.Polymer Engineering and Science 1984,24(2),70-78.
    [81]Rigby,D.;Roe,R.J.,Small-Angle X-Ray-Scattering Study of Micelle Formation in Mixtures of Butadiene Homopolymer and Styrene Butadiene Block Copolymer.Macromolecules 1984,17(9),1778-1785.
    [82]Bueknall,D.G.;Higgins,J.S.;Rostami,S.,The Compatibilizing Effect of Dibloek Copolymer on the Morphology of Immiscible Polymer Blends.Polymer 1992,33(20),4419-4422.
    [83]Noolandi,J.;Hong,K.M.,Interfacial Properties of Immiscible Homopolymer Blends in the Presence of Block Copolymers.Macromolecules 1982,15(2),482-492.
    [84]Noolandi,J.;Hong,K.M.,Theory of Block Co-Polymer Micelles in Solution.Macromolecules 1983,16(9),1443-1448.
    [85]Leibler,L.,Theory of Phase-Equilibria in Mixtures of Copolymers and Homopolymers.2. Interfaces near the Consolute Point.Macromolecules 1982,15(5),1283-1290.
    [86]Leibler,L.,Block copolymers at interfaces.Physica A:Statistical and Theoretical Physics 1991,172(1-2),258-268.
    [87]Noolandi,J.,Multiblock copolymers as polymeric surfactants:are pancakes better than dumbbells? Die Makromolekulare Chemic,Theory and Simulations 1992,1(5),295-298.
    [88]Dadmun,M.,Effect of copolymer architecture on the interracial structure and miscibility of a ternary polymer blend containing a copolymer and two homopolymers.Macromolecules 1996,29(11),3868-3874.
    [89]Potschke,P.;Donald R.Paul,Detection of co-continuous structures in SAN/PA6 blends by different methods.MacromolecularSymposia 2003,198(1),69-82.
    [90]Galloway,J.A.;Macosko,C.W.,Comparison of methods for the detection of cocontinuity in poly(ethylene oxide)/polystyrene blends.Polymer Engineering and Science 2004,44(4),714-727.
    [91]Galloway,J.A.;Koester,K.J.;Paasch,B.J.;Macosko,C.W.,Effect of sample size on solvent extraction for detecting cocontinuity in polymer blends.Polymer 2004,45(2),423-428.
    [92]Steinmann,S.;Gronski,W.;Friedrich,C.,Quantitative rheological evaluation of phase inversion in two-phase polymer blends with cocontinuous morphology.Rheologica Acta 2002,41(1),77-86.
    [93]Oommen,Z.;Zachariah,S.R.;Thomas,S.;Groeninckx,G.;Moldenaers,P.;Mewis,J.,Melt rheology and morphology of uncompatibilized and in situ compatibilized nylon-6/ethylene propylene rubber blends.Journal of Applied Polymer Science 2004,92(1),252-264.
    [94]Holden,G.;Legge,N.R.;Quirk,R.;Schroeder,H.E.,Thermoplastic Elastomers.2nd ed.;Hanser Publishers:1996.
    [95]Li,J.;Favis,B.D.,Characterizing co-continuous high density polyethylene/polystyrene blends.Polymer 2001,42(11),5047-5053.
    [96]Dedecker,K.;Groeninckx,G.,Reactive compatibilisation of A/(B/C) polymer blends-Part 1.Investigation of the phase morphology development and stabilisation.Polymer 1998,39(21),4985-4992.
    [97]田英姿;陈克复,用压汞法和氮吸附法测定孔径分布及比表面积.中国造纸 2004,23(4),21-23.
    [98]Washburn,N.R.;Simon,C.G.;Tona,A.;Elgendy,H.M.;Karim,A.;Amis,E.J.,Co-extrusion of biocompatible polymers for scaffolds with co-continuous morphology.Journal of Biomedical Materials Research 2002,60(1),20-29.
    [99]Mohammed,S.;Daniels,E.S.;Klein,A.;El-Aasser,M.S.,Seeded emulsion terpolymerization of dimethyl meta-isopropenyl benzyl isocyanate(TMI(R)) with acrylic monomers.Journal of Applied Polymer Science 1998,67(4),685-694.
    [100]Wu,H.S.;Chuang,M.H.;Hwang,J.W.,Kinetics and thermal analysis of copolymerization of m-isopropenyl-alpha,alpha ',-dimethylbenzyl isocyanate with styrene.Journal of Applied Polymer Science 1999,73(13),2763-2770.
    [101]Zhang,C.-L.;Feng,L.-E;Gu,X.;Hoppe,S.;Hu,G.-H.,Determination of the molar mass of polyamide block/graft copolymers by size-exclusion chromatography at room temperature.Polymer Testing 2007,26(6),793-802.
    [102]Zhang,C.L.;Feng,L.F.;Gu,X.P.;Hoppe,S.;Hu,G.H.,Efficiency of graft copolymers as compatibilizers for immiscible polymer blends.Polymer 2007,48(20),5940-5949.
    [103]李广赞;冯连芳;顾雪萍;许忠斌;胡国华;刘金华,PSt-TMI合成及其共聚动力学研究.功能高分子学报 2005,18(1),127-133.
    [104]Hu,G.H.;Li,H.X.;Feng,L.F.;Pessan,L.A.,Strategies for maximizing free-radical grafting reaction yields.Journal of Applied Polymer Science 2003,88(7),1799-1807.
    [105]Cai-Liang Zhang,L.-F.F.,Guo-Hua Hu,,Anionic polymerization of lactams:A comparative study on various methods of measuring the conversion of e-caprolactam to polyamide 6.Journal of Applied Polymer Science 2006,101(3),1972-1981.
    [106]Hu,G.H.;Li,H.X.;Feng,L.F.,A two-step reactive extrusion process for the synthesis of graft copolymers with polyamides as grafts.Macromolecules 2002,35(22),8247-8250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700