温室番茄和苦苣变温控湿节能效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源价格的居高不下和全球节能减排的背景下,降低能耗对于现代温室发展具有重要的意义。采用变温控制可以允许温度在较大幅度内波动,以最大限度地提高温室对于日光能量的利用,是一个较好的节能途径。而且,采用相对湿度控制措施可以在安全的湿度范围内减少温室用于除湿的能耗。本论文以果菜类温室长季节栽培蔬菜番茄为材料,研究了变温控制结合相对湿度控制的实际节能效果,及其对2个不同采摘类型的番茄品种的生长发育、产量、品质和病害发生的影响。以叶菜类早春温室育苗蔬菜苦苣为材料,研究了苦苣对温度的敏感期和变温控制的可行性,采用2种不同变温控制研究了苦苣温室育苗的节能效果,以及变温育苗对苦苣育苗质量、抽薹和产量的影响,为进一步应用变温和相对湿度控制节能研究奠定了基础。主要研究结果如下:
     在番茄长季节栽培中,相较于传统的温湿度控制,采用变温(通风温度24℃,白天加温温度14℃,夜间温度可变,使用保温幕)和相对湿度控制(不超过95%)可以全季节能18.27%,变温与传统湿度控制方式节能10.31%,传统温度和相对湿度控制节能2.65%。不同温度、湿度控制对于Elegance和Encore两个番茄品种的生长发育、产量和品质影响不显著。但对不同周次的产量影响显著,变温控制下前期的产量显著提高,平均单果重增加,番茄果实生长速率在日间较高。整穗采摘的Elegance品种在变温与相对湿度控制下总产量和商品果产量可以分别提高2.31kg/m~2(5.3%)和1.5kg/m~2(3.6%)。
     4种温度和湿度控制的处理均不能防止番茄发生灰霉病。相对湿度控制下的番茄灰霉病的发生时间延迟,累计发病株数降低。单独变温控制使植株感染灰霉病的危险增加,但通过与相对湿度的综合控制可以有效减少这种风险。在相对湿度控制下,温室的相对湿度要高于传统的绝对湿度亏缺控制,但是在安全的范围之内,而且在凌晨的时间段,相对湿度控制措施有效地减少了植株结露。通过对温室内不同高度的温湿度监控发现,1.2-1.7m的相对湿度最高,在采用相对湿度控制方式时,要重点监控这一高度的湿度并与植株的温度同时进行监控。
     采用将苦苣幼苗在温暖环境(17℃)和冷环境(平均温度10.5℃)两种环境下每周进行双向互换的方法研究了苦苣对于温度的敏感时期和在不同温度条件下的生长发育规律。通过解剖镜和扫描电镜观察了苦苣生长点变化和花芽分化过程。结果表明,变温控制在苦苣育苗中是可行的,在2-17℃的设定温度范围内,苦苣在温暖环境下和低温环境下均会完成花芽分化和抽薹,低温下花芽分化的时间需要24天,温暖环境下需要60天。10片可视叶片总数能较好地表征植株是否完成开花诱导。从开花诱导完成后到抽薹期间,低温能促进苦苣的抽薹迅速完成。苦苣的抽薹与开花与其他菊科作物有所不同,在薹抽出的过程中顶芽还在不断地分生叶片和侧枝,没有显著的顶花,其第一朵花开花的位置也不固定。通过对侧芽花芽分化的电镜观察发现,苦苣花芽分化与其他菊科作物类似。
     在苦苣的变温栽培中,采用与传统温度控制日平均温度相同的变温控制(夜温10℃,日温24℃)可以达到10%左右的模拟节能效果,对幼苗的叶片数、鲜重没有显著影响,但可导致植株叶片伸长,对于采收时单菜重没有显著影响,在部分周降低了抽薹的比例。较低温度的变温控制(夜温10℃,日温14℃)会导致苗子较小,早期抽薹风险比例较高,单菜重略低。两个批次的低温冷处理显著提高了苦苣的抽薹比例。
Under the pressure of high price of fossil fuel and globally increasing requirement toreduce CO2emissions, energy saving is playing a vital role in both greenhouse industry andhorticulture research. One way of reducing energy consumption is temperature variationwhich could maximize the solar energy use so as to lower the heating energy input. Relativehumidity (RH) control could broad the RH range so as to reduce the energy consumed indehumidification. We exemplified the research by tomato, a typical year round planting fruitvegetable, and testified the energy saving effectiveness and the impact to plant growth anddevelopment, yield, quality and incidence of botrytis to2cultivars by applying4treatmentsof the temperature variation or conventional temperature control combined with relativehumidity (RH) control or humidity deficit (HD) control. On the other hand, we choose atypical glasshouse propagation leaf vegetable endive as research object and investigate itstemperature sensitivity period and the feasibility of applying variation temperature controlduring its propagation. In addition,2temperature variation regemes is testified in endivepropagation.Major results are as follows.
     Compared with the conventional stable temperature and HD control, the temperaturevariation and RH control regeme with thermal screen applied at night has accomplished thetarget of18.27%energy saving, and10.31%for temperature variation with HD control. A2.65%saving has been found when using the RH instead of HD control in conventionalgreenhouse temperature manipulating. There are less compromises to plant growth, fruit yieldand quality thourghout the whole planting season. Temperature variation could increase theearly season yield as well as average fruit weight which are closely related to fruit growth rateunder different temperature control. Cultivar “Elegance” picked by truss obtains a increase of2.31kg/m~2(5.3%) of total yield and1.5kg/m~2(3.6%) of marketable yield.
     It is inevitable that the incident of botrytis occurs in all treatment. The RH controldelayed the incident date and reduced the accumulated number of plant with botrytis.Temperature variation control accounted for the increase in the incident of botrytis, whichwould be effectively lowered if RH control inhibited. In most cases, the relative humidityunder RH control is higher than that under HD control but within the safe rage (<95%), and RH control regeme could effectively control the plant condensation at morning. Take accountof the result of monitoring the different heights, RH at1.2-1.7m level is relatively high; thesupervision of glasshouse RH should be sampled at this level as well as plant temperature.
     By weekly reciprocal transfer experiment between warm (17℃) and cold (average10.5℃), temperature sensitivity period of endive as well as the its pattern of growth anddevelopment under different temperature both had been investigated. The meristem changeand flower differentiation had been observed by the stero-microscope and electron scanningmicroscope (SEM). The results proved the temperature variation control is feasible in endivepropagation. Within the temperature range from2℃-17℃, endive all can finish flowerdifferentiation which needs24days in cold and60days in warm and bolting in bothcontrolled warm or cold. There is a significant leap of total leaf number when plant isinducted to bolting and10total visible leaves could be used as an index to determine theinduction phase of endive. Low temperature could hasten endive to finish bolting quicklywhen plant is inducted. The top meristem continuously produce side shoot while the stalkemerged and the first flower could blossom at different location of side shoots or adjoiningwith main stalk. That is different from other composite family plants. On the other hand, theyshare similarities in the meristem flower differentiation procedure.
     Compared with the conventional temperature control, the warmer temperature variation(average17℃) could obtain10%potential of energy saving by model simulating without nosignificant influence on the fresh weight by the end of weaning, yet the high day temperaturewould promote the leaf extension. There are less differences of harvest shoot weight betweentemperature variation and conventional temperature control. Temperature variation couldlower the bolting percentage at some weeks. The lower temperature variation (heating at10℃night,24℃at day) produces small plants and higher incidence of bolting at early season.Extra one week cold shock after propagation promotes bolting significantly.
引文
蔡龙俊,杨琳.2002,连栋温室内保温幕节能效果的研究分析,农业工程学报,18(6):98-102.
    陈晴,孙忠富.2005.基于作物积温理论的温室节能控制策略探讨.农业工程学报,21(3):158-161.
    郭正昊,于海业,张蕾.2011.积温理论在日光温室的应用.安徽农业科学,39(34):21526-21528.
    黄丹枫,葛体达.2008.荷兰温室园艺对上海农业发展的借鉴.上海交通大学学报(农业科学版),26(6):351-356,362.
    李天来.2011.我国设施园艺发展的几点思考.农业工程技术(温室园艺),03:25,26.
    罗中岭.1994.当代温室气候与花卉.北京:中国农业科技出版社:65-68.
    农业部种植业管理司.2009.科学规划规范推进促进设施蔬菜持续健康发展(上).农业工程技术(温室园艺),(6):26-29.
    齐飞,周新群,张跃峰.2008.世界现代化温室装备技术发展及对中国的启示.农业工程学报,24(10):279-285.
    齐飞.2004.论当前大型现代化温室行业面临的问题与任务.上海农业学报,20(2):36-39.
    齐维强,贺超兴,张志斌,邹志荣.2004.温室番茄繁殖器官消长动态与有效积温的关系研究.陕西农业科学,(2):20-23
    孙政才.2008.世界农产品价格仍将在高位运行[EB/OL]. http://www.foodqs.com/news/gnspzs01/2008718162938017.htm[2012-4-6].
    王新坤;李红.2010.我国温室的研究现状与发展趋势.排灌机械工程学报,(02):179-184.
    魏毓棠主编.1998.蔬菜育种技术.北京:中国农业出版社:193.
    杨其长.2007.荷兰温室节能工程研究进展.农业工程技术(温室园艺),(01)13-14.
    姚益平.2010.基于能耗与作物潜在产量的温室气候区划.北京:气象出版社.
    张嵩午刘淑明.2007.农林气象学.杨凌:西北农林科技大学出版社.
    张宇萍,韩一军.2007.国外农业增长方式转变的理论及经验.世界农业,(5):17-19.
    周荣,王艳,任吉君,廖琼慧.2010.苦苣花芽分化的解剖学及采种研究.华南农业大学学报,31:12-16.
    Adams S R., Pearson S, Hadley P.1997. The effects of temparature, photoperiod and light integral on thetime to flowering of pansy cv. Universal Violet (Viola×wittrochiana Gams.).Ann.Bot,80:107-112.
    Adams R S, Pearson S, Hadley P.1998b. Inflorescence commitment and subsequent development differ intheir responses to temperature and photoperiod in Osteospermum jucundum. Physiologia Plantarum,104:225—231.
    Adams S R, Valdes V. M.2002. The effect of periods of high temperature and manipulating fruit load onthe pattern of tomato yields. Journal of Horticultural Science and Biotechnology,77:461-466.
    Adams S R., Langton F A, Plackett C.2007. Direct energy use in agriculture: opportunities for reducingfossil fuel inputs. Final Report on Defra Project AC0401.
    Adams S R., Woodward G C, Valdes V. M.2002. The effects of leaf removal and of modifying temperatureset-points with solar radiation on tomato. Journal of Horticultural Science and Biotechnology,77:733-738.
    Adams S R, Pearson S, Hadley P.1998a An appraisal of the use of reciprocal transfer experiments:assessing the stages of photoperiod sensitivity in chrysanthemum cv. Snowdon (Chrysanthemummorifolium Ramat.). Journal of Experimental Botany,49(325):1405–1411.
    Avissar R and Mahrer Y.1982.Verification study of a numerical greenhouse microclimate model.Transactions of the ASAE,25:1711–1720.
    Bailey B J, Seginer I.1989.Optimum contro l of greenhouse heating. Acta H or ticulturae,245,512-518.
    Bailey B J.1988. Control strategies to enhance the performance of greenhouse thermal screens. Journal ofAgricultural Engineering Research,40,187-198.
    Bailey B J; Chalabi Z S.1994. Improving the cost effectiveness of greenhouse climate control. Computersand Electronics in Agriculture,10,203-214.
    Bailey B.J.1985. Wind dependent control of greenhouse temperature. Acta Horticulturae,174:381-386.
    Bakker J C, de Zwart H F, Campen J B.2006. Greenhouse cooling and heat recovery using fine wireheat exchangers in a closed pot plant greenhouse: design of an energy producing greenhouse. ActaHort.,719:263-270.
    Bakker J C, Adams S R, Boulard T, Montero J I.2008. Innovative technologies for an efficient use ofenergy. Acta Horticulturae.801:49-62.
    Bakker J C, Van Uffelen J A M.1988. The effect of diurnal temperature regimes on growth and yield ofglass house sweet pepper. Netherlands Journal of Agricultural Science,36,201-208.
    Bakker J C,Van Holsteijn G P A..1995. Screens. In: Bakker J C., Bot G P A., Challa H., Van de Braak N.J.Greenhouse Climate Control, an Integrated Approach. Wageningen Press:185-195.
    Bakker J C.1991. Analysis of humidity effects on growth and production of glasshouse fruit vegetables.Dissertation Agricultural University Wageningen, LU-1449, The Netherlands,155pp.
    Baudoin W O.1999. Protected cultivation in the mediterranean region. Acta Hort.,491:23-30.
    Benoit F, Ceustermans N.1981. Reduction of bolting in self-blanching celery, celeriac, endive andchinese cabbage. Acta Horticulturae,122,121-131.
    Bertram L.1992. Stem elongation of dendranthema and tomato plants in relation to day and nighttemperatures. Acta horticulturea,327:61-69.
    Boulard T, Fatnassi H.2006. Greenhouse aeration and climate optimization based on CFD studies.Plasticulture121:66-83.
    Boulard T.2001. Solar energy for horticulture in France: hopes and reality. Workshop on RenewableEnergy in Agriculture, November19th,2001: Castello Utveggio–Palermo, EUROPEANCOMMISSION, Energy and Transport, Energy Framework programme1998-2002
    Buwalda F, Rijsdijk A A, Vogelezang J V M.1999. An energy efficient heating strategy for cut roseproduction based on crop tolerance to temperature fluctuatios. A cta Horticulturae,507,117-125.
    Campen J B and Bot G P A..2002. Dehumidification in greenhouses by condensation on finned pipes.Biosystems Engineering,82(2):177-185.
    Campen J B and Bot G P A..2001. Design of a low-energy dehumidifying system for greenhouses. Journalof Agricultural Engineering Research.78(1):65-73.
    Campen J B, Bot G P A, de Zwart H F.2003. Dehumidification of Greenhouses at Northern Latitudes.Biosystems Engineering,86,487-493.
    Challa H and van de Vooren J.1980. A strategy for climate control in greenhouses in early winterproduction. Acta Hort,106,159-164.
    Cockshull K E, Hand D W, Langton F A.1981. The effects of day and night temperature on flowerinitiation and development in chrysanthemum. Acta Hort,125,101-110.
    Cockshull K E.1976. Flower and leaf initiation by Chrysanthemum morifolium Ramat in long days. Journalof Horticultural Science,51,441-450.
    De Halleux D. and Gauthier L.1998. Energy consumption due to dehumidification of greenhouses undernorthern latitudes. Journal of Agricultural Engineering Research69(1):35-42.
    De Koning A N M.1988.More efficient use of base load heating with a temperature integrating controlprogram. Effect on development, growth and production of tomato. Acta Horticulturae,229,233-237.
    De Koning A N M.1990. Long term temperature integration of tomato growth and development underalternating temperature regimes. Scientia Horticulturae,45,117-127.
    De Pascale S and A. Maggio.2004. Sustainable Protected Cultivation at Mediterranean Climate.Perspectives and Challanges. Acta Hort.,691:29-42
    Dieleman A, Marcelis L F M., Elings A., Dueck T A., Meinen E.2006. Energy saving in greenhouses:optimal use of climate conditions and crop management. Acta Hort.,718:203-209.
    Dieleman A. and Kempkes F.2006. Energy screens in tomato: determining the optimal opening strategy.Acta Hort.,718:599-606.
    Dueck T and Marecelis L F M.2005. Bladplukken bij Paprika mogelijk rendabel. Groenten+fruit.28:16-17.(in Dutch).In:Bakker J C, Adams S R, Boulard T, Montero J I.2008. Innovative technologies foran efficient use of energy. Acta Horticulturae.801:49-62.
    Elers B and Wiebe H J.1984. Flower formation of Chinese cabbage. I. Reponse to vernalization andphotoperiods. Scientia Horticulturae,22:219-231.
    Elings A, Kempkes F L K, Kaarsemaker R.C., Ruijs M N A, van de Braak N J, Dueck T A..2005. TheEnergy Balance and Energy-Saving Measures in Greenhouse Tomato Cultivation. Acta Hort,691:67-74.
    Energy White Paper2003: Our Energy Future-Creating a Low Carbon Economy” link:http://www.berr.gov.uk/files/file10719.pdf
    Fatnassi, H., Boulard, T., Poncet, C. and M. Chave,2006. Optimisation of Greenhouse Insect Screeningwith C F D, Biosystem Engineering,93,301-312.
    Gisle rd H and Nelson P V.1997.Effect of relative air humidity and irradiance on growth of Dendranthema×grandiflorum (Ramat.) Kitamura Gartenbauwissenschaft,62(5):214–218.
    Hemming S, Van der Braak N, Dueck T, Jongschaap R, Marissen N.2006b. Filtering natural light by thegreenhouse covering using model simulations–More production and better plant quality by diffuselight? Acta Hort,711:105-110.
    Hemming S, Kempkes F, Mohammadkhani V, Stanghellini C, Swinkels G J, Holterman H J.2006a. Antireflex coating for horticulture glass–first practical experiences.(In Dutch). Report130, WageningenUR Greenhouse Horticulture,59pp.
    Hemming S, Kempkes F, Van der Braak N, Dueck T, Marissen N.2006c. Filtering natural light at thegreenhouse covering–Better greenhouse climate and higher production by filtering out NIR? ActaHort.,711:411-416.
    Hemming S,Waaijenberg G, Bot P, Sonneveld F, de Zwart T, Dueck T, van Dijk A, Dieleman N, MarissenE, Houter B.2004. Optimal light conditions for the transition to an energy conservative greenhousehorticulture (In Dutch). Report Agrotechnology&Food Innovations,100, pp.139. Wageningen UR.
    Hendriks L, Ludolph D, Menne A..1990. Influence of different heating strategies on morphogenesis andflowering of ornamentals. Acta horticulturea,305(1990):9-17.
    Heuvelink E.1997.Effect of fruit load on dry matter partitioning in tomato. Scientia Horticulturae,69:51–59.
    Holder R, Cockshull K.1990. Effects of humidity on the g rowth and yield of glasshouse tomatoes.Journal of Horticultural Science,65:31-39.
    Hurd R G and Graves C J.1984. The influence of different temperature patterns having the same integralon the earliness and yield of tomatoes. Acta Hort.,148:547-554.
    Janssen E and Hart H.2006. Light interception of Lighting Systems, Venlo and Wide Span TypeGreenhouses. Acta Hort,711:431-436.
    Jarvis WR (1980) Taxonomy. In: Coley-Smith JR, Verhoef K,Jarvis WR (eds) The biology of Botrytis.London: Academic press,1–18.
    Jolliet O, Danloy L., Gay J B., Munday G L, Reist A..1991. HORTICERN: An improved static model forpredicting the energy consumption of a greenhouse. Agricultural and Forest Meteorology,55,265-294.
    Jolliet O.1994. HORTITRANS: a model for predicting and optimizing humidity and transpiration ingreenhouses. Journal of Agricultural Engineering Research,57,23-37
    Jongschaap R E E., Dueck Th A., Marissen N, Hemming S, Marcelis L F M.2006. Simulating seasonalpatterns of increased greenhouse crop production by conversion of direct radiation into diffuseradiation. Acta Hort,718:315-321.
    Karlsson M G. and Heins R D.Chrysanthemum dry matter partitioning patterns along irradiance andtemperature gradients.Canadian Journal of Plant Science,72,307–316.
    Katsoulas N, Kitta E, Kittas C, Tsirogiannis I L, Stamati E.2006. Greenhose Cooling by a Fog System:Effects on Microclimate and on Production and Quality of a Soilless Pepper Crop. Acta Hort,719:455-461.
    K rner O and Challa H.2003a. Process-based humidity control regime for greenhouse crops. Comp. Elect.Agric,39:173-192.
    K rner O and Challa H.2003b. Design for an improved temperature integration concept in greenhousecultivation, Computers and Electronics in Agriculture, vol.39:39-59.
    K rner O, Challa H.2004.Temperature integration and process-based humidity control in chrysanthemum.Computers and Electronics in Agriculture,43(I):1–21.
    K rner O.2003. Crop based climate regimes for energy saving in greenhouse cultivation.[PhD Thesis]. TheNetherlands:Wageningen University.
    Krug H and Liebig H P.1980. Diurnal thermoperiodism of the cucumber. Acta Horticulturae,118,83-94.
    Langton F A. and Hamer P.J C.2003. Energy efficient production of high quality ornamental species. FinalReport to Defra, project HH1330.
    Langton F A. and Horridge J S.2006. The effect of averaging sub-and supra-optimal temperatures on theflowering of Chrysanthemum morifolium. Journal of Horticultural Science and Biotechnology.81:335-340.
    Lucchin M, Varotto S, Barcaccia G, Parrini P..2008. Chicory and Endive. In: Prohen J, Nuez F (eds)Vegetables I.Springer, New York, pp.3–48.
    Maynard D N. and Hochmuth G J.2007. Knott's Handbook for Vegetable Growers. Fifth Edition,Hoboken, NJ, USA: John Wiley&Sons, Inc.
    Montero J I.2006. Evaporative Cooling in Greenhouses: Effects on Microclimate, Water Use Efficiencyand Plant Response. Acta Hort.,719:373-383.
    Mortensen L M.2000. Effects of air humidity on growth, flowering, keeping quality and water relations offour short-day greenhouse species.Scientia Horticulturae,86:299–310.
    Nederhoff E, Schreuder R.2004. Temperature control: dif prenight and other tricks for crop steering,Grower,59(8),54-55.
    Olofsson T, Majabacka A, Engblom S.2006. Evaluation of Energy Performance for Greenhouses Basedon Multivariate Analysis Methodology. Acta Hort.,718:211-218.
    Opdam J J G., Schoonderbeek G G, Heller E B M, de Gelder A..2005. Closed greenhouse: a startingpoint for sustainable entrepreneurship in horticulture. Acta Hort.691:517-524.
    Paulet P.1985. Cichorium intybus and C. endiva. In: A.H. Halevy (ed.), CRC Handbook of Flowering, Vol.II. CRC Press Inc., Boca Raton, FL. pp.265-270.
    Pearson S, Parkera A, Hadleya P, Kitchenerb H M.1995. The effect of photoperiod and temperature onreproductive development of Cape Daisy (Osteospermum jucundum cv.‘Pink Whirls’). ScientiaHorticulturae,62(4):225–235.
    Picken A J F.1984. A review of pollination and fruit set in the tomato. Horticultural Science,59:1-13.
    Pollet I V, Eykens P G M, Pieters J G.2000. PAR Scattering by greenhouse covers and its effects on plantgrowth. Acta Hort,534:101-108.
    Pressman E and Sachs M.1985. Apium graveolens. In: Handbook of flowering Volume I, CRC Press Inc,Boca Raton,485-491.
    Raaphorst M.2005. Optimal crop cultivation in a closed greenhouse. Report crop growth in the closedgreenhouse with Themato in2004. PPO report41414038,58.
    Ramin A A and Atherton J G.1991a. Manipulation of bolting and flowering in celery (Apium GraveoensL var Dulce).2. Juvenility. Journal of horticultural science,66(6):709-717.
    Ramin A A and Atherton J G.1991b. Manipulation of bolting and flowering in celery (Apium Graveoens Lvar Dulce).3. Effects of photoperiod and irradiance. Journal of horticultural science69(5):861-868.
    Rekowska E and Jurga-Szlempo B.2011. Influence of growing date and plant density on the yield ofendive(Cichorium endivia L.). Acta Sci. Pol.,Hortorun Cultus,10(1):3-21.
    Rijsdijk A A and Vogelezang J V M.2000. Temperature integration on a24-hour base: a more efficientclimate control strategy. Acta Hort.,519:163-169.
    Rousse D R, Martin D Y, Thériault R., Léveilée F and Boily R.2000. Heat recovery in greenhouses: apractical solution. Applied Thermal Engineering,20,687-706.
    Slack G and Hand D W.1983. The effect of day and night temperatures on the growth, development andyield of glasshouse cucumbers. Journal o f Horticultural Science,58,567-573.
    Sonneveld P J and Swinkels G L A M.2005a. Micro-V covering materials for photovoltaic cells. In:20thEuropean photovoltaic solar energy conference and exhibition,6-10June2005.-Barcelona, Spain:WIP-Renewable Energies,2005-p.5BV4.41.
    Sonneveld P J and Swinkels G L A M.2005b. New developments of energy-saving greenhouses with ahigh light transmittance. Acta Hort,691:589-595.
    Souliotis M, Tripanagnostopoulos Y, Kavga A.2006. The Use of Fresnel Lenses to Reduce the VentilationNeeds of Greenhouses. Acta Hort,719:107-113.
    Stanghellini C.1987. Transpiration of greenhouse crops–an aid to climate management.[Ph.D. thesis].The Netherlands:Wageningen Agricultural University.
    Swinkels G L A M; Sonneveld P J, Bot G P A.2001. Improvement of greenhouse insulation withrestricted transmission loss through zigzag covering material. Journal of Agricultural EngineeringResearch,79(1):91-97.
    Swinkels G L A M.2006. Software for calculating the effect of energy saving investments on greenhouses.Acta Hort.,718,227-231.
    Tap R F, Van Willigenburg L G, Van Straten G.1996. Receding horizon optimal control of greenhouseclimate based on the lazy man weather prediction. Proceedings of13th IFAC World Congress, SanFrancisco, USA, vol. B, pp.387-392.
    Tchamitchian M, Martin-Clouaire R, Lagier J, Jeannequin B, Mercier S,2006. SERRISTE: A daily setpoint determination software for glasshouse tomato production. Computers&Electronics inAgriculture,50:25-47.
    Van de Braak N J., Kempkes F L K, Bakker J C, Breuer J J G.1998. Application of simulation models tooptimize the control of thermal screens. Acta Hort.,456:391-398.
    Van der Knijff A., Benninga J, Reijnders C, Nienhuis J.2004. Energy in greenhouse horticulture in TheNetherlands. Developments in the sector and individual enterprises until2004(In Dutch). Report3.06.02, LEI, Den Haag,77pp.
    Van der Ploeg A.2007. Genotypic variation in energy efficiency in greenhouse crops: underlyingphysiological and morphological parameters.[PhD Thesis]. The Netherlands:Wageningen University.
    Van Henten E J.1994. Greenhouse climate management: an optimal control approach,[PhD Thesis]. TheNetherlands: Wageningen Agricultural University.
    Vésine E, Grisey A., Pommier F, Chantry N, Plasenti J., Chassériaux G.2007. Utilisation Rationelle deL’énergie dans les serres. Situation technico-économique en2005et leviers d’action actuels et futures.Rapport complet. Report Département DPIA, Direction DABEE, ADEME Angers, France.134pp.
    Wiebe H J.1990.Vernalization of vegetable crops-a review. Acta Horticulturae,267: Timing of fieldproduction.323-328.
    Yin X Y, Kropff M J, Goudriaan J.1997. Changes in temperature sensitivity of development from sowingto flowering in rice. Crop Science37:1787–1794.
    Yin X Y.2008. Analysis of reciprocal-transfer experiments to estimate the length of phases havingdifferent responses to temperature. Annals of Botany,101:603–611.
    Zhang Y, Mahrer Y, Margolin M.1997.Predicting the microclimate inside a greenhouse: an application of aone-dimensional numerical model in an unheated greenhouse.Agricultural and Forest Meteorology,86:291–297.
    Roberts E H, Summerfield R J, Cooper J P, Ellis R H.1988.Environmental control of flowering in barley(Hordeumvulgare L.).1. Photoperiod-insensitive phases and effects of low-temperature and short-dayvernalization. Annals of Botany62,127–44.
    Roberts E H, Summerfield R J, Muehlbauer F J, Short R W.1986. Flowering in lentil (Lens culinarisMedic): The duration of the photoperiodic inductive phase as a function of accumu lated daylengthabove the critical photoperiod. Annals ofBotany58,235–48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700