船坞虹吸灌水廊道水力特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虹吸廊道灌水系统在我国新建大型及特大型修、造船坞中得到广泛使用,针对工程实践中较为关心的问题,并结合研究现状的分析,论文主要使用理论分析、模型试验和数值模拟的方法对廊道水力特性进行了研究,相应的研究内容和结论可分为以下几部分:
     (1)驼峰负压及虹吸段最优半径的计算方法:对于工程中关心的虹吸廊道驼峰负压问题,在柱坐标下建立虹吸段水流运动方程,推导得出了驼峰断面流速和压强的解析表达式,压强表达式的准确性得到了龙穴1#修船坞虹吸灌水廊道水力模型试验的验证。在压强表达式的基础上提出一种新的虹吸段最优半径计算方法,并计算了几组不同工况下的最优半径,使用数值模拟得出的此半径的驼峰压强分布较已有方法更为均匀,表明离心力得到了合理利用,有利于防止空化的发生。
     (2)虹吸形成时间的模型试验相似条件和理论模型:通过使用π定理对廊道虹吸形成过程进行量纲分析得出,如在几何比尺为λ的模型试验中测得的虹吸形成时间与原型相似,须满足两个要求:①模型试验在压强为1/λ大气压强的减压环境进行;②模型真空泵的有效抽速为原型真空泵的1/λ2.5。因此建立了虹吸形成过程的理论模型,解决了在常压模型试验下无法测定虹吸形成时间的困难。理论模型的可靠性得到了一简化实验的验证,表明其可用于虹吸形成时间的预测。
     (3)虹吸廊道的水力特性数值分析及体型优化:结合大连船舶重工修船2#修船坞双进口体型虹吸灌水廊道模型试验,建立了其水力特性的三维数值计算模型,通过将水位边界转换为压力边界,并在出口边界上使用VOF方法处理,实现了对灌水流量较高精度的预测。避免了以往数值计算须根据模型试验数据给定流量或流速边界的缺陷。通过对相关计算结果分析表明,双廊道体型结构的导墙阻碍了廊道过流能力,且导致右廊道流速过高,应予取消以改善流态和平衡左右廊道的流量。使用数值计算方法对双进口廊道的体型进行了优化,使其流量最大提升了35%,可有效降低灌水时间。
The siphon passage system has been widely adopted in newly built large-size dockyard in recent years. On the basis of current research situation, the theoretical analysis, model test and numerical simulation are all applied to research hydraulic characteristic of siphon passage to solve the engineering problem that we concerned. And the main research content and conclusion are as follow:
     Aiming at hump suction pressure of siphon passage in engineering practice, the motion equation of siphon flow is built in cylindrical coordinates system and analytic expression of velocity and pressure at hump section were derived. And it is proved that the pressure expression was consistent with experiment data from the model test for siphon passage system of1#Longxue dockyard. Based on the pressure expression, a new calculation method of the optimal radius at siphon section was proposed, and several groups of the optimal radius at different flow rate and hump pressure are calculated with the new method, whose results of hump pressure is more homogeneous compared with that of predecessor. It is indicated that the centrifugal force is well utilized and it is good to prevent the occurrence of cavitations.
     The dimensional analysis for siphon course in hydraulic model test is made with π theorem, and it is drawn that the similitude between siphon formation time in model test and prototype can be existed unless the follow conditions must be satisfied:(l) The model text must be in depresuring environment with1/λ of atmospheric pressure (2) The effective pumping speed of model text must be1/λ2.5of prototype. It is difficult to realize the depressurizing environment in model text.The theoretical model for siphon course whose reliability is demonstrated by simplified experiment can be used to forecast siphon formation time.
     With the hydraulic model test of siphon passage in2#dockyard of Dalianshipbuilding industry, the three-dimensional numerical simulation model wasbuilt up to study the hydraulic characteristics of siphon passage system,Bychanging water level boundary into pressure boundary and disposing the exitboundary with VOF, it can be realized that the covering volume is forecastedwith high precision and the defect that flow rate or velocity boundary must beset on basis of model test data in past numerical calculation can be avoided.Based on the calculation results, it is drawn that the double passage structure ofthe guide wall blocked conveyance capacity of passage and lead to the high flowvelocity of the right passage. It should be removed to improve the flow conditionand balance the flow rate of left and right passage and the structure of doubleinlet siphon passage are optimized, which lead to the maximum flow rate isincreased by35%and can effectively reduce the irrigation time.
引文
[1]国务院第二次全国经济普查领导小组办公室,中国船舶工业发展研究报告,北京:中国统计出版社,2012,5~10.
    [2]赵莹,我国船舶工业企业国际化发展战略研究[硕士学位论文],哈尔滨工程大学,2011,1~2.
    [3]郭培军,中国船舶产业现状分析及发展思索,中国远洋航务,2008(1):68~69.
    [4]茺谷俊司,大型船坞的结构设计和施工,北京:科学出版社,1978.1~3
    [5] Β И格里高里耶夫,Д В马尔琴科,Г В西马科夫等,修造船干船坞(设计与施工),北京:人民交通出版社,1985.2~16.
    [6] П Ф库契良文柯,Ю П伊万诺夫,干船坞,南京:河海大学出版社,1989.3~8.
    [7]孟昭源,我国大中型干船坞工艺现状及存在问题,水运工程,1983,8(7):15~20.
    [8]邵天骏,海运需求推动船坞建造,航海,2007(7):12~13.
    [9]周之峰,我国最大的船坞—上海外高桥造船基地船坞施工技术,建筑施工,2002(1):7~10.
    [10] Worldyards,Shipbuilding Capacity-a sidebar on Chinese Offshore Bases,2010,1~5.
    [11]杨浩俊,船坞灌水技术,水运工程,2009(8):108~114.
    [12]中华人民共和国交通部,JTJ253-87,干船坞坞门及灌水排水系统设计规范.
    [13]王常生,陈秀玉,干船坞虹吸式输水廊道驼峰负压的特性,水运工程,1985,10(10):75~87.
    [14]习和忠,王常生,陈秀玉,虹吸式输水管道驼峰断面上压强分布的计算,水运工程,1987,12(7):8~12.
    [15]吴达开,李文玉,船坞排、灌水系统试验中若干水力现象的分析,中国港湾建设,1997,17(3),20~27.
    [16]白玉川,山海关船厂15万吨修船坞灌水与坞门模型实验研究报告,1996.
    [17]白玉川,张效先,山海关船厂15万吨级修船坞虹吸灌水水力模型试验研究,船舶力学,2003,8(4):36~49.
    [18]白玉川,青岛北海船厂海西湾造修船基地30万吨船坞灌水和坞门水力模型试验报告,2004.
    [19]白玉川,深圳招商局友联船厂30万吨级修船坞廊道灌水水力模型试验报告,2006.
    [20]张效先,杨建华,白玉川,修、造船坞虹吸灌水流道的设计方法.天津大学学报,2006,39(2):204-208.
    [21]白玉川,中船龙穴造船基地1#、2#修船坞虹吸灌水水力模型试验报告,2007.
    [22]白玉川,大连船舶重工1#、2#修船坞虹吸灌水水力模型试验报告,2007.
    [23]马金辉,大型船坞流道水力特性及坞室水波的数值模拟研究[硕士学位论文],天津大学,2006.
    [24]赵鹏,船坞虹吸灌水廊道水力特性的数值模拟研究[硕士学位论文],天津大学,2009.
    [25]赵鹏,白玉川,船坞虹吸灌水廊道水力特性的数值模拟研究.天津大学学报,2011,44(10):920-924.
    [26]赵鹏,白玉川.基于数值模拟的船坞虹吸灌水廊道流量系数计算.中国造船,2012,53(1):123-129.
    [27]张瑞凯,李云,船闸水力学模型缩尺影响及其校正方法的研究—兼对三峡多级船闸中间级原型流量系数预测.水力发电,1991(8):52-54.
    [28]周华兴,船闸集中输水系统复合阻力系数的试验研究.水运工程,1992,17(4):48-54.
    [29]邹炳生,王召兵,双层格栅消能室在中水头短廊道输水船闸中的应用.水运工程,2002,27(8):54-62.
    [30]戴会超,王玲玲,三峡永久船闸阀门段廊道水力学数值模拟.水力发电学报,2005,24(3):88-92.
    [31]陈文学,郭军,刘继广等,三峡永久船闸输水廊道阻力特性研究.中国水利学会第四届青年科技论坛论文集》,2008,338-344.
    [32]杨忠超,陈明栋,杨斌等,高水头船闸闸室消能工消能效果实验研究,.重庆交通大学学报(自然科学版),2010,29(3):461-465.
    [33]李百齐,虹吸管出水断流装置的流体力学相似分析,船舶力学,2003,7(5),39~44.
    [34]夏毓常,张黎明,水工水力学原型观测与模型试验,北京:中国电力出版社,1999.8~12.
    [35]徐挺,相似理论与模型试验,北京:中国农业机械出版社,1982.29~72.
    [36]王晓东,巴德纯,张世伟等,真空技术,北京:冶金工业出版社,2006.82~85.
    [37]冯建刚,成斌,王晓升,基于π定理的虹吸式出水管原型和模型虹吸形成时间的相似分析,清华大学学报(自然科学版),2011,51(4):503-507.
    [38]刘继广,水工减压模型试验理论的探讨,水利水电技术,2007,38(11):66~70.
    [39]严振,论减压试验的相似性,水利学报,1983(3):31~40.
    [40]彭小娟,涂星火,罗琬华,牛顿第二定律以及变质量问题,物理教学探讨,2006,24(1):37~38
    [41] Kogaki T,Kobayashi T,Taniguchi N,Large eddy simulation of flow arounda rectangular cylinder. Fluid Dynamics Research,1997,20:11~24.
    [42] Jordan S A,Ragab S A,A large-eddy simulation of the near wake of acircular cylinder. ASME. J Fluids Engineering,1998,120:243~252.
    [43]陈懋章,粘性流体动力学基础,北京:高等教育出版社,2002.242~288.
    [44]章梓雄,董曾南,粘性流体力学,北京:清华大学出版社,1998.243~252.
    [45] Kolmogorov A N,The local structure of turbulence in incompressibleviscous fluids at very large Reynolds numbers. Dokl. Akad. Nauk.SSSR.1941,30:301~305.Reprinted in1991:Proc. R. Soc. Lond. A,434,9~13.
    [46] PY Chou,On velocity correlations and the solutions of the equations ofturbulent fluctuation. Quart. Appl. Math,1945,1:33~54.
    [47] Davydov B I,On statistical dynamics of an incompressible turbulent fluid.Dokl. Akad. Nauk. SSSR,1961,6:10~32.
    [48] F H Harlow,P I Nakayama,Transport of turbulence energy decay rate.Report LA-3845,Los Alamos Science Lab,University of California.
    [49] Launder B E,Spalding D B,The numerical computation of turbulent flows,Comp. Meth. Appl. Mech. Engineering,1974,3:269~289.
    [50] V. Yakhot,S. A. Orszag,S. Thangam,Development of turbulence modelsfor shear flows by a double expansion technique,Physics of Fluids A [J].1992,4(7):1510-1520.
    [51]郑亚军,王凯,雷兴春等,基于RNG湍流模型的泵站进水流道三维数值模拟[J].水电能源科学,2008,26(6):123-125.
    [52]成立,刘超,汤方平等,基于RNG紊流模型的立式轴流泵站三维流动数值模拟及性能预测[J].机械工程学报,2009,45(3):252-257.
    [53]补舒棋,唐新军,三种湍流模型在阶梯溢流坝数值模拟中的比较.人民黄河,2010,32(7):252-257.
    [54]叶茂,伍超,杨朝晖等,进水口前立轴旋涡的数值模拟及消涡措施分析.四川大学学报(工程科学版),2007,39(2):36-40.
    [55]吴杰康,夏明月,侧向进水口立轴旋涡数值模拟.人民黄河,2012,34(1):139-141.
    [56]党媛媛,韩昌海,进水口漩涡问题研究综述,水利水电科技进展,2009,29(1):90~94
    [57]何耘,水泵进水池旋涡研究的主要进展,水力发电学报,2004,23(5):92~96.
    [58] Rainer Ansorge. Mathematical Models of Fluiddynamics, Berlin:WILEY-VCH GmbH&Co.KGaA,2003.151~176.
    [59]高传昌,刘新阳,石礼文等.泵站前池与进水池整流方案数值模拟,水力发电学报,2011,30(2):54-59.
    [60]徐宇,吴玉林,王琳,水泵进水池内紊流及涡旋的数值模拟,工程热物理学报,2011,22(6):33-36.
    [61]陈云良,伍超,叶茂等,水电站进水口水流流态的研究,水动力学研究与进展,2005,20(3):340-345.
    [62]罗树焜,李连侠,褥勇伸等.布西水电站泄洪洞阶梯消能布置方案数值模拟研究,水力发电学报,2010,29(1):50-56.
    [63]李玲,陈永灿,李永红,三维VOF模型及其在溢洪道水流计算中的应用,水力发电学报,2007,26(2):83-87.
    [64] C.W.Hirt,B.D.Nichols,Volume of fluid (VOF) method for the dynamicsof free boundaries.1981(39):201-205.
    [65] John D.Anderson, Computational Fluid Dynamics: The Basics withApplications,New York:McGraw-Hill,1995.37~93.
    [66] P K Khosla,S G Rubin,A diagonally dominant second-order accurate
    [67] cDimoepmmlipiclriedt xz ischeme(finite difference method),Comput. Fluids,1974,2:207~209.dco,mMainusz,afeInritj.a J.S N,umFienri.t eM evtohloudms eE nmgergth,od19f9o4r, st3r7e:ss3a7n5a1l~ys3i7s66in.
    [68]帕坦卡S V,传热与流动的数值计算,北京:科学出版社,1989.49~53.
    [69] Ferziger J H,Peric M,Computational Methods for Fluid Dynamics,3rdedition,Berlin:Springer,2002.230~252.
    [70] Patankar S V,Spalding D B,A calculation procedure for heat, mass andmomentum transfer in three-dimensional parabolic flows,Int. J. Heat MassTransfer,1972,15:1787~1806.
    [71] Peric M,Kessler R,Scheuerer G,Comparison of finite-volume numericalmethods with staggered and colocated grids,Computers&fluids,1988,16:389~403.
    [72] Rhie C M,Chow WL,Numerical study of the turbulent flow past an airfoilwith trailing edge separation,Computers&fluids,1983,21:1525~1532.
    [73]陶文铨,数值传热学,第2版,西安:西安交通大学出版社,2001.353~354.
    [74]贺昌林,余挺,张建民等,长泄洪洞模型糙率修正方法研究,四川大学学报(工程科学版),2007,39(6):26-29.
    [75]杨忠超,邓军,杨永全等,多股多层水平淹没射流数值模拟研究.水利学报,2004,35(5):31-38.
    [76]戴光清,杨永全,吴持恭,水垫塘多层淹没射流数值模拟及消能研究,水利学报,1996(1):13~19.
    [77]牛争鸣,孙静,程庆迎,竖井进流水平旋转内消能泄水道流速分布与消能率的试验研究.水力发电学报,2003,7(1):61-69.
    [78]贺益英,赵懿珺,孙淑卿等,弯管局部阻力系数的试验研究,水利学报,2003,34(11),54~58.
    [79]金勇,丁冰洁,吕文舫等,水力摩阻手册,北京:水力水电规划设计院,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700