若干光电离质谱新技术的发展与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同步辐射光电离质谱技术(SVUV-PIMS)由于具有“软”电离的特性,己经在燃烧和能源研究领域取得了一系列创新性的成果。但目前国内外可配备于SVUV-PIMS技术的质谱仪类型品种单一,且性能不佳(如灵敏度和质量分辨等),因而在研究更为复杂的课题,如石油组学分析以及煤和生物质热解机理等难点问题上均受到较大的限制。而商用质谱仪经过多年的发展,现己种类齐全、性能卓越。如能将这些成熟的商用质谱技术和先进的同步辐射光电离技术结合,便可同时发挥二者的优势,进而给复杂体系样品的研究提供新的方法。然而,由于同步辐射装置的复杂性,目前几乎没有商用的质谱仪可以直接与之相匹配。本论文创新性地将同步辐射光电离技术和商用质谱仪结合起来,并在此基础上发展出两套可用于石油、煤和生物质等复杂体系样品分析的新装置:激光诱导声波解析/同步辐射真空紫外光电离质谱(LIAD/SVUV-PIMS)和固体热解/同步辐射真空紫外光电离质谱(Solid-Py/SVUV-PIMS)。第二和第三章内容将详细介绍这两套装置的设计、安装和调试的过程以及最终的实验结果。此外,为了更好地在其它普通实验室推广和普及光电离质谱技术,本论文在第四章中还简要介绍了基于放电灯的真空紫外光电离质谱的相关研制工作和初步验证性实验结果。
     论文第二章主要介绍LIAD/SVUV-PIMS装置,其主要由自行设计加工的解析/电离腔以及改制后的三重四极杆一飞行时间质谱仪(QqTOF-MS)组成。改制QqTOF-MS的目的为了同时引入激光和SVUV光,并分别作为样品解析源和质谱电离源。样品分析过程如下:首先将待测的固/液体样品溶入相应的溶剂,溶解后的溶液涂于一块钛膜表面,风干后通过直线导入器送入解析/电离腔。红外激光(1064nm)从钛膜背面对样品进行解析,产生的气态分子由能量可调的SVUV光电离,电离产生的离子最终由QqTOF-MS检测。此技术显著的特点是可以将激光与样品、解析与电离从空间上彻底分开,因而同时具备“软”解析和“软”电离的特性。本论文中,LIAD/SVUV-PIMS装置被应用于易碎、热稳定性差以及具有复杂组分的石油等样品的质谱分析,并展示出了良好的性能。
     论文第三章介绍低压和常压两种类型的Solid-Py/SVUV-PIMS装置,该装置主要由自行设计加工的热解腔、电离腔以及改制后QqTOF-MS组成。低压热解装置可以尽可能地避免热解过程中二次反应的发生,有助于热解机理的研究;常压热解更接近实际应用中的热解过程。因而两套装置均有其应用的范围和作用。和低压装置相比,常压热解装置在热解腔和电离腔之间采用了内径更小的锥形漏斗,且电离腔新增了抽速为100L/s的分子泵机组用来维持真空。实验时,在热解腔中产生的气态产物通过推斥板或第一级锥形漏斗进入到电离区,并与svuv光垂直相交,中性分子被电离成离子,形成的离子通过第二级锥形漏斗进入QqTOF-MS中检测。本论文中,Solid-Py/SVUV-PIMS装置被应用于煤以及纤维素、木质素、芒草、橡树等多种生物质的热解产物研究。实验结果表明,Solid-Py/SVUV-PIMS装置可以完成其他常规仪器无法完成的工作,如电离过程中控制碎片离子的产生、区分部分同分异构体以及在线检测活性物种(如自由基)等。
     论文第四章介绍基于放电灯的真空紫外光电离质谱,我们将自行研制的射频放电灯结合到商用质谱仪中作为光电离源。通过测试发现,我们研制的射频放电灯,无论充入何种放电气体,其产生的VUV光通量均高于1014光子/秒。因此,本论文将此放电灯配备到商用的QqTOF-MS和GC-MS中,并完成了一些初步的验证性实验研究。结果表明,此放电灯产生的VUV光通量完全可以满足各类质谱仪的应用需求,但同时我们也发现此套装置的缺陷,因而本论文在第四章最后一节中提出建设一套基于放电灯的可调谐光源系统的设想和研制方案。
     此外,本论文在各章小结中均客观讨论了研制工作中不完善的地方,并提出今后改进的方法。LIAD/SVUV-PIMS装置在定性重油复杂体系组分时,所使用的QqTOF-MS仍然存在着质量精度不够的问题,需要配备更高质量精度的质谱仪;Solid-Py/SVUV-PIMS装置难以做到精确定量,无法开展固体热解动力学方面的研究工作,需要结合具有精确定量能力的热重技术;基于放电灯的真空紫外光电离质谱装置由于放电灯产生的VUV光发散度大且谱带较宽,因而应用范围受到限制,需要配备一套VUV光单色化装置一光栅单色仪,以提高放电灯的性能。完善和改进的工作需要在以后继续跟进。
A series of innovative progesses have been made in the fields of combustion and energy studies with the help of a "soft" ionization technique, i.e. synchrotron photoionization mass spectrometry (SVUV-PIMS) technique. However, poor performances (such as sensitivity, mass resolution etc.) of available mass spectrometers that can be applied for the SVUV-PIMS technique limit their applications, especially for complex research subjects, e.g. components analysis of petroleum and the pyrolysis mechanism of coal and biomass. Furthermore, very few types of mass spectrometers can be coupled to SVUV-PIMS technique. On the contrary, commercial mass spectrometers have many types with excellent performance after years of development. If the commercial mass spectrometers with mature techniques can be combined with the advanced SVUV-PI method, the advantages of both techniques will make it possible to study complex system more deeply and more widely than ever. However, it is hard to find a commercial mass spectrometer that can be installed directly into the synchrotron radiation facility due to its complexity. In this dissertation, we creatively combined the SVUV-PI technique with commercial mass spectrometers to develop two new apparatus for the anslysis of complex system, which can be named laser-induced acoustic desorption/synchrotron vacuum ultraviolet photoionization mass spectrometer (LIAD/SVUV-PIMS) and solid-pyrolysis/synchrotron vacuum ultraviolet photoionization mass spectrometer (Solid-Py/SVUV-PIMS), respectively. The processes of design, assembly and debugging of these two apparatus as well as their applications will be detailed in Chapters2and3. Morever, in order to better extend and popularize the PIMS technique in other common laboratories, the development of a discharge lamp based VUV-PIMS technique and some primary experimental results will be described in Chapter4.
     As described in Chapter2, LIAD/SVUV-PIMS apparatus mainly consisted of a home-made desorption/ionization chamber and a modified triple quadrupole time-of-flight mass spectrometer (QqTOF-MS). The aim of the modification is to introduce laser for samples desorption and SVUV light for ionization in QqTOF-MS. The process of the sample analysis is as follows:solid or liquid samples were firstly dissolved in appropriate solvent and the solution was deposited onto a Ti foil surface, which was introduced into the desorption/ionization-chamber by a linear driver after drying in air. Solid samples were desorpted by the infrared laser (1064nm) on the backside of Ti foil and the gaseous molecules were ionized by the SVUV light. Finally, the produced ions were analyzed by QqTOF-MS. The benefit of this technique is completely separating the laser and sample as well as the processes between desorption and ionization, so it can be qualified as "soft" desorption and "soft" ionization. In this dissertation, the LIAD/SVUV-PIMS apparatus performed well in the mass spectrometric analysis of fragile, thermal-unstable and petroleum samples.
     There are two types of Solid-Py/SVUV-PIMS apparatus, which can be worked at low and atmospheric pressure, respectively, which are decsribed in Chapter3. Both of them consisted of home-made pyrolysis and ionization chamber as well as QqTOF-MS. The low-pressure pyrolysis apparatus can avoid secondary reactions in the process of pyrolysis as much as possible, so it is benefit for studying pyrolysis mechanisms, while the atmospheric pyrolysis apparatus is closer to the actual pyrolysis condition. In a word, each types of apparatus has its own functions and applications. The atmospheric pyrolysis apparatus ultilized the skimmer with smaller diameter between pyrolysis and ionization chambers and added a turbo-molecular pump with the speed of100L/s compared to the low pressure one. During the experiments, gaseous species produced in the pyrolysis chamber passed through the first skimmer and entered the photoionizatin chamber and then intacted with SVUV light to generate ions, which were subsequently guided into QqTOF-MS to be analyzed. In this dissertation, the Solid-Py/SVUV-PIMS apparatus were applied for the pyrolytic study of various biomasses, such as cellulose, lignin, oak, and miscanthus. The final results indicate that Solid-Py/SVUV-PIMS are able to accomplish what other common apparatus could not achieve, for instance, controlling fragment ions, discriminating isomers, on-line detecting active speices (such as radicals) and so on.
     In Chapter4, we introduce a home-made radio frequency (RF) discharge lamp combining with commercial mass spectrometers as the ionization source in discharge lamp based VUV-PIMS apparatus. It is found that VUV photon flux produced by our RF discharge lamp is higher than1014photons/s regardless of which type of discharge gas was used. Therefore, we equipped the commercial QqTOF-MS and GC-MS with this VUV lamp for some testing experiments, primary results indicate that the performances of VUV lamp can meet the application requirements. However, some defects were found in the present RF VUV lamp, consequently a basic concept and plan for developing a discharge lamp based tunable VUV light source were proposed in the dissertation.
     Furthermore, there is a room to improve our developing apparatus and techniques, which were discussed objectively in the summary of each chapter including the future improvment methods. For the LIAD/SVUV-PIMS apparatus, the mass resolution of QqTOF-MS is still unsatisfying when we used it to characterize the components of hervy oils. Mass spectrometers with higher mass resolution are urgently needed for LIAD/SVUV-PIMS apparatus. For the Solid-Py/SVUV-PIMS apparatus, accurate quantitation and dynamic study of solid sample pyrolysis are hard to be achieved, the combination between Solid-Py/SVUV-PIMS and thermogravimity are needed in the future work. The application of discharge lamp based VUV-PIMS apparatus is limited in high divergence and broad band of VUV light. A monochromater with grating is needed for improving the performance of RF VUV lamp. In general, further improvements needs to be done in the future.
引文
[1]Aebersold R; Mann M,2003[J]. Nature,422:198-207.
    [2]Pico Y, Font G, Ruiz MJ, et al,2006[J]. Mass Spectrom Rev.,25:917-960.
    [3]Dayton DC, French RJ; Milne TA,1995[J]. Energy Fuel,9:855-865.
    [4]Buch A, Glavin DP, Sternberg R, et al.,2006[J]. Planet Space Sci.,54:1592-1599.
    [5]Daughton CG,2001 [J]. J Am Soc Mass Spectrom.,12:1067-1076.
    [6]Dempster AJ,1918[J]. Phys. Rev.,11:316-325.
    [7]Takats Z, Cotte-Rodriguez I, Talaty N, et al.,2005[J]. Chem. Commun.,1950-1952.
    [8]Takats Z, Wiseman JM, Gologan B, et al.,2004[J]. Science,306:471-473.
    [9]Cody RB,2009[J]. Anal. Chem.,81:1101-1107.
    [10]Pierce CY, Barr JR, Cody RB, et al.,2007[J]. Chem. Commun.,807-809.
    [11]McEwen CN, McKay RG; Larsen BS,2005[J]. Anal. Chem.,77:7826-7831.
    [12]McEwen C; Gutteridge S,2007[J]. J Am Soc Mass Spectrom.,18:1274-1278.
    [13]Shiea J, Huang MZ, HSu HJ, et al.,2005[J]. Rapid. Commun. Mass Spectrom,19: 3701-3704.
    [14]Peng Ⅸ, Shiea J, Loo RRO, et al.,2007[J]. Rapid Commun. Mass Spectrom,21: 2541-2546.
    [15]Coon JJ; Harrison WW,2002[J]. Anal. Chem.,74:5600-5605.
    [16]Coon JJ, Steele HA, Laipis PJ, et al.,2002[J]. J. Mass Spectrom,37:1163-1167.
    [17]Sampson JS, Hawkridge AM; Muddiman DC,2006[J]. J. Am. Soc. Mass Spectrom,17: 1712-1716.
    [18]Chen HW, Venter A; Cooks RG,2006[J]. Chem. Commun.,2042-2044.
    [19]Chen HW, Wortmann A, Zhang WH, et al.,2007[J]. Angew. Chem. Int. Edit.,46: 580-583.
    [20]Chen HW; Zenobi R,2007[J]. Chimia,61:843-843.
    [21]Ratcliffe LV, Rutten FJM, Barrett DA, et al.,2007[J]. Anal. Chem.,79:6094-6101.
    [22]Na N, Zhao MX, Zhang SC, et al.,2007[J]. J. Am. Soc. Mass Spectrom,18: 1859-1862.
    [23]Na N, Zhang C, Zhao MX, et al.,2007[J]. J. Mass Spectrom,42:1079-1085.
    [24]Chen H, Yang S, Wortmann A, et al.,2007[J]. Angew. Chem. Int. Edit.,46:7591-7594.
    [25]Chen HW, Wortmann A; Zenobi R,2007[J]. J. Mass Spectrom,42:1123-1135.
    [26]Nemes P; Vertes A,2007[J]. Anal. Chem.,79:8098-8106.
    [27]Nemes P, Barton AA, Li Y, et al.,2008[J]. Anal. Chem.,80:4575-4582.
    [28]Nemes P, Barton AA; Vertes A,2009[J]. Anal. Chem.,81:6668-6675.
    [29]Haapala M, Pol J, Saarela V, et al.,2007[J]. Anal. Chem.,79:7867-7872.
    [30]Luosujarvi L, Arvola V, Haapala M, et al.,2008[J]. Anal. Chem.,80:7460-7466.
    [31]Afeefy HYL, J.F.; Stein, S.E., Neutral Thermochemical Data. NIST Standard Reference Database Number 69:In NIST Chemistry WebBook,2012.
    [32]Munson MSB; Field FH,1966[J]. J. Am. Chem. Soc.,88:2621-&.
    [33]Fenn JB, Mann M, Meng CK, et al.,1989[J]. Science,246:64-71.
    [34]Fenn JB, Mann M, Meng CK, et al.,1990[J]. Mass Spectrom Rev.,9:31-10.
    [35]Smith RD, Loo JA, Edmonds CG, et al.,1990[J]. Anal. Chem.,62:882-899.
    [36]Karas M, Bahr U; Giessmann U,1991[J]. Mass Spectrom Rev.,10:335-357.
    [37]Hillenkamp F, Karas M, Beavis RC, et al.,1991[J]. Anal. Chem.,63:A1193-A1202.
    [38]Harvey DJ,1999[J]. Mass Spectrom Rev.,18:349-450.
    [39]Kussmann M, Nordhoff E, RahbekNielsen H, et al.,1997[J]. J. Mass Spectrom,32: 593-601.
    [40]Robb DB, Covey TR; Bruins AP,2000[J]. Anal. Chem.,72:3653-3659.
    [41]Raffaelli A; Saba A,2003[J]. Mass Spectrom Rev.,22:318-331.
    [42]Hanold KA, Fischer SM, Cormia PH, et al.,2004[J]. Anal. Chem.,76:2842-2851.
    [43]Boesl U, Neusser HJ; Schlag EW,1978[J]. Z Naturforsch A,33:1546-1548.
    [44]Boesl U,1991 [J]. J. Phys. Chem-Us,95:2949-2962.
    [45]Boesl U, Neusser HJ; Schlag EW,1980[J]. J. Chem Phys.,72:4327-4333.
    [46]Boesl U, Weinkauf R, Weickhrdt C, et al.,1994[J]. Int. J. Mass. Spectrom,131: 87-124.
    [47]Pallix JB, Schuhle U, Becker CH, et al.,1989[J]. Anal. Chem.,61:805-811.
    [48]Schuhle U, Pallix JB; Becker CH,1988[J]. J. Am. Chem Soc.,110:2323-2324.
    [49]Schuhle U, Pallix JB; Becker CH,1988[J]. J. Vac. Sci. Technol. A,6:936-940.
    [50]Vanbramer SE; Johnston MV,1990[J]. J. Am. Soc. Mass Spectrom,1:419-426.
    [51]Vanbramer SE; Johnston MV,1992[J]. Appl. Spectrosc,46:255-261.
    [52]Lykke KR, Parker DH, Wurz P, et al.,1992[J]. Anal. Chem.,64:2797-2803.
    [53]Kornienko O, Ada ET, Tinka J, et al.,1998[J]. Anal. Chera,70:1208-1213.
    [54]Trevor JL, Hanley L; Lykke KR,1997[J]. Rapid Commun. Mass Spectrom,11: 587-589.
    [55]Trevor JL, Mencer DE, Lykke KR, et al.,1997[J]. Anal. Chem.,69:4331-4338.
    [56]Cao L, Muhlberger F, Adam T, et al.,2003[J]. Anal. Chem.,75:5639-5645.
    [57]Mitschke S, Welthagen W; Zimmermann R,2006[J]. Anal. Chem.,78:6364-6375.
    [58]Welthagen W, Mitschke S, Muhlberger F, et al.,2007[J]. J. Chromatogr. A,1150: 54-61.
    [59]Zimmermann R,2005[J]. Anal. Bioanal. Chem.,381:57-60.
    [60]Mullen C, Irwin A, Pond BV, et al.,2006[J]. Anal. Chem.,78:3807-3814.
    [61]Zandee L; Bernstein RB,1979[J]. J. Chem. Phys.,71:1359-1371.
    [62]Zandee L; Bernstein RB,1979[J]. J. Chem. Phys.,70:2574-2575.
    [63]Zandee L; Bernstein RB,1979[J]. B. Am. Phys. Soc.,24:57-57.
    [64]Short LC, Cai SS; Syage JA,2007[J]. J. Am. Soc. Mass Spectrom,18:589-599.
    [65]Syage JA, Hanning-Lee MA; Hanold KA,2000[J]. Field Anal. Chem. Tech.,4: 204-215.
    [66]Kuribayashi S, Yamakoshi H, Danno M, et al.,2005[J]. Anal. Chem.,77:1007-1012.
    [67]Tsuruga S, Suzuki T, Takatsudo Y, et al.,2007[J]. Environ. Sci. Technol.,41: 3684-3688.
    [68]Gao SK, Zhang Y, Li Y, et al.,2008[J]. Int. J. Mass Spectrom.,274:64-69.
    [69]Shu JN, Gao SK; Li Y,2008[J]. Aerosol. Sci. Tech.,42:110-113.
    [70]Northway MJ, Jayne JT, Toohey DW, et al.,2007[J]. Aerosol. Sci. Tech.,41:828-839.
    [71]Hua L, Wu QH, Hou KY, et al.,2011[J]. Anal. Chem.,83:5309-5316.
    [72]Wu QH, Hua L, Hou KY, et al.,2010[J]. Int. J. Mass Spectrom.,295:60-64.
    [73]Muhlberger F, Wieser J, Ulrich A, et al.,2002[J]. Anal. Chem.,74:3790-3801.
    [74]Saraji-Bozorgzad MR, Eschner M, Groeger TM, et al.,2010[J]. Anal. Chem.,82: 9644-9653.
    [75]Cool TA, McIlroy A, Qi F, et al.,2005[J]. Rev. Sci. Instrum.,76.
    [76]Taatjes CA, Hansen N, McIlroy A, et al.,2005[J]. Science,308:1887-1889.
    [77]Li YY; Qi F,2010[J]. Accounts Chem. Res.,43:68-78.
    [78]Pan Y, Zhang LD, Guo HJ, et al.,2010[J]. Int. Rev. Phys. Chem.,29:369-401.
    [79]Qi F,2013 [J]. P. Combust. Inst.,34:33-63.
    [1]Campbell JL, Crawford KE; Kenttamaa HI,2004[J]. Anal. Chem.,76:959-963.
    [2]Campbell JL, Fiddler MN, Crawford KE, et al.,2005[J]. Anal. Chem.,77:4020-4026.
    [3]Shea RC, Habicht SC, Vaughn WE, et al.,2007[J]. Anal. Chem.,79:2688-2694.
    [4]Golovlev W, Allman SL, Garrett WR, et al.,1997[J]. Appl. Phys. Lett.,71:852-854.
    [5]Lindner B,1991[J]. Int. J. Mass Spectrom.,103:203-218.
    [6]Shea RC, Petzold CJ, Liu JA, et al.,2007[J]. Anal. Chem.,79:1825-1832.
    [7]Lindner B; Seydel U,1985[J]. Anal. Chem.,57:895-899.
    [8]Perez J, Ramirez-Arizmendi LE, Petzold CJ, et al.,2000[J]. Int. J. Mass Spectrom.,198: 173-188.
    [9]Crawford KE, Campbell JL, Fiddler MN, et al.,2005[J]. Anal. Chem.,77:7916-7923.
    [10]Jin ZC, Daiya S; Kenttamaa HI,2011 [J]. Int. J. Mass Spectrom.,301:234-239.
    [11]Habicht SC, Amundson LM, Duan PG, et al.,2010[J]. Anal. Chem.,82:608-614.
    [12]Duan P, Qian K, Habicht SC, et al.,2008[J]. Anal. Chem.,80:1847-1853.
    [13]Nyadong L, McKenna AM et al.,2011[J]. Anal. Chem.,83:1616-1623.
    [14]Pinkston DS, Duan P, Gallardo VA, et al.,2009[J]. Energy Fuel,23:5564-5570.
    [15]Duan PG, Fu MK, Pinkston DS, et al.,2007[J]. J. Am. Chem. Soc.,129:9266-+.
    [16]Petzold CJ, Ramirez-Arizmendi LE, Heidbrink JL, et al.,2002[J]. J. Am. Soc. Mass Spectrom.,13:192-194.
    [17]Cheng SC, Cheng TL, Chang HC, et al.,2009[J]. Anal. Chem.,81:868-874.
    [18]Cheng SC, Huang MZ; Shiea J,2009[J]. Anal. Chem.,81:9274-9281.
    [19]Zinovev AV, Veryovkin IV, Moore JF, et al.,2007[J]. Anal. Chem.,79:8232-8241.
    [20]Gao JS, Borton DJ, Owen BC, et al.,2011[J]. J. Am. Soc. Mass Spectrom.,22: 531-538.
    [21]Guo HJ, Zhang LD, Deng L, et al.,2010[J]. J. Phys. Chem. A,114:3411-3417.
    [22]Pan Y, Zhang L, Guo H, et al.,2010[J]. Int. Rev. Phys. Chem.,29:369-401.
    [23]Zhou Z, Guo H; Qi F,2011 [J]. TrAC-Trend Anal. Chem.,30:1400-1409.
    [24]Taatjes CA, Hansen N, Osborn DL, et al.,2008[J]. Phys. Chem. Chem. Phys.,10: 20-34.
    [25]Jia LY, Weng JJ, Zhou ZY, et al.,2012[J]. Rev. Sci. Instrum.,83.
    [26]Wang J, Li YY, Tian ZY, et al.,2008[J]. Rev. Sci. Instrum.,79.
    [27]Shea RC, Petzold CJ, Campbell JL, et al.,2006[J]. Anal. Chem.,78:6133-6139.
    [28]Chernushevich IV, Loboda AV,2001 [J]. J. Mass Spectrom.,36:849-865.
    [29]Heimark L, Shipkova P, Greene J, et al.,2002[J]. J. Mass Spectrom.,37:265-269.
    [30]TohTH, Prior BA; van der Merwe MJ,2001[J]. Anal. Biochem.,288:44-51.
    [31]Durmus M, Yesilot S, Cosut B, et al.,2010[J]. Synthetic. Metals,160:436-444.
    [32]Lau RLC, Jiang JZ, Ng DKP, et al,1997[J]. J. Am. Soc. Mass Spectrom.,8:161-169.
    [33]Pan Y, Zhang TC, Hong X, et al.,2008[J]. Rapid. Commun. Mass Spectrom.,22: 1619-1623.
    [34]Cook NC; Samman S,1996[J]. J. Nutr. Biochem.,7:66-76.
    [35]杨子娟,向兰,邢杰等.2009[J].现代药物与临床,24:73-81.
    [36]钟飞,蒋晓慧,田敏卿等.2006[J].海南师范学院学报,19:352-358.
    [37]Zhang LS; Tarn JP,1997[J]. J. Am. Chem. Soc,119:2363-2370.
    [38]Runyon ST; Puglisi JD,2003[J]. J. Am. Chem. Soc.,125:15704-15705.
    [39]Rodgers RP; McKenna AM,2011 [J]. Anal. Chem.,83:4665-4687.
    [40]Corbett LW,1969[J]. Anal. Chem.,41:576-&.
    [41]Guo WY, Bi YC, Guo HJ, et al.,2008[J]. Rapid Commun. Mass Spectrom.,22: 4025-4028.
    [42]Gallegos EJ, Green JW, Lindeman LP, et al.,1967[J]. Anal. Chem.,39:1833-&.
    [43]Mead WL,1968[J]. Anal. Chem.,40:743-&.
    [44]Cho YJ, Na JG, Nho NS, et al.,2012[J]. Energy Fuel,26:2558-2565.
    [45]向柠,王剑,惠友权等.2010[J].化学工业与工程技术,31:25-30.
    [46]Qian KN; Dechert GJ,2002[J]. Anal Chem,74:3977-3983.
    [47]Purcell JM, Hendrickson CL, Rodgers RP, et al.,2006[J]. Anal. Chem,78:5906-5912.
    [48]Afeefy HYL, J.F.; Stein, S.E., Neutral Thermochemical Data. NIST Standard Reference Database Number 69:In NIST Chemistry WebBook,2012.
    [49]Hortal AR, Martinez-Haya B, Lobato MD, et al.,2006[J]. J. Mass Spectrom.,41: 960-968.
    [50]Tanaka R, Sato S, Takanohashi T, et al.,2004[J]. Energy Fuel,18:1405-1413.
    [51]Russell DH, Becker C; Qian KN,2008[J]. Anal. Chem.,80:8592-8597.
    [52]Pomerantz AE, Hammond MR, Morrow AL, et al.,2008[J]. J. Am. Chem. Soc.,130: 7216-+.
    [53]Pomerantz AE, Hammond MR, Morrow AL, et al.,2009[J]. Energy Fuel,23: 1162-1168.
    [54]McKenna AM, Purcell JM, Rodgers RP, et al.,2009[J]. Energy Fuel,23:2122-2128.
    [1]Balat M, Ayar G, Oguzhan C, et al.,2007[J]. Energy Source Part B,2:213-226.
    [2]Huijbregts MAJ, Rombouts LJA, Hellweg S, et al.,2006[J]. Environ. Sci. Technol.,40: 641-648.
    [3]Wood BJ; Sancier KM,1984[J]. Catal. Rev.,26:233-279.
    [4]Hauserman WB,1994[J]. Int J Hydrogen Energy,19:413-419.
    [5]Zhang Q, Chang J, Wang TJ, et al.,2007[J]. Energy Convers. Manage.,48:87-92.
    [6]Tsai WT, Lee MK; Chang YM,2007[J]. Bioresource Technol.,98:22-28.
    [7]刘厚荣,张春梅,2004[J].可再生能源,115:11-14.
    [8]Jess A,1996[J]. Fuel,75:1441-1448.
    [9]Neves D,ThunmanH,Matos A, et al.,2011[J].Prog. Energ. Combust.,37:611-630.
    [10]Babu BV,2008[J]. Biofuel Bioprod. Bior.,2:393-414.
    [11]Demirbas A,2001 [J], Energy Convers. Manage.,42:1357-1378.
    [12]Vamvuka D,2011 [J]. Int. J. Energy Res.,35:835-862.
    [13]Wang KG, Wang SR, Guo XJ, et al.,2010[J]. Aip. Conf. Proc.,1251:221-224.
    [14]Bassilakis R, Carangelo RM; Wojtowicz MA,2001 [J]. Fuel,80:1765-1786.
    [15]de Jong W, Pirone A; Wojtowicz MA,2003[J]. Fuel,82:1139-1147.
    [16]Siengchum T, Isenberg M; Chuang SSC,2013[J]. Fuel,105:559-565.
    [17]Dong CQ, Zhang ZF, Lu Q, et al.,2012[J]. Energy Convers. Manage.,57:49-59.
    [18]Kibet J, Khachatryan L; Dellinger B,2012[J]. Environ. Sci. Technol.,46: 12994-13001.
    [19]Jiang GZ, Nowakowski DJ; Bridgwater AV,2010[J]. Energy Fuel,24:4470-4475.
    [20]Laskin A, Smith JS; Laskin J,2009[J]. Environ. Sci. Technol.,43:3764-3771.
    [21]Smith JS, Laskin A; Laskin J,2009[J]. Anal. Chem.,81:1512-1521.
    [22]Brown AL, Dayton DC, Nimlos MR, et al.,2001 [J]. Chemosphere,42:663-669.
    [23]Mukarakate C, Scheer AM, Robichaud DJ, et al.,2011 [J]. Rev. Sci. Instrum.,82.
    [24]Weng JJ, Jia LY, Wang Y, et al.,2013[J]. Proc. Combust. Inst,34:2347-2354.
    [25]孙韶波,翁俊桀,贾良元等.2013[J].质谱学报,34:14-20.
    [26]Franco A; Diaz AR,2009[J]. Energy,34:348-354.
    [27]Marzec A,2002[J]. Fuel Process Technol.,77:25-32.
    [28]Mathews JP; Chaffee AL,2012[J]. Fuel,96:1-14.
    [29]Gupta R,2007[J]. Energ yFuel,21:451-460.
    [30]Chen YW, Liu GJ, Gong YM, et al.,2007[J]. J. Anal. Appl. Pyrol,80:283-288.
    [31]Chen YW, Liu GJ, Wang L, et al.,2008[J]. Energy Fuel,22:3877-3882.
    [32]Long SE; Kelly WR,2002[J]. Anal. Chem.,74:1477-1483.
    [33]Biasing M; Muller M,2010[J]. Combust. Flame,157:1374-1381.
    [34]Biasing M; Muller M,2012[J]. Fuel,94:137-143.
    [35]Cappiello A, Mangani F, Bruner F, et al.,1996[J]. J. Chromatogr. A,736:185-194.
    [36]Fabbri D; Vassura I,2006[J]. J. Anal. Appl. Pyrol.,75:150-158.
    [37]Li N, Ma XL, Zha QF, et al.,2010[J]. Energy Fuel,24:5539-5547.
    [38]Wang PF, Jin LJ, Liu JH, et al.,2010[J]. Energy Fuel,24:4402-4407.
    [39]Wang RW, Liu GJ, Zhang JM, et al.,2010[J]. Energy Fuel,24:6061-6066.
    [40]Zhang YX, Schauer JJ, Zhang YH, et al.,2008[J]. Environ. Sci. Technol.,42: 5068-5073.
    [41]Zong Y, Zong ZM, Ding MJ, et al.,2009[J]. Fuel,88:469-474.
    [42]Ledesma EB, Kalish MA, Nelson PF, et al.,2000[J]. Fuel,79:1801-1814.
    [43]Sun M,Ma XX,Yao QX, et al.,2011 [J]. Energy Fuel,25:1140-1145.
    [44]Shi QA, Yan Y, Wu XJ, et al.,2010[J]. Energy Fuel,24:5533-5538.
    [45]Wu ZG, Rodgers RP; Marshall AG,2004[J]. Energy Fuel,18:1424-1428.
    [46]Bonfanti L, Cornelias L, Lliberia JL, et al.,1997[J]. J. Anal. Appl. Pyrol.,44:101-119.
    [47]Damste JSS, White CM, Green JB, et al.,1999[J]. Energy Fuel,13:728-738.
    [48]Islas CA, Suelves I, Carter JF, et al.,2000[J]. Rapid Commun. Mass Spectrom.,14: 1766-1782.
    [49]Song JZ; Peng PA,2010[J]. J. Anal. Appl. Pyrol.,87:129-137.
    [50]Janos P,2003[J]. J. Chromatogr. A,983:1-18.
    [51]Gao SK, Zhang Y, Li Y, et al.,2008[J]. Int. J. Mass Spectrom.,274:64-69.
    [52]Gao SK, Zhang Y, Meng JW, et al.,2009[J]. Sci. Total Environ.,407:1193-1199.
    [53]Streibel T, Geissler R, Saraji-Bozorgzad M, et al.,2009[J]. J. Therm. Anal. Calorim., 96:795-804.
    [54]Jia LY, Weng JJ, Wang Y, et al.,2013[J]. Energy Fuel,27:694-701.
    [55]Arenillas A, Rubiera F; Pis JJ,1999[J]. J. Anal. Appl. Pyrol.,50:31-46.
    [56]Afeefy HYL, J.F.; Stein, S.E., Neutral Thermochemical Data. NIST Standard Reference Database Number 69:In NIST Chemistry WebBook,2012.
    [57]Zoller DL, Johnston MV, Tomic J, et al.,1999[J]. Energy Fuel,13:1097-1104.
    [58]Islas CA, Suelves I, Carter JF, et al.,2002[J]. Rapid Commun. Mass. Spectrom.,16: 774-184.
    [59]Gryglewicz G, Rutkowski P; Yperman J,2002[J], Fuel Process Technol.,77:167-172.
    [60]Shafizadeh F,1982[J]. J. Anal. Appl. Pyrol.,3:283-305.
    [61]Yang HP, Yan R, Chen HP, et al.,2007[J]. Fuel,86:1781-1788.
    [62]Madorsky SL, Hart VE; Straus S,1956[J]. J. Res. Nat. Bur. Stand.,56:343-354.
    [63]Shafizad F; Fu YL,1973[J]. Carbohyd. Res.,29:113-122.
    [64]Lede J,2012[J]. J. Anal. Appl. Pyrol,94:17-32.
    [65]Mamleev V, Bourbigot S, Le Bras M, et al.,2009[J]. J. Anal. Appl. Pyrol.,84:1-17.
    [66]Broido A, Javierso.Ac, Ouano AC, et al.,1973[J]. J. Appl. Polym. Sci.,17:3627-3635.
    [67]Kim UJ, Eom SH; Wada M,2010[J]. Polym. Degrad. Stabil,95:778-781.
    [68]Sekiguchi Y; Shafizadeh F,1984[J]. J. Appl. Polym. Sci.,29:1267-1286.
    [69]Piskorz J, Radlein DS, Scott DS, et al.,1989[J]. J. Anal. Appl. Pyrol.,16:127-142.
    [70]Jarvis MW, Haas TJ, Donohoe BS, et al.,2011 [J]. Energy Fuel,25:324-336.
    [71]Shin EJ, Nimlos MR; Evans RJ,2001[J]. Fuel,80:1697-1709.
    [72]Evans RJ; Milne TA,1987[J]. Energy Fuel,I:123-137.
    [73]Evans RJ, Milne TA, Soltys MN, et al.,1984[J]. J. Anal. Appl. Pyrol.,6:273-283.
    [74]Faix O, Fortmann I, Bremer J, et al.,1991 [J]. Holz. Roh. Werkst.,49:299-304.
    [75]Faix O, Fortmann I, Bremer J, et al.,1991[J]. Holz. Roh. Werkst.,49:213-219.
    [76]Nowakowski DJ; Jones JM,2008[J]. J. Anal. Appl. Pyrol.,83:12-25.
    [77]Hosoya T, Kawamoto H; Saka S,2007[J]. J. Anal. Appl. Pyrol.,80:118-125.
    [78]Mitchell RL; Ritter GJ,1940[J]. J. Am. Chem. Soc.,62:1958-1959.
    [79]Reale S, Di Tullio A, Spreti N, et al.,2004[J]. Mass. Spectrom. Rev.,23:87-126.
    [80]Clifton-Brown JC, Stampfl PF; Jones MB,2004[J]. Global Change. Biol.,10:509-518.
    [81]Fischer G, Prieler S; van Velthuizen H,2005[J]. Biomass Bioenag.,28:119-132.
    [82]罗伟祥,郝怀晓,薛安平,2006[J].生物质化学工程,增刊:147-152.
    [83]Dufour A, Weng JJ, Jia LY, et al.,2013[J]. Rsc Adv.,3:4786-4792.
    [84]Dufour A, Castro-Diaz M, Brosse N, et al.,2012[J]. Chemsuschem,5:1258-1265.
    [85]安冬敏.2011.稻壳生物质资源的的综合利用[D].[博士论文].吉林:吉林大学.
    [86]Simoneit BRT, Rogge WF, Mazurek MA, et al.,1993[J]. Environ. Sci. Technol.,27: 2533-2541.
    [1]Northway MJ, Jayne JT, Toohey DW, et al.,2007[J]. Aerosol Sci. Tech.,41:828-839.
    [2]Muhlberger F, Saraji-Bozorgzad M, Gonin M, et al.,2007[J]. Anal. Chem.,79: 8118-8124.
    [3]Oktem B, Tolocka MP; Johnston MV,2004[J]. Anal. Chem.,76:253-261.
    [4]Sykes DC, Woods E, Smith GD, et al.,2002[J]. Anal. Chem.,74:2048-2052.
    [5]Ferge T, Muhlberger F; Zimmermann R,2005[J]. Anal. Chem.,77:4528-4538.
    [6]Nash DG, Liu XF, Mysak ER, et al.,2005[J]. Int. J. Mass Spectrom.,241:89-97.
    [7]Warneck P,1962[J]. Appl. Optics,1:721-726.
    [8]Shu JN, Gao SK; Li Y,2008[J]. Aerosol Sci. Tech.,42:110-113.
    [9]Short LC, Cai SS; Syage JA,2007[J]. J. Am. Soc. Mass Spectrom.,18:589-599.
    [10]Muhlberger F, Streibel T, Wieser J, et al.,2005[J]. Anal. Chem.,77:7408-7414.
    [11]Walters PE, Hamm FM; Smit KJ,1979[J]. J. Phys. E. Sci. Instrum.,12:820-822.
    [12]Salvermoser M; Murnick DE,2004[J]. J. Phys. D. Appl. Phys.,37:180-184.
    [13]Faubert D, Paul GJC, Giroux J, et al.,1993[J]. Int. J. Mass Spectrom.,124:69-77.
    [14]Dehmer PM, Pratt ST,1982[J]. J. Chem. Phys.,77:4804-4817.
    [15]Muhlberger F, Wieser J, Morozov A, et al.,2005[J]. Anal. Chem.,77:2218-2226
    [16]Paresce F, Kumar S, Bowyer CS,1971 [J]. Appl. Optics,8:1904-1908
    [17]MCPHERSON, http://mcphersoninc.com/lightsources/model6291ightsource.htm
    [18]邓柳林.2010.药物分子安替比林和异丙安替比林的质谱研究[M]:[硕士论文].合肥:中国科学技术大学
    [19]Pong W,1970[R]. Honolulu, Hawaii http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19700023149_1970023149.pdf
    [20]Krolikowski WF; Spicer WE,1970[J]. Phys. Rev. B,1:478-487.
    [21]Jiang XR, Berglund CN, Bell AE, et al.,1998[J]. J. Vac. Sci. Technol. B,16: 3374-3379.
    [22]Wieser J, Murnick DE, Ulrich A, et al.,1997[J]. Rev. Sci. Instrum.,68:1360-1364.
    [23]Hejazi L, Ebrahimi D, Hibbert DB, et al.,2009[J]. Rapid. Commun. Mass Spectrom., 23:2181-2189.
    [24]Mitschke S, Welthagen W; Zimmermann R,2006[J]. Anal. Chem.,78:6364-6375.
    [25]Eschner MS, Welthagen W, Groger TM, et al.,2010[J]. Anal. Bioanal. Chem.,398: 1435-1445.
    [26]Lopez-Avila V, Cooley J, Urdahl R, et al.,2012[J]. Rapid Commun. Mass Spectrom., 26:2714-2724.
    [27]Isaacman G. Wilson KR, Chan AWH, et al.,2012[J]. Anal. Chem.,84:2335-2342.
    [28]Welthagen W, Mitschke S, Muhlberger F, et al.,2007[J]. J. Chromatogr. A,1150: 54-61.
    [29]Eschner MS, Selmani I, Groger TM, et al.,2011[J]. Anal. Chem.,83:6619-6627.
    [30]Eschner MS, Groger TM, Horvath T, et al.,2011 [J]. Anal. Chem.,83:3865-3872.
    [31]Portoles T, Pitarch E, Lopez FJ, et al.,2011[J]. Rapid Commun. Mass Spectrom.,25: 1589-1599.
    [32]Hanna SJ, Campuzano-Jost P, Simpson EA, et al.,2009[J]. Int. J. Mass Spectrom.,279: 134-146.
    [33]Di Palma TM; Borghese A,2007[J]. Nucl. Instrum. Meth. B,254:193-199.
    [34]Di Palma TM, Prati MV; Borghese A,2009[J]. J. Am. Soc. Mass. Spectrom.,20: 2192-2198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700