汽车螺联接柔性装配系统的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
联接的装配是汽车装配制造中的关键技术和重要工艺之一,螺联接柔性装配系统是实现复杂的螺联接装配工艺、提高装配效率和保证装配质量的主要方式。本文以汽车装配生产线中螺联接装配的工程应用为研究背景,针对螺联接柔性装配系统的结构设计、过程控制、协调控制和工艺优化控制等主要问题进行了详细的研究,并且将研究成果应用到实际的螺联接装配工程领域。本文主要完成了以下研究工作:
     (1)建立了螺联接装配预紧过程的数学模型,并根据预紧力等效原理建立了可在实际控制系统中应用的拧紧力矩与拧紧转角的关系模型。针对不同的装配工艺要求,设计并实现了不同的螺联接装配控制技术。
     (2)推导了基于SVPWM的PMSM交流伺服系统和行星齿轮传动机构的数学模型,建立了PMSM交流伺服矢量控制系统和机械传动系统的动态仿真模型,并对交流伺服拧紧控制机电耦合调速系统进行了仿真验证。
     (3)针对单螺联接的交流伺服拧紧装配,提出一种基于预测函数控制的交流伺服拧紧装配过程控制系统,并进行了控制算法和控制系统的仿真研究。针对多螺联接装配难以协调控制的问题,提出一种动态偏差解耦的协调控制结构和模糊并行分布补偿控制策略,实际工程应用结果表明它们可以提高整体装配的控制精度。
     (4)针对汽车螺联接装配的工程应用,实现了一种分布式总线装配过程控制系统的网络化结构。通过对CAN总线技术、嵌入式技术、数据库管理、S PC技术和OPC网络技术的集成,设计出结构和性能可以替代国外同类进口设备的螺联接柔性装配系统,实现了汽车螺联接装配过程的分布式协调控制和网络化柔性装配结构的工程应用。
     (5)针对汽车主锥总成锁紧螺母装配工艺的优化,提出一种模型预估模糊拧紧定位装配控制器,实现对主锥总成的轴向预紧力、锁紧螺母的拧紧扭矩和转角定位的多变量目标智能控制,提高了主锥总成装配的控制精确度和装配效率;针对汽车锥形轴承的预紧装配工艺优化,将锥形轴承的启动摩擦力作为控制目标,提出一种改进的基于启动摩擦力在线控制的装配方式,不仅解决了一类锥形轴承的预紧装配和在线控制启动摩擦力矩的问题,而且还提高了锥形轴承预紧装配时启动摩擦力的一致性;同时,提出一种基于在线故障诊断的ABS轮速传感器集成装配结构,在锥形轴承预紧装配系统中实现了轮速传感器在线故障诊断的集成装配控制,优化了轮速传感器的装配工艺,缩短了生产线长度和装配节拍。
The threaded joint assembly is a key technology and important process in automobile assembly manufacturing. Flexible assembly system of threaded joint is the main way to realize the complex threaded joint assembly process, improve assembly efficiency and ensure the quality of assembly. With the research background based on engineering application of threaded joint assembly in automobile assembly line, many problems in threaded joint assembly are detailedly investigated such as structure design, process control, coordinated control and process optimal control. The research and developing results are applied in the actual engineering field of threaded joint assembly, which is very important for automobile assembly manufacturing. The following research works have been completed in this dissertation:
     (1) The mathematical model of preload process for threaded joint assembly is established, relationship model of tightening torque and angle is established by preload equivalence principle for application of actual control system. In order to solve the problem of process assembly, different threaded joint assembly control technologies are developed and realized for threaded joint assembly.
     (2) Mathematical model of planetary gear transmission mechanism and PMSM AC servo system based on SVPWM is deduced. Dynamic simulation model of PMSM AC servo vector control system and mechanical transmission system is established. Speed control system of electromechanical coupling for AC servo tightening is simulated and verified.
     (3) Aiming at AC servo tightening assembly of single threaded joint, process control system of AC servo tightening assembly based on PFC is designed. Control algorithm and control system are proposed and verified by simulation. Aiming at coordinated control of multi-threaded joint assembly, dynamic deviation decoupling of coordinated control structure and control strategy of fuzzy parallel distributed compensation are designed. Application results of practical engineering prove that whole assembly control accuracy is improved.
     (4) Aiming at engineering application of automobile threaded joint assembly, network structure of assembly process control system based on distributed field bus is designed. By integrating of CAN bus, embedded control, database management, SPC and OPC network technology, flexible assembly system of threaded joint is designed which can replace similar imported equipment from abroad on the structure and performance. Distributed coordinated control of assembly process control and structure of network flexible assembly are realized for engineering application of automobile threaded joint assembly.
     (5) Aiming at process optimization of locking nut assembly for automobile driving taper gear assembly, a fuzzy positioning assembly controller based model predicted tightening is proposed. Multivariable target intelligent control for bevel gear axial pre-tightening force, locking nut tightening torque and angle position of driving taper gear is realized. Control accuracy and assembly efficiency are improved. Aiming at process optimization of pretension assembly for automotive tapered bearing, improved assembly method based on start friction online control is designed as control target of tapered bearing start friction. Not only a kind of problem for preloading assembly of tapered bearing and start friction moment of control on line is solved, but also consistency of start friction for tapered bearing preload assembly is improve. Integrated assembly structure of ABS wheel speed sensor based on online fault diagnosis is designed. Integrated assembly control of ABS wheel speed sensor based on online fault diagnosis is realized in assembly system of tapered bearing preload. Assembly process of the wheel speed sensor is optimized; length of the assembly line is shortened and assembly beat is improved.
引文
[1]宋新萍.汽车制造工艺学.北京:清华大学出版社,2011.
    [2]卜炎.螺联接设计与计算.北京:高等教育出版社,1995.
    [3]Kobayashi, Shinobu, Ishii et al. Bolt Tightening Method, Bolt Tightening Device, Bolt Supplying Method, and Bolt Supplying Device. US, Al-Patent Application Publication, US20110030513.2011.
    [4]INTERNATIONAL STANDARD. ISO General Purpose Metric Screw Threads. ISO-965,1998.
    [5]SKF Group. Bolt-Tightening Handbook. Linear Motion & Precision Technologies,2001.
    [6]Owen, D R J, Hinton E. Finite Elements in Plasticity, Theory and Practice. Pineridge Press Limited,1980,215-269.
    [7]Chapman I, Newnham J, Wal lance P et al. The Tightening of Bolts to Yield and Their Performance under Load. Journal of vibration, acoustics, stress, and reliability in design,1986,108(2):213-221.
    [8]Fukuoka T, Takak T. Mechanical Behaviors of Bolted Joint During Tightening Using Torque Control. JSME International Journal, Series A,1998,41(2):185-191.
    [9]Sawata K, Yasumura M. Estimation of Yield and Ultimate Strengths of Bolted Timber Joints Bynonlinear Analysis and Yield Theory. The Japan Wood Research Society,2003, 49(5):383-391.
    [10]Tsuji H, Maruyama K. Estimation of Yield Clamping Force Based on Rigid-Plastic Model. American Society of Mechanical Engineers, Design Engineering Division,1999, 105:157-162.
    [11]Bickford J H, Nassar S. Handbook of Bolts and Bolted Joints. New York:Marcel Dekker,1998.
    [12]Raether W. A Primer on Hydraulic Torque Wrenches and Their Use. Rock Products, 2001,104(4):25-30.
    [13]Makimae T, Yamada T, Yamaquchi L et al. Angle Control Tightening of Engine Bolts. International Journal of Materials and Product Technology,1991,6(2):119-130.
    [14]Mori K, Hashimura S, Murakami Y et al. A New Tightening Method for Bolted Joints by the Simultaneous Application of Torque and Compressive Force. SAE Technical Paper, 2001,2-7.
    [15]Toth, Goran R. Torque and Angle Controlled Tightening Over the Yield Point of a Screw-Based on Monte-Carlo Simulations. J Journal of Mechanical Design, Transactions of the ASME,2004,126(4):729-736.
    [16]Matsumura M, Itou S, Hibi H et al. Tightening Torque Estimation of a Screw Tightening Robot. Proceedings-IEEE International Conference on Robotics and Automation,1995,2:2108-2112.
    [17]Klingajay M, Seneviratne L D, Althoefer K. Identification of Threaded Fastening Parameters Using the Newton Raphson Method. IEEE International Conference on Intelligent Robots and Systems,2003,2:2055-2060.
    [18]Onishi T, Mizutani Y, Mayuzumi M. Plastic-Region Tightening of Bolts Controlled by Acoustic Emission Method. Journal of Acoustic Emission,2007,25:238-245.
    [19]Sawata K, Yasumura M. Estimation of Yield and Ultimate Strengths of Bolted Timber Joints by Nonlinear Analysis and Yield Theory. Journal of Wood Science,2003,49(5): 383-391.
    [20]Fukuoka T, Nakano H, Omatu S. Bolt Tightening Control Using Neural Networks. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 2001,3:1390-1395.
    [21]Kobayashi, Shinobu, Ishii et al. Bolt Tightening Method, Bolt Tightening Device, Bolt Supplying Method, and Bolt Supplying Device. US, Patent Application Publication, 20110030513.2011.
    [22]Anon. Nutrunner Control System Ensures the Integrity of Bolted Assemblies at Ford. Production Engineer London,1983,62(1):18-19.
    [23]http://www.atlascopco.com.cn/cnzh.
    [24]Ingersoll Rand. DC Electric Fastening Systems. Productivity Redefined,2005.
    [25]Atlas Copco. PowerMACS 4000 of Atlas Copco Tools and Assembly Systems. User Guide,2008.
    [26]Hansson G C. Method for tightening threaded joints. US, Utility Patent Grant, 5519604.1996.
    [27]葛龙龙,胡中原.瑞典Atlas定扭矩螺栓装配机的工作原理及其改进.组合机床与自动化力加工技术,1994(10):2-7.
    [28]冯德富,刘泽林.对美国自动拧紧机的国产化改造.汽车工艺与材料,2003,(9):38-40.
    [29]单继平,赵毅,杨世德.电动多轴螺母拧紧机控制系统设计.组合机床与自动化加工技术,1999,(7):37-39.
    [30]王春华,朱林剑,孙守林,等.基于工控机的多工位电动螺栓拧紧机控制系统的研制.组合机床与自动化加工技术,2003,(2):58-59.
    [31]林巨广,俞琦,任永强,等.基于IPC的四轴自动对孔拧紧机控制系统设计.机械工程师,2007,(8):130-132.
    [32]卫道柱,林巨广.智能型螺母拧紧机的研制.合肥工业大学学报,2003,26(5):1016-1020.
    [33]Zhou Y H, Wang Z H, Li J W. Design of the Control System of Tightening Machine Based on CAN Bus.2009 International Conference on Intelligent Human-Machine Systems and Cybernetics,2009,253-256.
    [34]范云生,赵永生,周守民.集散式多轴拧紧机控制系统的设计应用.工业控制计算机,2007,20(1):33-34.
    [35]王瑞明,蒋静坪,曾玉金.交流伺服驱动系统模糊自适应控制研究.组合机床与自动化加工技术,2005(7):52-57.
    [36]王执铨,李军,孙金生.模糊控制在高速、高精度数字伺服系统中的实现.自动化学报,1994,20(4):504-508.
    [37]蒋锐权,吴祖育,蔡建国.数控机床神经元自适应位置控制算法.上海交通大学学报,2001,35(7):1088-1092.
    [38]Cao X Q, Fan L P, Zhu Y D.. Real-Time IP Controller Based on Neural Network for Permanent Magnet Synchronous Motors.4th IEEE Conference on Industrial Electronics and Applications,2009,2345-2349.
    [39]赵希梅,郭庆鼎.学习前馈控制在高精度直线伺服系统中的应用.组合机床与自动化加工技术,2005(9):46-48.
    [40]苏义鑫,周祖德,陈幼平,等.位置跟踪系统的预测控制研究.中国机械工程,2001(12):1356-1358.
    [41]Shyu K K, Lai C K, Yang W. A Newly Robust Controller Design for the Position Control of Permanent Magnet Synchronous Motor. IEEE Transactions on Industrial Electronics,2002,49 (3):558-565.
    [42]Wu X K, Xu H P. Research on the State Equation of the Position Loop and Speed Loop in the PMSM Cascade Sliding Mode Control. International Conference on Electric Information and Control Engineering,2011,3553-3555.
    [43]葛锁良,刘文慰.基于模糊控制的交流伺服系统的设计.东南大学学报,2003,33(9):154-157.
    [44]Pajchrowski T, Zawirski K, Brock S. Application of Neuro-fuzzy Techniques to Robust Speed Control of PMSM. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2007,24(6):1188-1203.
    [45]葛宝明,蒋静坪.永磁同步电动机传动系统的模型算法控制.中国电机工程学报,1999,19(10):27-31.
    [46]Yeh S S, Hsu P L. Design of Precise Multi-Axis Motion Control Systems. Proceedings of the 6th International Workshop on Advanced Motion Control. New Jersey:IEEE Computer Press,2000:234-239.
    [47]Yeh S S, Hsu P L. Analysis and Design of Integrated Control for Multi-Axis Motion Systems. IEEE Transactions on Control Systems Technology,2003,11 (3):375-382.
    [48]Shin K H, Kwon S 0. The Effect of Tension on the Lateral Dynamics and Control of a Moving Web. IEEE Transactions on Industry Applications,2007,43(2):403-411.
    [49]Nitin D, Zhiqiang G, Fouad Mrad. Fuzzy Logic Control of Automated Screw Fastening. Robotics & Computer-Integrated Mterufacturing,1996,12 (3):235-242.
    [50]Seong-Hoon P W, Farid G, Wael W M. A Fastening Tool Tracking System Using an IMU and a Position Sensor With Kalman Filters and a Fuzzy Expert System. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,2009,56(5):1782-1792.
    [51]Guru S M, Fernando S, Halgamuge S et al. Intelligent Fastening with A-BOLT Technology and Sensor Networks. Assembly Automation,2004,24(4):386-393.
    [52]范云生,郭晨,周守民.基于模型预估的汽车主动锥齿轮总成锁紧螺母拧紧机.仪器仪表学报,2011,32(6):1433-1440.
    [53]范云生,郭晨,王国峰.基于智能控制的差速器轴承预紧测量.计算机集成制造系统,2012,18(6):1223-1229.
    [54]诸静等.智能预测控制及其应用.浙江:浙江大学出版社,2002.
    [55]Richalet J, Rault A, Testud J L, et al. Model Predictive Heuristic Control: Application to Industrial Processes. Automatica,1978,14 (5):413-428.
    [56]Cutler C R, Ramaker B L. Dynamic Matrix Control-A Computer Control Algorithm. Proc JACC San Francisco,1980.
    [57]Rouhani R, Mehra R K. Model Algorithmic Control Basic Theoretical Properties. Automatica,1982,18(4):401-414.
    [58]Clarke D W, Mohtadi C, Tuffs P S. Generalized Predictive Control-Part 1 Basic ALgorithm. Automatica,1987,23(2):138-148.
    [59]Clarke D W, Mohtadi C, Tuffs P S. Generalized Predictive Control-Part 2 Basic ALgorithm. Automatica,1987,23(2):149-162.
    [60]Lelic M A, Zarop M B. Generalized Pole placement Self-Tuning Controller:Part 1. Basic Algorithm. International Journal of Control,1987,42(6):547-568.
    [61]Garcia C E, Morari M. Internal Model Control-Part 1:A Unifying Review and Some New Results. Industrial Engineering Chemical Process Design and Development,1982, 21(2):308-323.
    [62]Kwon W H, Byun D G. Receding Horizon Tracking Control as a Predictive Control and its Stability Properties. International Journal of Control,1989,50(5): 1807-1824.
    [63]Ordys A W, Clarke D W. A State-Space Description for GPC Controllers. International Journal of Systems Science,1993,24(9):1727-1744.
    [64]Lee J H, Morari M, Garcia C E. State Space Interpretation of Model Predictive Control. Automatica,1994,30(4):707-717.
    [65]Meadows E S, Muske K R, Rawlings J B. Implementable Model Predictive Control in the State-space. Proceedings of American Control Conference,1995,5:3699-3703.
    [66]李书臣,徐心和,李平.预测控制最新算法综述.系统仿真学报,2004,16(6):1314-1319.
    [67]Peterson T, Hernandez E, Arkun Y et al. Nonlinear DMC Algorithm and its Application to a Semibatch Polymerization Reactor. Chemical Engineering Science,1992,47(4): 737-753.
    [68]Mutha R K, Cluett W R, Penlidis A. Nonlinear Model-Based Predictive Control of Control Nonaffine Systems. Automatica,1997,33(5):907-913.
    [69]Fruzzetti K P, Palazoglu A, McDonald K A. Nonlinear Predictive Model Control Using Hammerstein Models. Journal of Process Control,1997,7(1):31-41.
    [70]Norquay S J, Palazoglu A, Romagnoli J A. Model Predictive Control Based on Wiener Models. Chemical Engineering Science,1998,53(1):75-84.
    [71]金晓明,荣冈,王树青.基于模糊模型的多变量预测控制算法.控制与决策,1998,13(4):332-336.
    [72]Andreas D, Horst R, Sebastian E. Neural Network Based Model Predictive Control of a Continuous Neutralization Reactor. IEEE Int. Con. on Control Applications,1994: 427-432.
    [73]席裕庚,耿晓军,陈虹.预测控制性能研究的新进展.控制理论与应用,2000,17(4):469-475.
    [74]陈虹,刘志远,解小华.非线性模型预测控制的现状与问题.控制与决策,2001,16(4):385-391.
    [75]陈增强,袁著祉.工业锅炉的加权预测自校正控制.自动化学报,1993,19(1):46-53.
    [76]金晓明.模糊控制、预测控制与工业过程的先进控制:(博士学位论文).杭州:浙江大学,1998.
    [77]满红,邵诚.基于Hammerstein-Wiener模型的连续搅拌反应釜神经网络预测控制.化工学报,2011,62(8):2275-2280.
    [78]Kuntze H B, Jacubasch A, Richalet J et al. On the Predictive Functional Control of an Elastic Industrial Robot. Proc. of 25th CDC, Athens, Greece,1986:1877-1881.
    [79]Richalet J, Kuntze H B. Predictive Functional Control:Application to Fast and Accurate Robots. IFAC 10th World Congress, Munich, Germany,1987,251-258.
    [80]Vivas A, Poignet P. Predictive Functional Control of a Parallel Robot. Control Engineering Practice,2005,13:863-874.
    [81]Compas J M, Decarreau P, Lanquetin G et al. Industrial Applications of Predictive Functional Control to Rollingmill, Fast Robot, River Dam. Proc.3th IEEE Conference on Control Applications,1994,3:1643-1655.
    [82]张智焕,王树青,王宁.液压机器人的预测函数控制.控制与决策,2002,17(1):120-122.
    [83]Cuadrado D, Decarreau P, Coic A. Application of Global Identification and Predictive Functional Control to a Tracking Turret. ECC91 European Control Conference, Grenoble,1991, (7):2-5.
    [84]McDonnell M, Ata-Doss S A. Predictive Functional Control of Multivariable Systems with More Outputs than Inputs. Proceedings of the IEEE Conference on Decision and Control,1989,2:1591-1596.
    [85]Ata-Doss S A, Fiani P, Richalet J. Handling Input and State Constraints in Predictive Functional Control. Proceedings of the IEEE Conference on Decision and Control,1992,985-990.
    [86]金晓明.模糊控制、预测控制与工业过程中的先进控制:(博士学位论文).杭州:浙江大学,1998.
    [87]张奇智,张卫东.网络控制系统中的时戳预测函数控制.控制理论与应用,2006,3(1):126-130.
    [88]Richalet J, Estival J L, Fiani P. Industrial Applications of Predictive Functional Control to Metallurgical Industries. Proc.4th IEEE, Confrernce on control Applictions, Piscataway,1995,4:934-942.
    [89]王柱锋,蒋静坪,李丽春.长延时网络控制系统预测函数控制研究.仪器仪表学报,2008,29(5):296-299.
    [90]Rossiter J A, Richalet J. Handling Constraints with Predictive Functional Control of Unstable Processes. Proceedings of the American Control Conference,2002,6: 4746-4751.
    [91]岳俊红,刘吉臻,刘向杰.具有可测扰动典型过程的预测函数控制.系统仿真学报,2007,19(16):3752-3755.
    [92]Richalet J, Donal 0 D. Predictive Functional Control:Principles and Industrial Applications (Advances in Industrial Control). MIV sech Inc.,2009.
    [93]Dumur D, Boucher P, Kolb T. Application of Cascaded Constrained Receding Horizon Predictive Control to an Induction Machine. Proc. IEEE Conference on Control Applications, Dearborn,1996,883-893.
    [94]王国玉,韩璞,王东风PFC-PID串级控制在主汽温控制系统中的应用研究.中国电机工程学报,2002,22(12):50-55.
    [95]张泉灵.预测函数控制及应用研究:(博士学位论文).杭州:浙江大学,1999.
    [96]张泉灵,王树青.化学反应器温度跟踪预测函数控制的研究与应用.控制理论与应用,2001,18(4):559-563.
    [97]夏泽中,张光明.预测函数控制及其在伺服系统中的仿真研究.中国电机工程学报,2005,25(14):130-134.
    [98]潘红华,胡家升,王建明,等.交流伺服系统串级预测函数控制的仿真研究.系统仿真学报,2003,15(6):852-854.
    [99]刘峙飞.工业平缝机伺服控制系统研究:(博士学位论文).杭州:浙江大学,2004.
    [100]南余荣.多电机传动系统协调控制及其在直进式拉丝机中的应用:(博士学位论文).杭州:浙江工业大学,2007.
    [101]孙文焕,程善美,王晓翔,等.多电动机协调控制的发展.电气传动1999,(6):3-5.
    [102]刘福才,张学莲,刘立伟.多级电机传动系统同步控制理论与应用研究.控制工程,2002,9(4):87-90.
    [103]Koren Y. Cross-Coupled Biaxial Computer Control for Manufacturing System. Journal of Dynamic Systems, Measurement and Control. Transactions of the ASME,1980, 102(4):265-272.
    [104]Srinivasan K, Fosdick R. Multivariable Analysis and Controller Design for Coordinated Muli-Axial Motion Control. Proceedings of the American Control Conference, 1988,88(1-3):95-101.
    [105]Srinivasan K, Kulkarni P K. Cross-Coupled Biaxial Feed Drive Servomechanisms. Journal of Dynamic Systems, Measurement and Control. Transactions of the ASME,1990, 112(2):225-232.
    [106]曹少中.非线性协调控制理论研究及应用.北京:科学技术出版社,2009.
    [107]唐光谱,郭庆鼎.基于H∞鲁棒控制器的高精度快速同步进给技术的应用研究.电机与控制学报,2001,5(3):176-177.
    [108]Kulkarni P K, Srinivasan K. Optimal Contouring Control of Multi-Axial Feed Drive Servo Mechanisms. ASME Journal of Engineering for Industry,1989,111(2): 140-180.
    [109]Alexander L, Fradkov H V, Miroshnik et al. Nonlinear and Adaptive Control of Complex System. London:Kluwer Academic Publishers,1999.
    [110]Yeh S S, Hsu P L. Theory and Applications of the Robust Cross-Coupled Control Design. ASME Journal of Dynamic Systems, Measurement and Control,1999,121 (3):524-530.
    [111]项云韦.多台电机同步协调运转的变结构控制.电气传动自动化,1999,21(3):33-34.
    [112]Iftime S D, Egsgaard L L, Zepponi M. A Coordination Model Based Control of Functional Arm Manipulation by RBF Neural Networks.2004 Seventh Seminar on Neural Network Applications in Electrical Engineering - Proceedings,2004,159-164.
    [113]Tomizuka M, Hu J S, Chiu T C et al. Synchronization of Two Motion Control Axes under Adaptive Feed Forward Control. ASME Journal of Dynamic Systems, Measurement and Control,1992,114(2):196-203
    [114]张承慧,石庆升,程金.一种多电机同步传动模糊神经网络控制器的设计.控制与决策,2007,22(1):30-34.
    [115]诸静,等.模糊控制原理与应用.北京:机械工业出版社,2005.
    [116]黄进,叶尚辉,陈其昌.基于自调整量化因子模糊控制器的摩擦补偿研究.机械设计与研究,1999,(1):27-29.
    [117]Lian K Y, Liou J J, Huang C Y. LMI-based Integral Fuzzy Control of DC-DC Converters. IEEE Transactions on Fuzzy Systems,2006,14(1):71-80.
    [118]曹洋,徐心和.一种基于交叉耦合的速度控制器.东北大学学报,2003,24(5):420-423.
    [119]Henzinger T A, Sifakis J. The Discipline of Embedded Systems Design. Computer, 2007,40(10):32-40.
    [120]田泽.嵌入式系统开发与应用教程.北京:北京航空航天大学出版,2010.
    [121]Fan Y S, Guo C, Zhang C. The Research of Embedded Ships Video Wireless Transmission Control System. Proceedings of 2009 Conference on Communication Faculty, 2009,546-549.
    [122]Jean J L. μC/OS-II:The Real-Time Kernel. San Francisco:CMP Books,2002.
    [123]张佩勤,于连荣.自动装配与柔性装配技术.北京:机械工业出版社,1998.
    [124]刘维来.柔性装配系统的规划和建模方法研究:(博士学位论文).合肥:中国科学技术大学,2006.
    [125]俞国燕.面向柔性装配系统的人机一体优化设计方法研究:(博士学位论文).广州:华南理工大学,2001.
    [126]Caridi M, Sianesi A. Multi-Agent Systems in Production Planning and Control: An Application to the Scheduling of Mixed-Model Assembly Lines. International Journal of Production Economics,2000,68(1):29-42.
    [127]阳宪惠.现场总线技术及其应用.北京:清华大学出版社,2008.
    [128]王常力,罗安.分布式控制系统(DCS)设计与应用实例.北京:电子工业出版社,2010.
    [129]Philips Semiconductors. CAN Specification Version 2.0. Parts A and B,1992.
    [130]Preiffer O,Ayre A, Keydel C. Embedded Networking with CAN and CANopen. San Clemente:RTC Books,2003.
    [131]Fan Y S, Guo C, Meng W. Study of Distributed Multiaxial Intelligent Tightening Machine Based on Fieldbus Control System.2010 International Conference on Intelligent Control and Information Processing,2010,415-419.
    [132]Mendes A, Ferreira L, Tovar E. Fieldbus Networks:Real-Time from the Perspective of the Application. IEEE International Workshop on Factory Communication,2000, 275-282.
    [133]史久根,张培仁.CAN总线在实时系统中应用研究.中国科学技术大学学报,2005,35(2):195-201.
    [134]Gryna F M, Juran J M. Quality Planning and Analysis:From Product Development through Use. New York:McGraw-Hill,2000.
    [135]Michael M. CIM Solutions - Toward 21st Century SPC. Surface Mount Technology, 1997,11(10):48-50.
    [136]钟伦燕,韩俊,刘红.统计过程控制(SPC)技术原理和应用.北京:电子工业出版社,2000.
    [137]王海宇.过程质量控制的性能评价与改进方法研究:(博士学位论文).西安:西北工业大学,2006.
    [138]Martin E B, Morris A J. Overview of Multivariate Statistical Process Control in Continuous and Batch Process Performance Monitoring. Transactions of the Institute of Measurement and Control,1996,18 (1):51-60.
    [139]El-Sha S M, Morris A S. Fuzzy Expert System for Fault Detection in Statistical Process Control of Industrial Processes. IEEE Trans Syst Man Cybern Pt C Appl Rev, 2000,30(2):281-289.
    [140]Boo-Sik K B, Sang-Chan P S. Integrated Machine Learning Approaches for Complementing Statistical Process Control Procedures. Decision Support Systems,2000, 29(1):59-72.
    [141]赵仕健.多元统计过程监控若干问题研究:(博士学位论文).北京:清华大学,2005.
    [142]Schippers, Werner A J. Integrated Approach to Process Control. International Journal of Production Economics,2001,69(1):93-105.
    [143]Han S, Oh K. Web Based RSPC(Realtime Statistical Process Control) System Supporting XML Protocol. International Journal of Production Economics,2001, 1(2001):399-403.
    [144]李成,高建民.基于过程控制的集成质量系统体系结构研究.计算机集成制造系统,2007,13(10):2041-2046.
    [145]Joe M, Peter C. Flexible Assembly System Improves Quality, Reduces Costs. Chilton's Instruments & Control Systems,1988,61 (12):61-63.
    [146]Bird D, Dale B G.Use of Statistical Process Control in the Manufacture of High-Integrity Products. Proc Inst Mech Eng Part D J Automob Eng,1995,209(1):25-31.
    [147]Colosimo B M, Godio F, Palmieri L. Comparative Studies of Control Charts for Torque Data in Automotive Component Assembling. International Journal of Technology Management,2007,37(1):72-85.
    [148]Kaghazchi H, Hayes J, Heffernan D. Development of an OPC Server for a Fieldbus Diagnosis Tool. IEEE International Conference on Industrial Informatics,2007,1: 329-334.
    [149]OPC Foundation. OPC Data Access Custom Interface Standard. Version 3.00,2003.
    [150]Zheng L, Nakagawa H. OPC (OLE for Process Control) Specification and its Developments. Proceedings of the 41st SICE Annual Conference,2002,2:917-920.
    [151]刘晓冰,刘彩燕,马跃,等.基于制造执行系统的动态质量控制系统研究.计算机集成制造系统,2005,11(1):133-137.
    [152]Sergio I H, Ochoa P M, Julio C R. Bluetooth and OPC (OLE for Process Control) for the Distributed Data Integration. Electronics, Robotics and Automotive Mechanics Conference, CERMA 2007 - Proceedings,2007,27-32.
    [153]Wu HZ, Lv Y M, Wang C Y. The Standardization of OPC Interface Based on a Field Bus Control System.2010 International Symposium on Computer, Communication, Control and Automation,2010,38-40.
    [154]Nassar S A, Matin P H. Clamp Load Loss Due to Fastener Elongation Beyond its Elastic Limit. Journal of Pressure Vessel Technology, Transactions of the ASME,2006, 128(3):379-387.
    [155]Nassar S A, Matin P H. Cumulative Clamp Load Loss Due to a Fully Reversed Cyclic Service Load Acting on an Initially Yielded Bolted Joint System. Journal of Mechanical Design, Transactions of the ASME,2007,129 (4):421-433.
    [156]Fisher J W, Struik S H A. Guide to Design Criteria for Bolted and Riveted Joints. New York:JOHN WILEY & SONS, Inc.,1987.
    [157]山本晃著,郭可谦译.螺连接的理论与计算.上海:上海科技文献出版社,1984.
    [158]Yasui H, Kawashima K. Acoustoelastic Measurement of Bolt Axial Load with Velocity Ratio Method. Proceedings WCNDT,2000,16-21.
    [159]Chaki S, Corneloup G, Lillamand I et al. Combination of Longitudinal and Transverse Ultrasonic Waves for In Situ Control of the Tightening of Bolts. Journal of Pressure Vessel Technology,2007,129:383-390.
    [160]Brown C A, Flack T J. Optimal Controller Design for High Precision Linear Positioning Systems Based on Permanent Magnet Synchronous Motors. IEE Conference Publication,2002,487:347-352.
    [161]舒志兵,等.交流伺服运动控制系统.北京:清华大学出版社,2006.
    [162]郭庆鼎,孙宜标,王丽梅.现代永磁电动机交流伺服系统.北京:中国电力出版社,2006.
    [163]吴茂刚.矢量控制永磁同步电动机交流伺服系统的研究:(博士学位论文).杭州:浙江大学,2006.
    [164]何杰,王家军.基于SVPWM的永磁同步电动机系统建模与仿真.机电工程,2009,26(7):77-82.
    [165]Blaschke F. The Principle of Field Orientation as Applied to the New TRANSVEKTOR Closed-Loop Control System for Rotating-Field Machines. Siemens Review,1972,34: 162-165.
    [166]赵争鸣,袁立强,孟朔,等.通用变频器矢量控制与直接转矩控制特性比较.电工技术学报,2004,19(4):81-84.
    [167]杨贵杰,孙力,崔乃正,等.空间矢量脉宽调制方法的研究.中国电机工程学报,2001,21(5):79-83.
    [168]林伟杰.永磁同步电机伺服系统控制策略的研究:(博士学位论文).杭州:浙江大学,2005.
    [169]Wang Z G, Jin J X, Guo Y G. Modeling and Simulation of PMSM Control System Based on SVPWM. Proceedings of the 27th Chinese Control Conference,2008,724-728.
    [170]Vladimir B, Vikram K. New Mathematical Model and Control of a Three-Phase AC-DC Voltage Source Converter. IEEE Trans, on Power Electronics,1997,12(1):116-123.
    [171]Wu R, Dewan S B, Slemon G R. PWM AC to DC Converter with Fixed Switching Frequency. IEEE Transactions on Industry Applications,1990,26(5):880-885.
    [172]Wu R,Dewan S B, Slemon G R. Analysis of an AC-to-DC Voltage Source Converter Using PWM with Phase and Amplitude Control. IEEE Transactions on Industry Applications, 1991,27(2):355-364.
    [173]饶振纲.行星齿轮传动设计.北京:化学工业出版社,2003.
    [174]Robert Bosch GmbH. Bosch Automotive Handbook-8th Edition. SAE Corporate,2011.
    [175]LIN J, PARKER R G. Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration. Journal of Vibration and Acoustics,1999, 121(3):316-321.
    [175]August R, Kasuba R. Torsional Vibrations and Dynamic Loads in a Basic Planetary Gear Systems. Transactions of the ASME, Journal of Vibration, Acoustics, Stress, and Reliability in Design,1986,108:348-353
    [176]张立勋,董玉红.机电系统仿真与设计.哈尔滨:哈尔滨工程大学出版社,2006
    [177]孙智民,沈允文,李素有.封闭行星齿轮传动系统的动态特性研究.机械工程学报,2002,38(2):44-48
    [178]刘妹琴,陈际达,廖力清.基于预测控制理论的位置伺服系统设计.电气传动,1997,(2):17-19.
    [179]胡家升,潘红华,苏宏业.预测函数控制系统的闭环性能分析.控制理论与应用,2001,8(5):774-778.
    [180]张彬,江善和,张卫东.一类SISO系统的预测函数控制及其鲁棒稳定性分析.控制理论与应用,2006,23(4):615-620.
    [181]霍炬,曹贵奇,杨明.基于预测控制的PID调节位置跟踪系统的设计.电机与控制学报2004,8(2):127-129.
    [182]Silicon Laboratories. C8051F04x User Description Revision 1.5. USA:Silicon Laboratories Inc.,2005.
    [183]何青,张海岩,张志.基于C8051F的便携式多通道数据采集系统.仪器仪表学报,2006,27(6):140-141.
    [184]Kitchin C, Counts L. A Designer's Guide to Instrumentation Amplifiers,3rd Edition. Analog Devices Inc.,2006.
    [185]He H, Yu B S, Zhang Z H. The Construction of the Embedded System Development Platform Based on μC/OS-Ⅱ. Advances in Intelligent and Soft Computing,2012,168(1): 587-590.
    [186]宁伟.非线性最小二乘测量平差与空间数据误差分析:(博士学位论文).济南:山东科技大学,2005.
    [187]卢海波,蔡珣,熊云奇,等.14.9级螺栓研制及在汽车发动机上的应用.上海交通大学学报,2005,39(7):1105-1108.
    [188]Nassar S, Alkelani A. Effect of Tightening Speed on Clamp Load Distribution in Gasketed Joints. SAE Technical Paper,2006,115(5):811-825.
    [189]段志生,黄琳,王金枝,等.两个系统间的协调控制问题.自动化学报,2003,29(1):14-22.
    [190]Cena G, Valenzano A. An Improved CAN Fieldbus for Industrial Applications. IEEE Transactions on Industrial Electronics,1997,44(4):553-564.
    [191]李佳,朱元.CAN与TTCAN通信延迟时间的分析.清华大学学报,2006,46(2):261-265.
    [192]曹万科.CAN协议车载网络若干关键理论研究:(博士学位论文).沈阳:东北大学,2008.
    [193]张库,刘军,于成,等.基于NetDDE和数据库的综合船舶信息示系统.中国航海,2000,(2):22-26.
    [194]王丽颖.小批量工序质量控制方法及其若干关键技术的研究:(博士学位论文).大连大连交通大学,2007.
    [195]Dudek B M. Quality Estimation of Process with Usage Control Charts Type X-R and Quality Capability of Process Cp, Cpk. Journal of Materials Processing Technology, 2005,162:736-743.
    [196]Vu V T, Yoo D S, Yi M J. A Framework towards OPC Web Service for Process Monitoring and Control.7th International Conference on Advanced Language Processing and Web Information Technology,2008,562-568.
    [197]陆会明,朱耀春,等.控制装置标准化通信-OPC服务器开发设计与应用.北京:机械工业出版社,2010.
    [198]Bercea I, NeAlias D, Cretu S. Optimum Initial Axial Compression due to Preload in an Arrangement of Two Tapered Roller Bearings Part 1:Analysis. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology,2000, 214(2):125-133.
    [199]卫道柱,桂贵生,高雷,等.基于差速拧紧的装载机主动锥齿轮预紧力测量方法.农业工程学报,2009,25(9):105-110.
    [200]Smith, Todd A, Fort W. Axle Assembly Bearing Positioning and Preload Adjustment Tool and Method of Implementing Same. US,583132.2007.
    [201]Szczepanski, Gerald S, Krysztof et al. Adjusting and Maintaining Bearing Preload in an Axle Assembly. US,7794153.2010.
    [202]Aihara S. New Running Torque Formula for Tapered Roller Bearings under Axial Load. ASME Journal of Tribology,1987, (109):471-478.
    [203]Wang W, Wong P L, Zhang Z. Partial EHL Analysis of Rib-Roller End Contact in Tapered Roller Bearings. Tribology International,1996,29(4):313-321.
    [204]Society of Automotive Engineers. Antilock Brake System Review,1992,25:90-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700