玄武岩纤维混杂复合材料性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玄武岩连续纤维是一种绿色、环保的高性能纤维,致力于玄武岩连续纤维及其混杂复合材料的研究不仅可以丰富我国高性能纤维材料的品种,而且极大地扩展了复合材料的性能和应用范围。这在充分发挥单一增强体材料性能优点的同时,通过不同纤维品种的混杂实现了复合材料整体综合性能的可设计性,为实现性能多样化、复合化的先进复合材料设计与制备提供了新的途径。
     玄武岩连续纤维作为一种新型的高性能纤维,其不仅具有较高的力学性能,同时在绝热性、耐腐蚀性以及绝缘性能方面也具有突出的优势,此外该纤维品种还具有优异的性价比,备受材料领域关注。碳纤维作为一种传统的高性能纤维,以其优异的综合性能一直是先进复合材料领域中重要的增强体材料。但是该纤维表面惰性、与基体粘接强度低,影响材料整体性能的发挥,同时该纤维品种价格高,技术由美、日等国垄断,限制对我国的出口。鉴于以上分析,本文根据玄武岩纤维、碳纤维各自的性能优势,以期通过混编结构的设计制备出综合性能优异的混杂复合材料,为材料应用领域提供一种有利于国产化的、低成本的复合材料。
     对玄武岩纤维/碳纤维混编结构进行设计与分析。通过对不同编织结构力学性能、织物密度以及基体树脂浸润性的分析,确定混编织物采用平编织结构以及经纬向编织参数7×7根/cm。根据编织工艺要求以及纤维性能特点,设计了5种不同的混编结构,并对各种混编织物的经纬向拉伸强力与断裂伸长率进行了表征分析,发现在混编织物中玄武岩纤维强度发挥率高于碳纤维。
     对混杂复合材料模压成型工艺进行了研究。首先针对酚醛树脂固化反应特点,进行了预浸料制备工艺研究,通过定量浸渍稳定浸润树脂含量,同时还确定了预固化温度为79℃,预固化时间1.5小时。然后研究了复合材料模压固化制度,确定了50℃升温到110℃保温3~5分钟后加压10MPa,在升温到160℃保温3小时,期间进行3~5此排气的固化制度。按照该固化工艺制备出不同的混编复合材料,研究了复合材料中树脂含量对其性能的影响规律,发现复合材料中酚醛树脂的体积含量在34±2%时,复合材料层合板的力学性能最优。
     对不同混编结构的复合材料性能进行研究,发现随着玄武岩纤维含量的增加,复合材料的拉伸强度、压缩强度和层间剪切强均表现出先增大后减小的趋势。对复合材料热性能和烧蚀性能研究发现玄武岩纤维的引入确实能够改善复合材料的绝热性,同时使复合材料的烧蚀模式是酚醛树脂基体材料的分解、炭化;碳纤维的升华、辐射效应以及玄武岩纤维的熔融、气化效应的耦合作用。
Continuous basalt fiber is a kind of advanced green environmental fiber, so the research on the continuous basalt fiber and the corresponding hybrid composites can not only enrich the varieties of advanced fibers in our country but also expend the properties and the application ranges of the composites. Hybrid fiber composite remains the advantages of the single enhancement body composites and improves the designing of comprehensive properties by mean of hybriding different kind of fibers, which offers a new way to design and manufacture advanced composites that have various properties and combinations.
     As a kind of new and advanced properties fiber, continuous basalt fiber has not only good mechanical properties but also the advantage on the adiabaticty, corrosion resistance and insulation. In addition, this kind of fiber has good performance price ratio, so it receives much concern in material field. As a kind of good traditional fiber, carbon fiber is a kind of very important enhancement body in the field of advanced composites as the result of its good comprehensive properties. But its disadvantages such as the surface inertness and low bonding strength with the matrix limit the comprehensive properties of the composites. Meanwhile the price of carbon fiber is relatively high and the core technology is monopolied by the U.S.A and Japan which limit the exportation to our country. According to the above analysis and the advantages of basalt fiber and carbon fiber, it is expected to manufacture good comprehensive hybrid composites by mean of the design of hybrid structure. It offers the material field a kind of low price composite which is beneficial to localization as well.
     Design and analysis of the basalt fiber/carbon fiber were carried out in this paper. 7×7 bunch/cm for the warp and weft waving parameter and the plain woven fabric were chosen for the hybrid fabrics after the analysis of the mechanical properties, the densities and the infiltrating properties of different kind of fabrics. 5 kind structure of fabrics were designed according to the requirement of woving process and the characteristics of fibers. The tensile strength in the warp and weft direction and the breaking elongation rate of different kind of fabric were tested, and it was found that the strength action rate of the basalt fiber was better than that of the carbon fiber.
     Molding processing of the hybrid composites was studied. First, study on the manufacturing process for the prepreg was carried out according to the characteristics of the phenorlic resin, and the pre-cure temperature and time were chosen for 79℃, 1.5 hours respectively. Second, molding processing was studied. 10MPa pressure should be carried out during the press process, and the critical stage was a period of constant temperature at 110℃, which lasts for 3~5 minutes. The exact holding time for the critical stage could be adjusted according to the type of different fabrics. Then there would be a period of constant temperature compressing at 160℃for 3 hours, and during the whole compressing process, 3~5 times of air venting should be carried out. Different kind of hybrid composites were manufactured according to the processing above and the influence of phenolic resin content in the composites was studied too. It was proved that the mechanical properties could be optimized when the volume fraction of the phenol resin was controlled at the interval of 34±2%.
     Properties of different kind of composites were studied. The tensile strength, compressive strength and interlaminate shear strength of the composites increased firstly and then decreased according to the increment of the basalt fiber in the hybrid composites. According to the studies on the thermal and ablation properties, the introducing of basalt fiber could improve the thermal property. The decomposition and carbonization of the phenolic resin, the sublimation and radiation effect of the carbon fiber and melting and vaporization of the basalt fiber were all belong to the ablation mechanism.
引文
1 M. A. Lopez-Manchado M. Arroyo, Thermal and Dynamic Mechanical Properties of Polypropylene and Short Organic Fiber Composites [J], Polymer. 2000, (41):7761
    2吴人杰复合材料[M].天津:天津大学出版社. 2000, 85~424
    3徐磊新型的高性能纤维—玄武岩纤维的应用[J].新纺织2005, 1:9~17
    4贾丽霞,蒋喜志,吕磊等.玄武岩纤维及其复合材料性能研究.纤维复合材料, No 4, 2005
    5陈阳等玄武岩纤维性能与应用新型建筑材料[J]. 2000, 8:28~30
    6谢尔盖等玄武岩连续纤维材料的应用前景纤维复合材料[J].纤维复合材料2003, 3:17~19
    7 Popvskij V M, Teterin A M, Eltsov A B, etal. Process of production of miner fiber (variants) and gear for its realization[P]. RU Pat, 2211193. 2003
    8尹青山等玻璃纤维工业节能技术.中国建材工业出版社. 1993. 1:58~60
    9南京玻璃纤维研究设计院编.国外玻璃纤维工业概况.中国建材工业出版社. 1978:6~7
    10付中华池窖拉丝大型漏板应用技术.玻璃纤维. 1996, (1):26~30
    11王风山等舟型浅槽六排孔短漏板坩埚拉丝工艺试验.玻璃纤维. 1995, (1):8~11
    12左杰等坩埚法800孔拉丝工艺技术及装置.玻璃纤维. 1996, (4)11~14
    13南京玻璃纤维工业研究设计院编.玻璃纤维的生产及应用.中国建筑工业出版社. 1974:21~23
    14维克托·F·凯伯等生产连续的玄武岩纤维的组合物及方法. CN 10126309A
    15神谷纯生等用于制造玄武岩纤维的方法. CN 1884194A
    16 OSONS Sergey P.等用玄武岩矿石制造连续纤维的方法. CN 1566005A
    17王岚,陈阳,李振伟.连续玄武岩纤维及其复合材料的研究.玻璃钢/复合材料. 2000, (6):22~24
    18 Jiri Militky. Rock into Yarn[J]. Textile Asia, 1995,26(9):100~101
    19 Rabinovich FN, Zueva VN, Makeeva LV. Stability of basalt fibers in a medium of hydrating cement[J]. Glass and Ceramics, 2001, 58:11~12
    20胡奇等连续玄武岩纤维在军工及民用领域的应用[J].高科技纤维与应用,2005, 30(6):8
    21史卫华等混杂纤维复合材料的静态力学性能(Ⅰ).新型碳材料1996.11.4
    22 Manders PW, Bander MG The strength of hybrid glass/carbon fibre composites, part 1: Failure strain enhancement and failure mode[J]. Journal of materials science, 1981, (16):2233-2245
    23 Manders PW, Bander MG The strength of hybrid glass/carbon fibre composites, part 2: Failure strain enhancement and failure mode[J]. Journal of materials science, 1981, (16):2246-2256
    24范赋群等复合材料的统计断裂理论[J].力学与实践, 2002, 22(2):1-5
    25宋焕成等混杂复合材料[M].北京:北京航空航天大学出版社, 1989
    26 Fukunage H, Chou TW, Fukuda H. Probabilistic strength analyses of interlam inated hybrid composites[J]. Composites science technology, 1989, 35:331-345
    27 Zeng QD, Fan FQ, A reandom critical-core theory of micro-damage in interplay hybrid composites 1-first failure and hybrid effect[J]. Composites science and technology, 1993(49):341-348
    28 Zeng QD, Fan FQ, A reandom critical-core theory of micro-damage in interplay hybrid composites The ultimate failure[J]. Composites science and technology, 1994(52):481-487
    29 Byma George B.Cristea Brian Vehicle interior trim component of basalt fibers and thermosetting resin and method of manufacturing the same[P]. US Pat, 2004235378. 2004
    30杨建中混杂纤维复合材料的合理匹配及其在混凝土结构加固中的应用研究[D].汕头,汕头大学, 2001
    31 Adamczak Loic, Benoit Daniel, Kanengieser Thierry, et al. Friction lining for equipment using dry friction, method of manufacturing this friction lining, and friction desk installed with friction lining [P]. J P Pat, 2004099902. 2004
    32 Czigany T. Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: Mechanical properties and acoustic emission study[J]. Composites Science and Technology, 2006, 66:3211
    33 Sim Jongsung, Park Cheolwo, Moon Do Young. Characteristics of basalt fiber as a strengthening material for concrete structures [J]. Composites Part B Eng,2005,36(6~7):504
    34 Friedrich K, J acobs O. On wear synergism in hybrid composites [J]. Compos Sci Technol, 1992, 43:71
    35 Kalaprasad G, et. al. Hybrid effect in the mechanical properties of short sisal/ glass hybrid fiber reinforced low density polyet hylene composites[J]. J Reinf Plast Comp, 1996, 15:48.
    36 Sabeel Ahmed K, et al. Elastic properties, notched strength and fracture criterion in untreated woven jute glass fabric reinforced polyester hybrid composites [J]. Material s & Design, 2007, 28:2287–2294
    37 Czigany T, Vad J.Poloskei. Basalt fiber as a reinforcement of polymer composites [J]. Periodic Polytechnic Mechanical Engineering, 2005, 49(1):3
    38 Rout J. The influence of fiber treatment on t he performance of coirpolyester composites [J]. Composites Science and Technology, 2001, 61:1303-1310
    39颜录科等开发高性能复合材料中使用的新型纤维材料[J].材料导报, 2004, 18(3):61-62
    40樊萍等混杂复合材料的研究进展[J].纺织科技进展,2008, 1:21~22
    41师昌绪主编.材料科学技术百科全书.北京:中国大百科全书出版社, 1955. 322
    42陈绍杰主编.复合材料设计手册.北京:航空工业出版社, 1990. 522

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700