顶锤用YL20.3硬质合金深冷处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
YL20.3硬质合金系钨钴类硬质合金,为制造合成人造金刚石的硬质合金顶锤材料。深冷处理作为一种冷处理工艺能有效改变材料的组织结构,改善合金的性能,从而提高顶锤的质量和正常使用寿命。因此,将深冷处理工艺应用于顶锤用硬质合金材料是一个有实际应用价值的课题。
     本文通过改变深冷处理时间(0-72h)对YL20.3硬质合金烧结成品在-150℃下进行深冷处理,测试了深冷前后材料的维氏硬度、抗压强度、抗弯强度和冲击韧性等力学性能,结果表明深冷处理提高了硬质合金的硬度和抗压强度,并探索出一次2h深冷后微硬度和抗压强度达到最大值。深冷后试样的抗弯强度均有较低程度的下降,不同深冷时间的冲击韧性值与深冷前相比较小范围内上下波动。随后,论文选择2h深冷试样进行多次循环深冷的探索性研究,结果表明深冷后试样的抗压强度值随循环次数的增加有所降低。
     采用X射线衍射对深冷处理前后的硬质合金相结构和表面宏观残余应力的变化情况进行了分析。结合材料力学性能和磁性能的检测结果发现,经过深冷处理,YL20.3硬质合金发生马氏体转变,Co粘结相发生α-Co向ε-Co的转变,合金表面残余压应力有较大程度的提高,相变和应力变化同时作用提高了硬质合金的硬度和抗压强度,相变使得材料饱和磁化强度下降,矫顽磁力升高。
     本文还对深冷处理前后硬质合金的断裂与常规机械疲劳性能进行了研究。疲劳实验结果表明,深冷处理2h有效的提高了合金的疲劳寿命。运用立式双筒微镜观察了合金抗弯试样断口的宏观形貌,分析了材料的断裂行为,利用扫描电子微镜研究了硬质合金的断裂方式,发现抗弯、冲击和低周疲劳试样断裂以沿晶断裂为主,同时存在Co相撕裂,而高周疲劳断口上有较多WC颗粒劈裂现象。疲劳断裂的断裂行为是材料在往复的受力作用下,相界面脱离产生空隙,从而产生裂,裂扩展汇集,直至产生疲劳条带,当达到材料疲劳极限时,瞬间断裂失效。
YL20.3 cemented carbide, a kind of tungsten carbide-cobalt hard metal, is utilized in the manufacture of cemented carbide anvil that plays an important role in synthesis of artificial diamond. Deep cryogenic treatment (DCT) as a kind of cryogenic treatment helps to change the structure and improve the properties of the material in order to improve the quality and life span of anvil. Therefore, it is a valuable subject to do research on DCT in the field of anvil-use cemented carbide.
     In the present work, the cemented carbide samples are subjected to different time of DCT namely 0~72h at -150℃. The response of mechanical properties of YL20.3 alloy to such various hours of treatment is evaluated in terms of microhardness, compressing strength, bending strength and impact toughness. According to the result, after DCT microhardness and compressing strength enhanced and reached maximun after 2h of DCT while bending strength falls a little, and impact toughness fluctuates within a small extend compared to the value before DCT. There is also an attempt to do circular DCT at the base of 2h DCT. However, the compressing strength decreases with the increasing times.
     X-ray diffraction is used here to analyze the phase structure and the surface residual macrostress of the material before and after DCT. The experimental result indicates that martensite transformation occurs in the Co phase, that is, Co phase has a tendency of transformation from a-Co toε-Co, and the residual compressive stress on the surface obviously goes up. These changes give rise to the increasing of hardness and compressing strength. Phase transformation leads to the decline of magnetic saturation and the increase of coercive force.
     Apart from this, the study of fracture and fatigue of YL20.3 cemented carbide is involved in this paper. Sample after 2h of DCT shows higher fatigue strength of the alloy in cyclic compressing test. Macrostructure of bending test sample is obtained from vertical binocular microscope to analyze the fracture behavior. Scanning electronic microscope (SEM) is used to observe the fracture mode. The pictures show that as for the samples of bending test, impact toughness test and low-cycle cyclic compressing test, the brittle fracture of WC/WC boundaries and interfacial fracture of WC/Co boundaries are the main mode, and ductile tearing of Co binder phase also exists. But on the fracture of high-cycle cyclic compression sample, much cleavage fracture of WC particles can be found. The fracture behavior of cyclic compressing test is that, under a cyclic force phase interface divorces, then gap forms, and crack generates, expands, gathers until fatigue ribbon forms, and at the end the material fails.
引文
[1]陈献廷.硬质合金使用手册.第一版.北京:冶金工业出版社,1986,5
    [2]Upadhyaya G S. Cemented Tungsten Carbides Production, Properties, and Testing. Westwood:Noyes Publications,1998,10
    [3]Goldschmidt H J. Intersititial Alloys. London:Butterworths,1967,128
    [4]株洲硬质合金厂.硬质合金生产.北京:冶金工业出版社,1974,10
    [5]马淳安,褚有群,周邦新,等.WC-Co硬质合金的相组成及相变.浙江工业大学学报,2003,31(1):1-6
    [6]刘寿荣.WC-Co硬质合金γ相相变.稀有金属,2000,24(2):101-105
    [7]郭圣达,张正富.WC-Co类硬质合金疲劳特性研究现状.材料导报,2009,23(11):69-72
    [8]张定铨.残余应力对金属疲劳强度的影响.理化检验-物理分册,2002,38(6):231-235
    [9]周惠久,黄明志.金属材料强度学.北京:科学出版社,1989,89
    [10]Torres Y, Anglada M, Llanes L. Fatigue mechanics of WC-Co cemented carbides. International Journal of Refractory Metals and Hard Materials,2001, (19): 341-348
    [11]杨晶.WC-Co硬质合金增强增韧及表面残余应力研究:[天津大学硕士学位论文].天津大学,2005,2-3
    [12]单国钢,张悦,葛启录,等.顶锤失效的综合分析.钢铁研究学报,1995,7(4):56-60
    [13]王国栋.硬质合金生产原理.北京:冶金工业出版社,1988,13
    [14]应金根,傅肃嘉,朱初标,等.棒材用硬质合金复合轧辊的研制.浙江冶金,2007,(2):24-28
    [15]符寒光.复合硬质合金辊环研究的进展.稀有金属与硬质合金,1998,(3):37-41
    [16]张忠健,邱智海.中国硬质合金大制品现状与趋势.新材料产业,2006,(2):48-52
    [17]于启勋,程剑兵.添加稀土元素的硬质合金刀具切削性能的研究.汽车工艺与材料,1998,(8):32-34
    [18]袁逸,汪新义.钇提高YT14硬质合金耐磨性的机制.中国稀土学报,1997,15(1):50-54
    [19]袁逸,邬荫芳.钇在钴基合金和硬质合金中的作用.粉末冶金技术,1995,13(2):93-98
    [20]刘寿荣.稀土优化WC-Co硬质合金强韧性机理.有色金属,1997,49(4):76-81
    [21]刘寿荣,孙景.WC-8Co硬质合金中稀土添加剂的作用.中国稀土学报,1998,16(1):45-49
    [22]谢先娇,唐任正.铈对硬质合金性能和粘结相结构稳定性的影响.稀有金属材料与工程,1999,28(2):113-116
    [23]刘红卫,陈康华.稀土对硬质合金线胀系数及粘结相形态的影响.稀有金属与硬质合金,1999,(3):30-33
    [24]羊建高,熊继.稀土添加剂对硬质合金中钴粘结相马氏体相变的抑制作用.粉末冶金技术,1994,12(1):12-14
    [25]熊继,羊建高.添加稀土的YGR8硬质合金拉丝模研究.粉末冶金技术,1994,12(2):118-121
    [26]Chen J, Wu C H, Gong R S. Influence of rare-earth on properties of cemented carbide:Proceeding of 14th International Plansee Seminar. Austria:Tirol,1997, 100-111
    [27]许崇海,艾兴.稀土对硬质合金刀具材料微观结构和力学性能的影响.稀土,1997,18(3):55-60
    [28]李规华,严兰英.YG6R稀土硬质合金的研究.粉末冶金技术,1994,12(3):206-209
    [29]卫晞,罗振璧,胡宗森,等.nm硬质合金刀具切削性能的研究.机械工程学报,1999,35(1):57-60
    [30]马学鸣,赵凌,嵇罡.机械合金化制备WC-Co纳米硬质合金.上海大学学报(自然科学版),1998,4(2):156-160
    [31]毛昌辉.高能机械研磨纳米结构WC-Co复合粉末的研究.稀有金属,1999,23(3):185-188
    [32]Goren-Muginstein G R, Berger S, Rosen A. Sintering study of nanocrystalline tungsten carbide powders. Nanostructured Materials,1998,10(5):795-804
    [33]Xi X, Pi X, Nie Z, et al. Synthesis and characterization of ultrafine WC-Co by freeze-drying and spark plasma sintering. International Journal of Refractory Metals and Hard Material,2009,27(1):101-104
    [34]李炯义,曹顺华,林信平.盘状WC晶粒硬质合金研究进展.粉末冶金技术,2005,23(5):378-382
    [35]吴恩熙,汪秀全,曾青,等.含板状WC晶粒硬质合金制备方法的研究.硬质合金,2006,23(2):75-78
    [36]Tan G L. Wu X J. Mechanochemical synthesis of nanocrystalline tungsten carbide powders. Powder Metallurgy,1998,41(4):300-302
    [37]Zhu Y T, Manthirman A. A new route for the syntheisis of tungsten carbide-cocalt nanocomposites. Journal of American Ceramic Society,1994,77(10):2777-2778
    [38]Zhongyin Z, Wablberg S, Mingsheng W. Processing of nanostructured WC-Co powder from precursor obtained by co-precipitaion. Nanostructured Materials, 1997,(12):163-166
    [39]刘舜尧,张春友.纳米硬质合金开发与应用.矿冶工程,2000,20(1):70-72
    [40]Li Q Z, Zhang H F, Wang Y Q et al. Nanocrystalline tungsten Carbide encapsulated in carbon shells. Nanostructured Materials,1998,10(2):179-184
    [41]汪中玮,张卫兵,何惧.钴粉形貌和粒度对低钴超细硬质合金性能的影响.粉末冶金工业,2008,18(1):14-18
    [42]张文毓.硬质合金涂层刀具研究进展.稀有金属与硬质合金,2008,36(1):59-62
    [43]谢宏,肖逸峰,贺跃辉,等.硬质合金涂层刀具研究的新进展.中国钨业,2006,21(2):33-36
    [44]朱纪磊,苟立,阎双锋,等.CVD金刚石涂层硬质合金刀具的研究进展.硬质合金,2004,21(3):177-181
    [45]胡兴军.刀具表面涂层技术进展综述.世界制造技术与装备市场,2008,(6):91-94
    [46]马福康.等静压技术.北京:冶金工业出版社,1992,56
    [47]符夷雄,杨敏.热等静压对硬质合金性能的影响.凿岩机械气动工具,1995,(4):16-20
    [48]Agrawal D, Cheng J, Seegopau P et al. Grain growth control in microwave sintering of ultrafine WC-Co composite powder compacts. Powder Metallurgy, 2000,43(1):15-16
    [49]Rdiger K, Dreyer K, Gerdes T et al. Microwave sintering of hardmetals. International Journal of Refractory Metal and Hard Materials,1998,16(4): 409-416
    [50]Wang S W, Chen L D, Hirai T. Densification of Al2O3 powder using spark plasma sintering. Journal of Material Research,2000,15(4):982-987
    [51]Joanna R G, Zavaliangos A. Sintering activation by external electrical field. Material Science and Engineering A,2000,287(2):171-177
    [52]Parasiris A, Hartwig K T. Consolidation of advanced WC-Co powders. International Journal of Refractory Metals and Hard Materials,2000,18(1): 23-31
    [53]周建华,卢伟民.国内外硬质合金生产现状及近期发展动向分析.稀有金属与硬质合金,2006,34(1):36-41
    [54]张立.国内外硬质合金研究和发展动态.有色金属工业,2001,(10):25-27
    [55]冯俊杰,高金华.高速钢刀具深冷处理工艺试验研究.机械工人(热加工),2004,(2):24-27
    [56]陈鼎,黄培云,黎文献.金属材料深冷处理发展概况.热加工工艺,2001,(4):57-59
    [57]佟晓辉.Cr12钢冷冲模深冷处理与耐磨性.机械工程材料,1994,18(3):34-36
    [58]彭惠民.强化工模具性能的两种方法.机械,1993,20(5):38-42
    [59]段春争,李士燕,刘秀芝,等.高碳马氏体深冷处理后分解产物的组织分析.甘肃工业大学学报,1999,25(4):26-29
    [60]陈鼎,黎文献.铝和铝合金的深冷处理.中国有色金属学报,2000,10(6):891-895
    [61]吴恩熙,张平.硬质合金深冷处理.硬质合金,2007,24(2):96-98
    [62]Mohan Lal D, Renganarayanan S, Kalanidhi A. Cryogenic treatment to augment wear resistance of tool and die steels. Cryogenics,2001,41(3):149-155
    [63]郭春霞,李智超.深冷处理对ZL109组织与性能的影响.热加工工艺,2005,(10):40-41
    [64]杨峰,武高辉,孙东立.稳定化处理对LY12铝合金微屈服行为影响的初探.机械工程材料,2003,27(7):6-8
    [65]王秋成,付军,胡晓东,等.深冷处理消除铝合金板材残余应力的建模与仿真.低温工程,2006,(2):45-49
    [66]王秋成,柯映林.深冷处理消除7050铝合金残余应力的研究.浙江大学学报,2003,37(6):748-751
    [67]汤光平,黄文荣.循环处理对铝合金力学性能和组织结构的影响.金属热处理,1998,(5):35-38
    [68]陈秀娟,袁子洲,张劲松.深冷处理对Cu-15Ni-8Sn合金电性能的影响.甘肃工业大学学报,2003,29(2):37-39
    [69]袁子洲,张劲松,陈秀娟,等.Cu15Ni8SnNb合金带材的深冷处理强化及微细结构研究.机械工程材料,2003,27(7):28-29
    [70]李士燕.Cu-Ni-Sn合金在形变加深冷后的组织与性能.甘肃工业大学学报,1996,22(1):49-51
    [71]黄云战,晋芳伟.深冷处理对铜合金组织和性能的影响.金属热处理,2001,26(7):5-6
    [72]钱士强,李曼萍,赵亚平.深冷处理对Al-Cu合金时效的影响.金属热处理,2001,26(12):28-31
    [73]王晓峰,单平,胡绳荪,等.深冷处理对Cr-Zr-Cu电极合金组织影响机理研究.材料工程,2006,(1):57-60
    [74]刘方,刘寿荣.WC-Co硬质合金深冷处理强化机理.金属热处理学报,1997,18(4):57-60
    [75]陈红卫.深冷处理对硬质合金机械性能的影响.硬质合金,1995,12(1):33-35
    [76]刘亚俊,李勇,曾志新,等.YW1硬质合金深冷增强机理的研究.机械工程师,2001,(4):33-35
    [77]单世瑾.硬质合金锪刀的深冷强化处理.硬质合金,1997,14(1):32-36
    [78]Thankur D, Ramamoorthy B, Vijayaraghavan L. Influence of different post treatments on tungsten carbide-cobalt inserts. Materials Letters,2008,62(28): 4403-4406
    [79]张春友.硬质合金顶锤生产和应用技术现状分析.湖南冶金,1993,(4):42-44
    [80]黄钧声,吴惕言,李健纯.测定硬质合金中钴相相组成的X射线衍射法.硬质合金,2003,20(2):109-112
    [81]何平.WC-Co硬质合金的脆断和粘结相的结构.硬质合金,1995,12(2):78-81
    [82]Suzuki H, Kubota H. The influence of binder phase composition on the properties of WC-Co cemented carbides. Planseeber.Pulvermet,1966,14:96-109
    [83]Ho-Yi L, Jinhui Y. Proc.11# Int. Plansee Sem. Metallwerk Plansee, Reutte, Austia, 1985,2:679
    [84]Rudiger O, Exner H E. Application of basic research to the development of hard metals. Powder Metallurgy International,1976,8(1):7-13
    [85]Zhengji T. Effect of immediate quench of As-sintered WC-11%Co alloy on its properties. International Journal of Refractory Metals and Hard Materials,1990, 9(4):223-225
    [86]张劲松,袁子洲,刘秀芝,等.金属材料深冷处理现状.甘肃工业大学学报,2003,29(1):32-35
    [87]任秋凤,靳裕康.WC-Co系硬质合金的组织缺陷对合金冲击性能的影响.粉末冶金技术,1991,9(2):78-82
    [88]钱崇梁,陈瑞琨.WC-Co硬质合金的加工残余应力.中国有色金属学报,1993,3(1):50-53
    [89]张兴华.磁性能在顶锤生产质量控制中的应用.超硬材料工程,2006,18(1):19-24
    [90]Hondremont E. Handbuch der Sonderstahlkunde, Berlin:Spring-Verlag,1956, 2:86
    [91]梁巨烈.磁饱和仪在硬质合金生产中的应用.硬质合金,2001,18(3):175-178
    [92]Gurland J. A study of the effect of carbon content on the structure and properties of sintered WC-Co alloys. Transaction,1954,200:285
    [93]Nighiyama A, Ishida R. The puritiy of the cobalt phase in cemented carbide hard alloys. Transaction, Jap.Inst.Met.,1962,3:185
    [94]陈传尧.疲劳与断裂.武汉:华中科技大学出版社,2007,37
    [95]李晋尧,何平.WC-Co合金断裂行为行径的观察和分析.粉末冶金技术,1996,14(2):83-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700