基于摩擦学设计的氧化锆纳米复合陶瓷模具材料的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对现有陶瓷模具材料应用中所反映出的强度与韧性不足以及使用性能有待改善等问题,综合考虑模具材料、工件材料、工艺条件等影响因素,进行陶瓷模具摩擦学设计。另外提出从材料研制角度并行进行摩擦学设计、变被动设计为主动设计的设想,在设计阶段重点研究可以加强材料耐磨性的组分。在此基础上,将其应用到材料研发过程,采用热压烧结工艺制备一种新型氧化锆纳米复合陶瓷模具材料,并研究其制备工艺、微观结构、力学性能与摩擦磨损性能。
     系统探讨了不同组分含量与粒径、烧结工艺对氧化锆纳米复合陶瓷模具材料力学性能和微观结构的影响,研制成功了具有良好综合力学性能的ZrO2-TiB2-Al2O3纳米复合陶瓷模具材料。在烧结温度1430℃、保温时间60℃/min和压力35MPa条件下复合陶瓷材料的抗弯强度达到1055MPa、断裂韧性为10.57MPa·m1/2、硬度为13.59GPa,与单相氧化锆陶瓷材料相比,其抗弯强度和断裂韧性都得到了大幅度提高。在所制备的氧化锆纳米复合陶瓷模具材料中,优化后的烧结工艺可以将四方相氧化锆几乎全部稳定到室温状态,提高了氧化锆的相变增韧作用;微米TiB2和Al2O3的加入对基体材料起到较强的颗粒增强作用,与纳米ZrO2形成典型的晶内/晶间混合型结构,断裂模式变为沿晶/穿晶混合型断裂模式;另外,包括裂偏转、裂桥联、裂分支和颗粒拔出等各种增韧补强机理的协同作用,使氧化锆纳米复合陶瓷模具材料的综合力学性能得到了较大提高。
     对所制备的氧化锆纳米复合陶瓷模具材料进行了摩擦磨损性能实验研究,采用环境扫描电镜观察磨损表面的微观形貌,并对磨损表面的元素和物相变化进行了电子能谱和X射线衍射分析,研究了ZrO2-TiB2-Al2O3纳米复合陶瓷模具材料的磨损机理。研究表明,组分变化引起的力学性能和微观结构的变化是摩擦磨损性能变化的主要原因;氧化锆纳米复合陶瓷模具材料的摩擦系数随摩擦时间先升高后降低并在某一范围内上下波动,磨损率随磨损时间的延长逐渐降低;氧化锆纳米复合陶瓷模具材料的摩擦系数与磨损率都表现为高速摩擦下小而低速下较大,载荷的过高和过低都会导致磨损率的上升。氧化锆纳米复合陶瓷模具材料的主要磨损机理为机械冷焊和粘着磨损。
From the problems in the application of the existing ceramic die materials such as poor flexural strength, fracture toughness and operational performance, tribological design of the ceramic die is carries out by overall evaluation factors such as die materials, work piece materials, and technological conditions to reduce the friction coefficient and wear rate. Tribological design is carried in parallel with the material development, changes the passive design for the initiative design and reinforcement the wear resistant component in the material design. Then, a new nanocomposite ceramic die material was prepared by vacuum hot pressing technique with the application of the material research and development process, and the processing techniques, microstructure, mechanical properties and the friction and wear behavior was studied.
     The effect of different particle size and content of component powders on the microstructure and mechanical properties of ZrO2-TiB2-Al2O3 nanocomposite ceramic die material is investigated systemically, ZrO2-TiB2-Al2O3 nanocomposite ceramic die material with good mechanical properties was fabricated successfully. The highest flexural strength, fracture toughness and hardness of ZrO2-TiB2-Al2O3 nanocomposite ceramic die material reaches 1055MPa, 10.57MPa·m1/2and 13.59GPa, respectively by means of the vacuum hot pressing technique at 1430℃for 60min at 35MPa. Compared to the single-phase ZrO2 ceramic materials, the flexural strength and fracture toughness has been improved greatly. In the ZrO2 nanocomposite ceramic die materials, the optimum sinter process could nearly completely stabilize the t-ZrO2 to the room temperature condition that can enhance the toughening effect of ZrO2. The particle toughening effect can be achieved by the addition of the micrometer TiB2 and Al2O3 powders, and the typical mixed granular fracture modes were happened. Besides, crack deflection, crack bridging, crack branching and particle pull-out are the significant strengthening and toughening mechanisms. As a result, the comprehensive mechanical properties of ZrO2 nanocomposite ceramic die materials have been greatly enhanced.
     The wear morphology of ZrO2 nanocomposite ceramic die materials were studied using a environment scanning electron microscopy (ESEM), and the element and the ______________________ phase composition were analyzed by energy dispersive analysis spectroscopy (EDAS) and X-ray diffraction (XRD). The friction and wear mechanisms of ZrO2 nanocomposite ceramic die materials were studied. It is indicated that the major cause of the friction and wear behavior is attributied to the changes of the microstructure and the mechanical properties by the component change. The friction coefficient of the ZrO2 nanocomposite ceramic die materials is first increased and then decreased, and reached a relative steady value. The wear rate reduces gradually along with the attrition time. The friction coefficient and wear rate of the ZrO2 nanocomposite ceramic die materials decreases with the increases of the rotational speed,and the over-high or over-low normal load is bad for the wear rate. While the dominant wear mechanisms of ZrO2 nanocomposite ceramic die materials are mechanical interlocking and adhesive wear.
引文
[1]曲庆文,党军建,郭秀萍.模具寿命与摩擦学设计[J].山东理工大学学报,2004,18(1):34-38
    [2] Chonghai Xu, Guangchun Xiao, Rongbo Zhang, Yuemei Feng. Reserach on the Advanced Ceramic Die Materials and Their Properties[J]. Key Eng Maters, 2008, 375-376: 133-137
    [3] T. K. Gupta, J. H. Bechtold, R. C. Kuznicki. Stabilization of Tetragonal Phase in Polycrystalline Zirconia[J]. J. Mater. Sci., 1977, 12: 2421-2426
    [4]孙静.稳定氧化锆陶瓷的研究现状[J].机械工程材料,2005,29(8):1-3
    [5]张航,何泽明.机械加工对陶瓷材料性能的影响[J].硅酸盐通报,1998(6):48-51
    [6]尹邦跃,王零森,林健凉.YCe-TZP陶瓷的低温时效[J].中南工业大学学报,2000,31(4):335-338
    [7]陈海波,谢志鹏.3Y-TZP陶瓷低温下相变与特殊的力学性能[J].稀有金属材料与工程,2009,38(A02):157-160
    [8]申云君,黄校先.氧化钇含量对Al2O3/Y-TZP复相陶瓷的影响[J].无机材料学报,1996,11(2):259-263
    [9]仝建峰,陈大明.部分稳定氧化锆陶瓷的凝胶注模成型工艺[J].硅酸盐学报,2008,36(11):1620-1624
    [10] M.Marmach, et al. Ceramics in Engines-Long Term Stability of Transformation Toughened Zirconia.In: Proceedings of the Third International Pacific Conference on Automotive Engineering[J]. Society of Automobile Engineers, 1985, 2: 4-5
    [11]林振汉.韧性氧化锆陶瓷的力学性能[J].稀有金属快报,2007,26(1):57-68
    [12]赵诗奎.氧化锆基纳微米复合陶瓷模具材料及其摩擦磨损特性研究[D].济南:山东轻工业学院,2009
    [13]张荣波.氧化锆基纳米陶瓷工模具材料研制及其应用基础研究[D].济南:山东轻工业学院,2008
    [14] Guy Anné, Stijn Put, KimVanmeensel, et al.Hard, Tough and Strong ZrO2-WC Composites From Nanosized Powders[J].J.Eur.Ceram.Soc., 2005, 25:55-63
    [15] B.Basu.Microstructure and Mechanical Properties of ZrO2-TiB2 Composites[J]. Journal of Materials Science, 2004, 39:6389-6392
    [16] Dongtao Jiang, et al. ZrO2-WC nanocomposites with superior properties[J]. J. EurCeram Soc, 2007, 27(2-3): 1247-1251
    [17] Rao P G, Iwasa M, Kondoh I, et al. Preparation and Mechanical Properties of Al2O3-15wt%ZrO2 Composites[J]. Scripta Materialia, 2003, 48: 437-441
    [18]王宏志,高濂,归林华,郭景坤.Al2O3-ZrO2(3Y)-SiC纳米复合材料的制备及性能[J].无机材料学报,1999,14(2):280-285
    [19] Kusunose, Sekino, K.Nllhara. Fabrication and Microstructure of S3N4/BN Nanocomposite[J]. J. Am. Ceram. Soc., 2002, 85(111): 2678-2688
    [20]臧建兵,王明智.Al对ZrO2增韧Si3N4烧结体的相变及性能的影响[J].中国有色金属学报,2003,10(3):340-343
    [21] Peter Easton. Ceramic Composites for More Turbines[J]. Mechanical Engineering, 2007, 129(4): 13-15
    [22] Mikio F.. Properties of [Y]ZrO2-Al2O3 and [Y]ZrO2-Al2O3-[Ti or Si]C Composition. J. Am. Ceram. Soc., 1989, 72(2): 236-241
    [23]高濂,王宏志,洪金生.SiC-ZrO2(3Y)- Al2O3纳米复相陶瓷的力学性能和微结构[J].无机材料学报,1999,14(5):795-799
    [24] AlpagutKar, Michael J. Tobyn, Ron Stevens. An Application for Zirconia as a Pharmaceutical Die Set[J]. J. Eur Ceram Soc, 2004, 24(1): 3091-3094
    [25]沈辉,易佑宁.PSZ陶瓷热挤压模的制备及应用研究[J].江苏陶瓷,1996,29(2):10-12
    [26]尹龙卫,李凤照,刘援朝等. TZP-TiC-Al2O3陶瓷复合材料在模具中的应用[J].粉末冶金技术, 1997, 15(4): 274-277
    [27]胡良页,李顺禄,李忠权.纳米复合TZP陶瓷模具的研制[J].佛山陶瓷,2002,(6):8-9
    [28]许煜汾,蒋贤俊.ZTA精密陶瓷拉丝模拉制钨丝的研究[J].合肥工业大学学报(自然科学版),1996,19(4):29-34
    [29]刘军,周飞.热挤压模用陶瓷材料的性能与应用研究[J].稀有金属材料与工程,2003,32(3):232-235
    [30]杨刚,艾云龙,罗军明等.TZP陶瓷拉丝模的开发与应用[J].模具工业,2001,(9):36-38
    [31] Niihara K, Unal N, Nakahira A.Mechanical Properties of (Y-TZP)-alumina- silicon Carbide Nanocomposites and the Phase Stability of Y-TZP Particles in It[J].Mater Sci, 1994, 29(2):164-168
    [32]林振汉,张玲秀,平信义等.热压铸成型3Y-PSZ氧化锆陶瓷的性能研究[J].稀有金属快报,2007,26(1):119-124
    [33]罗军明,杨刚,万润根等.3Y-TZP-Al2O3陶瓷拉拔模材料及应用研究[J].金刚石与磨料磨具工程,2002,(2):41-43
    [34]陈德勇,黎俊初,闵嗣林等.ZrO2-Al2O3两相陶瓷复合材料力学性能与增韧机制的研究[J].南昌航空工业学院学报,2005,19(1):45-48
    [35]周曦亚,方培育.现代陶瓷刀具材料的发展[J].中国陶瓷,2005,41(1):49-51
    [36]黄传真,孙静,刘含莲等.Al2O3含量对ZrO2-Al2O3陶瓷材料微观结构和力学性能的影响[J].粉末冶金技术,2005,23(5):323-326
    [37] Gang Yang, Junchu Li, Gaochao Wang.Influences of ZrO2 Nanoparticles on the Microstructure and Mechanical Behavior of Ce-TZP-Al2O3 Nanocomposites[J]. Journal of Materials Science, 2005, 40:6087-6090
    [38] Sedigheh Salehi, Omer Van der Biest, Jef Vleugels.Electrically Conductive ZrO2-TiN Composites[J].J.Eur.Ceram.Soc., 2006, 26:3173-3179
    [39] Jing Sun, Chuanzhen Huang, Jun Wang, et al.Mechanical Properties and Microstructure of ZrO2-TiN-Al2O3 Composite Ceramics [J].Materials Science and Engineering A, 2006, 416:104-108
    [40] Bikramjit Basu, Jef Vleugels, Omer Van der Biest.Processing and Mechanical Properties of ZrO2-TiB2 Composites[J].J.Eur.Ceram.Soc., 2005, 25:3629- 3637
    [41] Enik Volceanov, Stefania Motoc, Alexandru Traian Abagiu, et al.Influence of Sintering Environment on Zirconia-metal Carbides Characteristics[J].J.Eur. Ceram.Soc., 2007, 27:763-768
    [42]陈锋,方莉俐.Al2O3-ZrO2陶瓷的研究[J].磨料磨具与磨削,1994,(4):22-25
    [43]陈永平,岑远坤,廖运茂.氧化铝-氧化锆纳米复合渗透陶瓷力学性能与微观结构的研究[J].华西口腔医学杂志,2003,21(3):238-240
    [44]马伟民,修稚萌,毕孝国等.Al2O3-ZrO2(Y2O3)复合材料断裂过程中的相变及力学性能[J].金属学报,2005,41(1):93-98
    [45] Garvie R.C. Goee M.F. Mareball. Designing Advanced Refractories with Monoclinic Zirconia Polycrystals[J]. Materials Science Forum, 1988. 5: 34-36
    [46]尹衍升.先进结构陶瓷及其复合材料[M].北京:化学工业出版社,2006,71
    [47]余忠民,邱健明.溶胶-凝胶法制备纳米ZrO2粉体的团聚及控制[J] .广州化工,2000,28(4):159-164
    [48]邹东利,郭亚昆,路学成.纳米陶瓷及其纳米复相陶瓷的研究现状[J].陶瓷,2007,10:11-15
    [49] Niihara K. New Design Concept of Structural Ceramics Nanocomposites[J]. J. Ceram. Soc. Japan, 1991, 99: 974-982
    [50]邵刚勤,段兴龙,袁润章.纳米陶瓷、复相陶瓷及纳米复相陶瓷材料[J].材料科学与工艺,2003,11(2):212-214
    [51]杨辉,张大海,葛曼珍.纳米复合陶瓷研究进展[J].陶瓷学报,1998,19(1):48-51
    [52]靳喜海,高濂.纳米复相陶瓷[J].化工进展,2003,22(6):553-554
    [53]刘含莲,黄传真,秦慧芳等.纳米复合陶瓷材料的增韧补强机理研究进展[J].粉末冶金技术,2004,(2):98-102
    [54]陈玉祥,潘成松,范舟,王霞.Al2O3/SiC纳米复合陶瓷的制备及性能[J].陶瓷学报,2007,28(3):227-231
    [55]刘含莲,黄传真,王随莲.纳米复相陶瓷力学性能研究进展[J].机械工程材料,2004,28(2):38-40
    [56] Honglai Tan, Wei Yang. Toughening Mechanisms of Nano-tom-poslte Ceramics[J].Mechanics of Materials. 1998, 30: 111-123
    [57] Ohji T.Hinano, Nakahira A. et al. Particle/Matrix Interface and Its Role in Creep Inhibition in Al2O3-SiC Carbide Nanocomposites[J]. J. Am.Ceram.Soc, 1996, 79(1): 33-45
    [58]陈达谦.氧化锆陶瓷应用与展望[J].中国陶瓷工业,1994,1(2):24-29
    [59]黄传真,张蕾,孙高祚,王全福,刘含莲.ZrO2/(W, Ti)C陶瓷材料的摩擦磨损性能[J].机械工程材料,2005,29(5):41-44
    [60]孙静.氧化锆基复合陶瓷纺织剪刀材料的研制及其应用基础研究[D].济南:山东大学,2001
    [61]胡首立,刘鸣,吴琼.基于摩擦学的凸轮设计方法论[J].机床与液压,2008,36(5):295-297
    [62]赵运才,蔡伟松,李伟.摩擦学的研究与发展[J].江西理工大学学报,2007,3:29-31
    [63]刘惠文,薛群基,林立.氧化锆陶瓷的摩擦磨损行为与机理[J].摩擦学学报,1996,16(1):6-12
    [64]孙兴伟,李包顺,黄莉萍.氧化锆陶瓷的摩擦磨损性能[J].硅酸盐学报,1996,24(2):166-172
    [65] Ren Sili, Yang Shengrong, Zhao Yapu. Nano-tribological Study on a Super-hydrophobic Film Formed on Rough Aluminium Substrates[J]. Acta Mechanica Sinica, 2004, 20(2): 157-161
    [66] C. M. Mate. Molecular Tribology of Disk Drives[J]. Tribology Letters, 1998, 4(2): 654-658
    [67]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002
    [68] Bikramjit Basu. Development of Nanocrystalline Wear-Resistant Y-TZP Ceramics[J]. J. Am. Ceram. Soc., 2004, 87(9): 1771–1774
    [69]葛中民,候虞铿,温诗铸.耐磨损设计[M].北京:机械工业出版社,1996
    [70]曲庆文,柴山.凸轮传动系统的摩擦学设计[J].润滑与密封,2004,(1):8-10
    [71]白敏丽,丁铁新,董卫军.活塞环-气缸套润滑摩擦研究[J].内燃机学报,2005,23(1):71-75
    [72]胡首立,刘鸣,吴琼.基于摩擦学的凸轮设计方法论[J].机床与液压,2008,36(5):295-297
    [73]曲庆文,钟振远.考虑磨损的齿轮摩擦学设计[J].润滑与密封,2006,(6):157-159
    [74]桂长林.影响内燃机活塞环-缸套擦伤的因素及防擦伤的摩擦学设计[J].摩擦学学报,1998,18(3):283-288
    [75]诸文俊,温正忠.齿轮传动的摩擦学设计[J].机械科学与技术,1999,18(3):390-392
    [76]孟凡明,张优云.运动颗粒对活塞环润滑的影响[J].内燃机学报,2004,22(2):169-175
    [77]王雷刚,黄瑶,刘全坤,刘明霞.陶瓷挤压模摩擦学设计[C].第九届全国特种加工学术年会论文集,2001
    [78]杨丽颖,刘佐民.TiAl基合金的摩擦学设计[J].济南大学学报,2006,20(2):167-171
    [79]曹同坤,邓建新.一种自润滑陶瓷摩擦磨损性能的研究[J].摩擦学学报,2005,25(6):564-568
    [80]艾云龙,刘孜谦,刘长虹,李玲艳,张剑平.SiC/ZrO2/MoSi2纳米复合陶瓷磨损特性的研究[J].金属热处理,2007,32(1):55-58
    [81]曲庆文.主动摩擦学设计方法[J].润滑与密封,2003,(06):12-15
    [82]谢友柏.摩擦学设计主要是摩擦学系统的设计[J].中国机械工程,1999,10(9):968-973
    [83]孟国文,陈大明.陶瓷中氧化锆的研究及应用现状[J].材料导报,1994,(4):43
    [84]郭景坤,诸培南.复相陶瓷材料的设计原则[J].硅酸盐学报,1996,24(1):7-17
    [85]许崇海.复相陶瓷刀具材料设计、仿真及其应用研究[D].济南:山东工业大学,1998
    [86] Richerson D. W.. Modern Ceramic Engineering[M]. New York: Marcel dekker publication, 1982
    [87] Hou Yao-Yong, Gao Ji-Qiang, Zhang Hong-Tu. Eeffct of Al2O3 on Retaining Tetragonal Partieles in Y-TZP Cermaic Matrix[J]. J. Mater. Sci. Lett., 1987, 6(2):246-248
    [88]郭青蔚.金属二元系相图手册[M].化学工业出版社,2009,1:658-659
    [89]许崇海,黄传真,艾兴,赵忠元,孙德明.复相陶瓷刀具材料的物化相容性分析[J].机械科学与技术,2001,20(3):260-261
    [90]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002
    [91]张静婕.基于BP神经网络与GA的纳米复合陶瓷模具材料优化设计与应用[D].济南:山东轻工业学院,2010
    [92]游佩青,颜富士,汪明仪.比体积表面能对纳米氧化铝晶粒成长的影响[J].过程工程学报,2006,6(2):316-319
    [93] B. Basua, O. Vleugelsb, V. Biestb. Microstructure-toughness-wear Relationship of Tetragonal Zirconia Ceramics[J]. J. Eur Ceram Soc., 2004, 24: 2031-2040
    [94] A. Hirvonen, R. Nowak, Y Yamamoto, T Sekino, K Niihara. Fabrication, Structure, Mechanical and Thermal Properties of Zirconia-based Ceramic Nanocomposites[J]. J. Eur Ceram Soc, 2006, 26(8): 1497-1505

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700