制浆造纸白泥与热塑性塑料PVC共混复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学制浆碱回收工段会产生大量的白泥,目前,我国对制浆造纸白泥的处理方法主要为填埋法,但这种方法又会造成地下水污染,给制浆造纸厂带来沉重的固体废弃物处理负担。开发高效制浆造纸白泥应用新技术迫在眉睫。本文筛选出一种优良的白泥表面改性剂,在国内外率先开发出白泥/PVC共混复合材料,揭示了白泥/PVC共混复合材料增强机理,为制浆造纸白泥固体废弃物高效利用开辟一条途径,可大力促进白泥废弃资源向高附加值产品转化,从而加快我国造纸工业和材料工业的发展。
     论文研究了白泥的烘干和粉碎工艺。经过150℃、120min条件干燥后,去除了白泥中的游离水和结晶水,白泥基本达到了绝干。经过30min球磨,白泥的平均粒径从4.28μm降到2.00μm;球磨时间超过30min,白泥的粒径降低幅度不大。综合考虑粒径及成本,白泥的球磨时间以30min为宜。
     论文研究了白泥/PVC共混复合材料热压工艺条件,优化工艺条件为热压温度175℃、热压成型时间12min。论文对钛酸酯A、铝酸酯B与铝酸酯C进行筛选,铝酸酯改性剂B是白泥/PVC共混复合材料较佳的表面改性剂,铝酸酯改性剂B较佳的用量为0.5%。
     论文研究了白泥用量对白泥/PVC共混复合材料性能的影响。结果表明,当白泥用量为25份时,白泥/PVC共混复合材料具有较好的力学性能、热学性能和加工流变性能,复合材料冲击强度28.33KJ·m~(-2),拉伸强度41.51MPa,弯曲强度84.13MPa,弯曲模量4273.67MPa,洛氏硬度59.93HRR,维卡软化温度(VST)112.60℃。与纯PVC材料相比较,冲击强度、拉伸强度、弯曲强度、弯曲模量、维卡软化温度分别提高了87.99%、0.41%、9.74%、35.68%、10.22%、36.32%。
     论文对弹性体改性剂增韧白泥/PVC共混复合材料抗击性能进行了研究。结果表明,ACR是白泥/PVC共混复合材料较为合适的抗冲击改性剂,能有效提高白泥/PVC共混复合材料的冲击强度,对白泥/PVC共混复合材料加工流变性能影响不大,但会降低白泥/PVC共混复合材料拉伸强度、弯曲强度、弯曲模量、硬度和维卡软化温度(VST)。
     论文研究了改性剂对白泥接触角变化的影响,结果表明,钛酸酯A、铝酸酯C、铝酸酯B三种改性剂均可不同程度提高改性白泥的接触角。0.5%铝酸酯B处理后白泥的接触角与聚氯乙烯的接触角较接近,铝酸酯B处理后白泥热重曲线与未改性白泥的热重曲线也有较大区别,说明铝酸酯B改性效果最好,改性处理后的白泥/PVC共混复合材料性能较好。
     论文对改性白泥的红外光谱进行了研究,揭示了白泥表面改性的机理。结果表明,钛酸酯A改性处理且经过抽提的白泥与未改性白泥红外光谱图没有明的区别,表明钛酸酯A与白泥的作用力弱,改性效果较差。铝酸酯B、C改性处理且经过抽提的白泥在2960~2850cm~(-1)出现了一组C-H伸缩振动的吸收峰,是长链烷基所致,改性剂与白泥产生了较强的结合。
     论文对白泥/PVC共混复合材料的微观形态进行分析。纯PVC材料冲击断面凹凸不平且呈片状,未改性白泥/PVC共混复合材料的断面粗糙且多空穴,具有比较明的脆性断裂特征;白泥用量为25份时,材料断面没有明的空穴现象,有明的“拉丝”现象,具有比较明的韧性断裂特征;当白泥的用量超过40份时,材料断面凹凸不平,且出现了大量的空穴,材料的性能受到严重影响;ACR/白泥/PVC共混复合材料的断面具有大量的微孔,呈现“蜂窝状”,具有典型的韧性断裂特征。
     论文研究了白泥/PVC共混复合材料的热失重情况。白泥/PVC共混复合材料热失重可分为四个阶段。不同白泥用量的复合材料快速失重阶段失重率并无太大区别,均达到了70%左右。材料脱HCl降解和无规降解失重起始温度随白泥用量的增加而不断提高。纯PVC材料脱HCl降解和无规降解的失重起始温度分别为220.20℃和451.90℃。白泥用量25份时,白泥/PVC共混复合材料脱HCl降解和无规降解的失重起始温度分别提到246.10℃和462.90℃。
     论文对白泥/PVC共混复合材料的增强机理进行了分析。经过表面改性处理的白泥粒径越小、分散越好、用量越大,则白泥与基体的界面黏结力更强。当复合材料受到应力作用,白泥粒子在引发空穴、银和中止银时能够消耗大量的应力,使得基体不易受到破坏,性能提高。复合材料的性能和微观形态分析表明,复合材料白泥的用量存在一个较佳范围。
Alkali recovery section of chemical pulping will produce abundant of lime mud. At present,landfill is the main treatment of lime mud in our country,but this kind of treatment would lead to groundwater pollution,and it brings in a heavy burden to the solid waste treatment of paper mill.Then it's very urgent to develop a new technology of treating lime mud with high efficiency.One superior surface modifier of lime mud had been screened out in this paper,and it took the lead in developing the technology of lime-mud/PVC blended composite in the world,the reinforce mechanism of the composite has been revealed and a new approach to apply the solid waste of lime mud efficiently has been opened up.The approach could convert the scrap resource of lime mud into the products of high added value,and speed up the development of the papermaking industry and material industry in our country.
     Drying and milling processes of lime mud were studied in this paper.On the condition of 150℃and dried for 120 min,free water and crystal water were removed, then the lime mud became absolutely dry.After milling for 30min,the average diameter of lime mud was decreased from 4.28μm to 2.00μm.When milling time exceeded 30min,the decrease range of average diameter was very little.Considered both the diameter and the cost of lime mud,the optimal milling time should be 30min.
     The hot-pressed process of lime-mud/PVC blended composite was studied.The condition of optimal hot-pressed process was hot-pressed temperature 175℃and molding time 12min.Titanate A,aluminate C and aluminate B were compared,then the results showed that aluminate B was the optimal modifier to the surface of lime mud and its appropriate dosage was 0.5%.
     The influence of lime mud dosage on the properties of lime-mud/PVC blended composite had been studied.The results indicated that,when the lime mud dosage was 25 phr,the lime-mud/PVC blended composite possessed preferable mechanics property,thermal property and processing rheological property:the impact strength of the composite was 28.33KJ·m~(-2),the tensile strength was 41.51MPa,the flexural strength was 84.13MPa,the flexural modulus was 4273.67MPa,the hardness was 59.93 HRR and the VST was 112.60℃.Compared with the properties of pure PVC, the impact strength,tensile strength,flexural strength,flexural modulus,hardness and VST increased respectively 87.99%,0.41%,9.74%,35.68%,10.22%,36.32%.
     The impact of the lime mud/PVC blended composite toughened by the elastomer modifier has been studied.The results showed that,ACR was the comfortable impact modifier for the lime mud/PVC blended composite.It could increase the impact strength efficiently and it nearly had no effect on the rheological property of the composite.But the ACR would reduce the tensile strength,flexural strength,flexural modulus,hardness and VST of the lime mud/PVC blended composite.
     The effect of surface modifier on surface contact angle of lime mud was studied. The results suggested that,the titanate A,aluminate B and aluminate C can increase the surface contact angle of lime mud at different degree.After modified by 0.5% aluminate B,the surface contact angle of lime mud was close to PVC's.The thermal weight loss curves of lime mud modified by aluminate B and unmodified were distinct greatly.It meant that the modified effect of aluminate B was better, correspondingly,the properties of lime mud/PVC blended composite modified by aluminate B were better.
     The research on the surface modifier was carried out by the means of FTIR, revealing the mechanism of lime mud modified by the surface modifier.The FTIR of the lime mud which was modified by titanate A and extracted later had no different with that of unmodified lime mud.It meant that the force between titanate A and lime mud was weak,and the modified effect of titanate A was not good.Among the 2960-2850 cm~(-1)of the lime mud FTIR,we found the lime mud modified by aluminate B or C and extracted later,owned one set of C-H stretch vibration absorption peaks,it benefited from the long-chain alkyl of aluminate modifier and the strong force between lime mud and aluminate.
     The micro-morphology of the composite was analyzed.The results showed that the impact fracture of pure PVC was coarse and showed itself to sheet.The impact fracture of unmodified-lime-mud/PVC blended composite was coarse and had many cavities,the characteristic of brittleness fracture was obvious.When the lime mud dosage was 25 phr,composite fracture had no obvious cavity but had the drawbench phenomenon and it was toughness fracture.When lime mud dosage was 40 phr, composite fracture was coarse and it had lots of cavities,the properties were serious damaged.The fracture of ACR/lime-mud/PVC blended composite had lots of microcellular area,and it looked like honeycomb,and its drawbench phenomenon was obvious,those meant that it was typical toughness fracture.
     Thermal weight loss of lime-mud/PVC blended composite was studied,and it showed that the thermal weight loss could be parted to four phases.It had no much different at the fast weight loss phase of all composites when lime mud dosage was diverse,and the weight loss rate was about 70%.But the weight loss temperature of degradation of HCl phase and ruleless degradation phase increased continually as the lime mud dosage increased.The weight loss temperature of two phases of pure PVC was started respectively from 220.45℃and 451.90.When the lime mud dosage was 25phr,the temperature was increased to 246.10℃and 462.90℃correspondingly.
     The reinforce mechanism of lime-mud/PVC blended composite was analyzed.It revealed that interface binding force between lime mud and PVC matrix would be more stronger when the modified lime mud was more finer,more dispersive and more much dosage.Modified lime mud could iniciate and suspend the craze in the polym matrix,then the composite would not be destroied when it was subjected to stress.But the analysis to the properties and microphology of composite showed that there was an optimal lime mud dosage.
引文
[1]胡宗渊.认真贯彻《造纸产业发展政策》努力构建现代化中国纸业[J].中华纸业,2008,29(2):8-15
    [2]谢来苏,詹怀宇主编.制浆原理与工程[M].北京,中国轻工业出版社,2001:321
    [3]贾小黎.论造纸碱回收工程的节能环保意义[J].中国环保产业.1996(6):16-17
    [4]Nacjit sooch,Hognhi Tran.Characterization and Utilization of Deinking and Pulp Mill Sludge[D].Pulp&Paper Center Annual Report,July,1995
    [5]沈耀良,王宝贞.垃圾填埋场渗滤液的水质特征及其变化规律分析[J].污染防治技术,1999,12(1):10-13
    [6]彭刚,金春姬,曹煊.白泥对填埋场垃圾降解的影响实验研究[J].环境污染与防治,2005,27(4):284-287
    [7]田永淑.氨碱厂碱渣的综合利用[J].中国资源综合利用,2003,(4):20-21
    [8]刘心中.碱渣(白泥)综合利用[J].IM&P化工矿物与加工,2001(3):1-4
    [9]敦宛如.垃圾与白泥混合处置土地资源的开发利用研究[J].山东环境,1997,(3):9-10
    [10]张振营.城市生活垃圾与白泥混合后承载力的试验研究[J].青岛建筑工程学院学报,1996,15(2):34-37
    [11]肖智旺,闫澍旺,孟祥忠.碱渣制工程土的应用研究[J].港工技术,2002(12):36-38
    [13]陈孟秀.论碱渣制水泥[J].纯碱工业,1990(5):59-63
    [12]张珂,俞正千.麦草浆碱回收技南[M].北京:中国轻工业出版社,1999
    [14]青岛市白泥综合利用研讨会资料.青岛:1997
    [15]姚光裕.造纸造纸污泥生产填料的方法[J].造纸信息,2004(12):27
    [16]侯贵华.粉煤灰碱渣砖的研制[J].新型墙体材料与施工,2003,(6):6-8
    [17]李文蛟.黑液碱回收白泥与煤粉混烧技术[J].中国造纸2004,23(4):24-25
    [18]包宗德.用白泥生产去污粉.纸和造纸,1992(2):47
    [19]周永祥.白泥氯盐法处理及在建筑涂料上的应用[J].轻工环保,1990(4):1
    [20]R G Raj,B V Kokta.Reinforcing High Density Polyethylene with Cellulosic Fibers Ⅰ:The Effect of Additives on Fiber Dispersion and Mechanical Properties[J].Polym Eng Sci.,1991,31(18):1358-1362
    [21]刘亚群,刘亚青.高填充量的滑石粉/聚乙烯材料流变性能的研究[J].华北工学院学报, 2000,21(2):182-184
    [22]舒中俊.聚乙烯/粘土纳米复合材料燃烧性能研究[J].工程塑科应用,2003,31(6):43-45
    [23]陆桂娜,李树材.无机纳米分体改性聚乙烯防雾滴膜[J].合成树脂及塑料,2004,21:51-54
    [24]梁琦,贾润礼.石墨和短纤维填充聚乙烯抗静电材料的研究[J].塑料,2007,36(2):23-25
    [25]刘欣萍.无机粉体氧化钙改性聚乙烯的应用研究[J].福建师范大学学报自然科学版,2006,22(3):68-70,117
    [26]Yu D M,Wu J S,Zhou LM,etc.Potassium titanate whiskers enhanced PP / PA alloy of dielectric properties and mechanical properties[J].Composed Sci &Tech,2000,60:499
    [27]TjongSC,MengYZ.J Appl polym Sci,1998,70:431
    [28]M Z Rong.Machniam of particulate filled polyproplyene finite plastic deformation and fracture[J].Mater.Sci.Lett,2001,16(6):1159-1164
    [29]M Sumito,Y Tsuham,K Miyasaka.Jensile yield streed of PP composed filled with untrafine particles[J].Journal of Materials Science,1993,18(7):1785-1796
    [30]Y W Leong,M B Abu Bakar,Z A Mohd Ishak,A Ariffin.Characterization of Talc/Calcium Carbonate Filled Polypropylene Hybrid Composites Weathered in A Natural Environ -ment.Polymer Degradation and STability[J],2004,83:411 - 422
    [31]李春,辛忠.贝壳粉在聚丙烯树脂改性中的应用研究[J].中国塑料,2007,21(3):84-88
    [32]雷文,张曙.纳米氧化铝改性聚丙烯力学性能的研究[J].塑料科技,2007,35(9):54-58
    [33]M Klein,G P Hellann.Toughened blengs of PS and PB filled with chalk[J].J Appl Polym Sci,1996,60:981
    [34]夏新江,王炼石,顾为民,等.粉末SBR-g-St的制备及其对PS的增韧作用[J].中国塑料,1998,12(4):45
    [35]章文贡,林美娟,王文.三异丁氧基混合稀土增韧聚苯乙烯的研究[J].高分子学报,2002,(2):213-216
    [36]熊传溪.超微细Al_2O_3增韧增强PS的研究[J].高分子材料科学与工程,1994,4:69-73
    [37]翁盛光.纳米碳酸钙/聚苯乙烯原位复合材料的制备及表征[J].过程工程学报,2007,7(4):790-795
    [38]Kumuchi T,Ohta T.Energy absorption in blendeds of polycar- bonate with AIDS and SAN.J.Mater.Sci.,1984,19:1699-1709
    [39]C Y Tang,J Z Liang.A Study of The Melt Flow Behaviour of ABS/CaCO_3 Composites [J].Journal of Materials Processing Technology,2003,138:408-410
    [40]穆秀玲,温丽艳,李文海.阻燃ABS树脂的研制[J].炼油与化工,2003,14(2):16-17
    [41]杨欣华,刘颖,吴大鸣.纳米Mg(OH)_2的分散性对ABS阻燃性及加工流动性的影响[J].塑料工业,2004,32(12):33-35
    [42]Gupta A K,Jain A K,Ratnam B K,etc.Studies on binary and ternary blendeds of polypro -pylene with ABS and LDPE.Ⅱ.Impact and tensile properties[J].Journal of Applied Polymer Science,1990,39(3):515-530
    [43]Park J H,Sung W M,Hyun J C,etc.The effects of blended composition and compatibilizer on the mechanical properties of the PP/SAN and the PP/ABS blendeds[J].Polymer (KOREA),2002,26(1):53-60.
    [44]周丽玲,蔺玉胜,杨静漪,等.ABS增韧聚氛乙烯的结构形态和增韧机理[J].中国塑料,2001,15(10):27-30
    [45]Jordan Roy Nelson,W Kent Wissing.PVC melt Stability relationship to impurity chemistry of carbon black[J].Carbon,1986,24(2):123-125
    [46]T Peprnicek,J Duchet,L Kovarova,et al.Poly(vinyl chloride)/clay nanocomposites:X-ray diffraction,thermal and rheological behaviour[J].polymer Degradation and sTab.ility,2006,91(8):1855-1860
    [47]Baltazar M A Pedro,Elisabeth E C Monteiro,Jo Dweck,et al.PVC and Agalmatolite composite characterization[J].Poly Testing,2001(20):269-273
    [48]Fenglin Yang,Vladimir Hlavacek.Improvement of PVC wearability by addition of additives[J].Power Technology,1999,103:182-188
    [49]Tamer Karayildirim,Jale Yanik,Mithat Yuksel,etc.The effect of some fillers on PVC degradation[J].J.Anal.Appl.Pyrolysis,2006,75:112-119.
    [50]刘青喜,周兴平,解孝林.原位插层聚合制备PVC/蒙脱土纳米复合材料[J].聚氯乙烯.2002(02):11-13
    [51]胡圣飞.纳米级CaCO_3粒子对PVC增韧增强研究[J].中国塑料,1999,13(6):25-28
    [52]张立峰,黄志明,包永忠,等.原位聚合法制备PVC/纳米CaCO_3复合建材专用树脂[J].聚氯乙烯,2001,(2):10-13
    [53]汪忠清,镇红云,陆金贵.改性碳酸钙在聚氯乙烯中的应用研究[J].塑料科技,2003,(1):40-42
    [54]张云怀,张丙怀.钛酸酯活化粉煤灰微珠填充PVC板材研究[J].工程塑料应用,2001,29(3):30-31
    [55]Shang Wenyu,etc.Proceeding of the IEEE International Conference on Properties and Applications of Dielectric Materials,2000,1:431
    [56]陈绪煌,徐声钧,李纯清.氯化乙丙橡胶增容PVC/SBS共混体系的研究[J].现代塑料加工应用,1998,10(6):1-3
    [57]王炼石,夏明飞,周奕雨.粉末NBR对PVC的增韧作用[J].塑料工业,1999,27(5):15-16
    [58]吴培熙,张留成.聚合物共混改性[M].中国轻工业出版社,2001:136
    [56]周丽玲,藺玉胜.CPE增韧聚氯乙烯的结构形态和增韧机理[J].中国塑料,2002,16(11):36-39
    [60]周丽玲等.ABS增韧硬质聚氯乙烯的结构形态和增韧机理[J].中国塑料,2001,15(10):27-30
    [61]闫里选,张为民,张金弟等.PVC/ABS合金体系微观结构与宏观性能的研究[J].聚氯乙烯,1996,(5):1-7
    [62]王炼石,蔡彤,吴向东,等.粉末改性SBR对PVC的增韧作用[J].塑料工业,1997,(3):102-108
    [63]李远,唐颂超,张震德,等.硬质PVC/ACR共混体系的增韧机理研究[J].功能高分子学报,2001,14:199-202.
    [64]温绍国,翁志学,黄志明,等.抗冲击改性剂ACR的组成与粒径对R-PVC的应用性能的影响[J].中国塑料,1997,11(5):53-58.
    [65]侯斌,王建民,李凤岭,等.刚性粒子PS改善PVC抗冲击性能的研究[J].塑料,1985,(5):13-16
    [66]王建民,李风玲.PS对PVC增韧机理的研究[J].合成树脂及塑料,1996,13(3):11-14.
    [67]苏妤,黄锐,蔡碧华,等.刚性聚合物对PVC/CPE共混物的增强与增韧[J].中国塑料,1998,(1):47-50
    [68]黄锐.一类新型PVC改性剂-类苯乙烯[J].塑料科技,2000,(2):1-3
    [69]Qiong Zhou,etcl.Modification of polyvinyl chloride/chlorinated polyethylene blendeds with ultrafine particlesof polystyrene[J].European Polymer Journal,2000,36:1735-1740
    [70]曾振声.硫酸盐法制浆碱回收苛化白泥综合利用[J].中国造纸.1999,18(6):66-68.
    [71]渠华.影响预分解短窑熟料质量的因素的探讨[J].水泥.1998(06):5-8.
    [72]李光明.中国碳酸钙标准[J].无机盐工业,2005,37(1):53-54.
    [73]林师沛.聚氯乙烯塑料配方设计指南.化学工业出版社,北京,2002:47.
    [74]何文,张旭东,王世峰.造纸白泥低温合成硅灰石在快烧釉面砖中的应用研究[J].化工科技,2004,12(1):18-21
    [75]邹兴.纳米粉制备过程中团聚现象的探讨.粉末冶金工业,2004,14(5):24-27
    [76]张立新.钛酸酯偶联剂的应用.辽宁化工,2005,34(6):268-270
    [77]赵振华.钛酸酯对人与环境潜在危害的研究概况.环境化学,1991,10(3):64-68
    [78]张萍,赵树高 译.聚合物材料--结构·性能·应用[M].北京,化学工业出版社,2007:233
    [79]李远.硬质PVC/ACR共混体系的增韧机理研究[J].功能高分子学报,2001,14(6):199-203
    [80]左建东,龚攀.核壳型粒子改性聚氯乙烯的发展[J].现代塑料加工应用,2006,18(5):61-64
    [81]曹庆辉.CPE/PVC混合体的改性及机理的探讨[J].上海塑料,2001,(1):18-20
    [82]杨晓华.表面处理剂对纳米碳酸钙表面性能的影响.现代塑料加工应用,2005,17(2):41-43
    [83]瞿雄伟.钛酸酯偶联剂在碳酸钙填充PVC中的应用研究.河北工业大学学报,2001,30(1):84-88
    [84]Bucknall C B.Toughened Plastics[M].America:Applied Science Publishers,1977:150
    [85]Bacaloglu R,Fisch M,Degradation and Stabilization of poly-(vinyl chloride):V.Reaction mechanism of polyvinyl chloride degradation[J].Polym Degrade Stab.,1995,47(1):33-57
    [86]郑学刚.PVC的热失重和热解动力学[J].华南理工大学学报,2003,29(4):346-350
    [87]沈吉敏.聚氯乙烯在热处理过程中氯释放特性的研究[J].中国矿业大学学报,2003,32(6):717-721
    [88]Tamer Karayildirim,Jale Yanik,Mithat Yuksel,etc.The effect of some fillers on PVC degradation[J].J.Appl.Pyrolysis,2006,75:112-119
    [89]李东明,漆宗能.碳酸钙增强聚丙烯复合材料的断裂韧性[J].高分子材料科学与工程, 1991,7(2):18-25
    [90]傅政.高分子材料强度及破坏行为[M].北京:化学工业出版社,2005:83-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700