受限空间中液体乙醇微尺度扩散火焰的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验是对液体燃料(乙醇)微尺度扩散燃烧火焰的研究。微动力源是一个新兴的科技领域,它是在微型机械设备制造技术最近取得发展的基础上进行的,而微燃烧的研究是制造微机电设备的基础。因此,微尺度火焰的燃烧特性及微燃烧器技术的研究对基于碳氢燃料燃烧的微动力系统非常重要。微尺度燃烧具有特征长度很小,其流动、传热和燃烧具有的特性,与大尺寸的燃烧系统有许多不同。目前国内外对在微小尺度条件下火焰燃烧特性的基础研究还比较少。
     本文在课题组前面研究成果的基础上,主要对受限空间下液体乙醇微尺度扩散燃烧火焰进行了实验研究。实验采用无水乙醇作为液体燃料,以陶瓷管和石英玻璃管作为燃烧器,用微量注射泵加注射器的方法输送燃料并对燃料流量大小进行控制,用体式显微镜配以数字摄像头及计算机观测火焰,用ProgRes Capture basic软件抓拍火焰图像,用S型热电偶进行温度测量,用石英玻璃管构造受限空间等。
     本文对几种不同规格的燃烧器(内径为1.0mm和0.6mm的陶瓷管、内径为1.0mm的石英玻璃管)进行了对比分析,为其他实验选择合适的燃烧器提供依据,在此基础上研究了受限空间对燃烧火焰的结构、温度、稳燃范围和汽化深度的影响。
     实验结果表明,不同材质和规格的燃烧器对液体乙醇微尺度扩散燃烧火焰的高、宽、稳燃极限等都有很大的影响,内径为1.0mm的陶瓷管燃烧器最为优质,适合于普通的微燃烧实验,而内径为1.0mm的石英玻璃管燃烧器具有透明的特点,可用于研究微燃烧的汽化深度变化规律。流量一定时,同一受限空间中不同位置对液体乙醇微尺度燃烧火焰的形态没有影响或影响不大。同一流量时,受限空间的火焰尺寸小于自由空间下的火焰尺寸;受限空间对火焰的稳定燃烧范围有一定的影响,存在着某一个大小的受限空间,使得火焰稳定燃烧的范围最大;随着流量的增大,火焰温度逐渐升高,相同流量下,受限空间下的火焰温度比自由空间中的高。无论是在受限空间还是自由空间下,液体乙醇微尺度燃烧的汽化深度均随流量的增加而减小;在相同流量下,随着受限空间的增大,液体乙醇微尺度扩散燃烧的汽化深度增大,自由空间下的汽化深度比受限空间下的汽化深度大。最后还介绍了实验过程中导致燃烧火焰不稳定的一些影响因素,并提出了解决方法,为课题组以后的实验开展提供参考。
This study is based on the small-scale jet diffusion flame of liquid fuel (ethanol). Micro power is an emerging technology field. It is based on the development of the micro mechanical equipment manufacturing technology. And the micro-combustion research is the basis for manufacturing MEMS devices. So the characteristics of micro combustion and micro burner technology are very important for micro-power systems based on hydrocarbon fuel combustion. The characteristic length about micro-combustion system is small, and its flow, heat transfer and combustion have many different characteristic that large size of the combustion systems has. At present, the basic research about liquid fuel combustion characteristics in the small scale is a little few at home and abroad.
     This paper based on the basis research achievements of our discussion group. Mainly study the small jet diffusion flame in the confined space by experiments. Use liquid anhydrous ethanol as fuel. Ceramic tubes and quartz glass tube as burners. With the method of syringe pump connected syringe to transport fuels and control flow rate. Stereological microscope supported with digital camera and computer observing flames. Use the software of ProgRes 'capture basic capturing flame images and s-type thermocouple measuring temperature. Using quartz glass tube structure confined space.
     In order to provide basis for other experiments choosing appropriate burners, this paper Contrast analysis several different specifications of the burner that our laboratory has. On this basis, we studied the influences of confined space to combustion flame’s structure, temperature, stable-combustion scope and vaporization depth.
     Experimental results show that different materials and specifications of the burner has great influence on liquid ethanol micro-scale diffusion combustion flame’s high, wide and stable-combustion limit. the most excellent one is the inner diameter of 1.0mm ceramic tube burner. It is suited for other ordinary micro burning experiments. Because the inner diameter of 1.0 mm quartz glass tube burner has the characteristics of transparent, it can be used to study the micro burning vaporization depth change rules. Under the same flow, different parts of the same confined space to liquid ethanol micro-scale flame shape without the influence or ignored. And the flame size is smaller in confined space than the freedom space. Confined space also has certain effect on the stable combustion flame range. There exist a certain size confined space make the scope of stable combustion flame biggest. The temperature of flame is increasing gradually with the increase of flow. The flame temperature is higher under confined space than free space with the same flow. Liquid ethanol micro-scale flaming combustion vaporization depth with the increase of flow is decreased. The vaporization depth is increased along with the increase of confined space size. Finally, we introduce the influencing factors which caused combustion flame unstable in experimental process and put forward the solutions. Provide reference for our discussion group doing further experiments.
引文
[1] J. Warnatz, U. Maas, R. W. Dibble, Combustion: Physical and Chemical Fundamentals,Modeling and Simulation, Experiments, Pollutant Formation: Springer, 2001
    [2] Fernandez Pello A C. Micro2power generation using combustion :Issues and approaches [J ] . Proceedings of Combustion Institute ,2002 ,29 : 883-899.
    [3]陶然,权晓波,徐建中.微尺度研究中的几个问题[J].工程热物理学报,2001,22(5):575-577
    [4]凌智勇,丁建宁,杨继昌等.微流动的研究现状及影响因素[J].江苏大学学报(自然科学版),2002,23(6):1-5
    [5]黄良甫,贾付云.空间微机电系统的研究与进展[J].真空与低温,2002,8(4):187-196
    [6]朱健.MEMS技术的发展与应用[J].半导体技术,2003,28(1):29-32
    [7]黄显锋.微尺度扩散火焰特性的数值解析[J].工程热物理学报. 2005,26(5):883-886
    [8]周力行.燃烧理论和化学流体力学[M].北京:科学出版社.1986
    [9]严传俊,范玮.燃烧学[M].西安:西北工业大学出版社2005.8:1-4
    [10]辅维镳,张永廉,王清安.燃烧学[M].北京:高等教育出版社1989.4:1-2
    [11] A.G.Gaydon & H.G.Wolfhand,王方译.火焰学[M].北京市:中国科学技术出版社,1994:84-85
    [12]严传俊,范玮.燃烧学[M].西安:西北工业大学出版社,2006:163-164
    [13]徐涛,杨泽亮,甘云华.基于微尺度的燃烧特性研究进展[J].广州航海高等专科学校学报, 2009,17(3):4-8.
    [14]岑可法.燃烧理论与污染控制[M].北京:机械工业出版社.2004.3:204-205
    [15]陈义良,张孝春,孙慈,季鹤鸣.燃烧原理[M].北京:航空工业出版社,1992.3:293
    [16]姜正侯.同济大学.燃气燃烧与应用[M].北京:中国建筑工业出版社,1988:92-93
    [17] Ban H,Venkatesh S,Saito K.Convection-diffusion controlled laminar micro flames[J].J of Heat Transfer,1994,116:542-959.
    [18] Nakamura Y, kubotaA, YamashitaH, et al. Near extinction flame structure of micro-diffusion flame [C]// The Int Sym on Micro-Mechanical Engineering. Japan, 2003, ISMME 2003-111.
    [19] Ida T, Fuchihata M, Mizutani Y. Microscopic diffusion flame structure with microflames[C]// Proceeding of the Third International Symposium on Scale Modeling. Nagoya Japan 2000, ISME
    [20] P.B.SUNDERLAND、D.L.URBAN,and Z.G. YUAN Shape of Nonbuoyant round luminousdiffusion flames Combustion and Flame 116:415-431
    [21]孔文俊等.重力对扩散射流火焰动态特性的影响[J].工程热物理学报. 2000,21(3):373-377
    [22]杜文锋等.微重力环境中的蜡烛火焰[J].工程热物理学报. 2000,21(4):515-519
    [23] Chao,Y.C.,Lee M.J.,and Jeng,M.S An Experimental Study of the Stabilization of the Lifted Jet Diffusion Flame Using Molecular Rayleigh Scattering Technique Institute of Aeronautics and Astronautics National Cheng Kung University Tainan,Taiwan,70101,R.O.C
    [24] A. V. Isaev mechanism of in-flame gasification of disperse carbon in diffusion combustion of hydrocarbons Chemistry and Technology of Fuels and Oils, Vol. 40, No. 5, 2004
    [25]王琼.燃气燃烧火焰燃烧过程光学测量方法研究[D].浙江:浙江大学,2005.3
    [26]袁理明.二维线性湍流浮力扩散火焰高度[J].中国科学技术大学学报. 1997,27(1):79-83
    [27]吕欣荣等.湍流扩散燃烧的层流小火焰理论及模型[R].中国航海学会2002年全国船舶机电学术会议:73-76
    [28]夏云春,王清安.磁场对扩散火焰特性的影响[J].火灾科学,2002,11(4):240-244
    [29] YUNG-CHENG CHEN and ROBERT W. BILGER Stabilization Mechanisms of Lifted Laminar Flames in Axisymmetric Jet Flows COMBUSTION AND FLAME 123:23–45 (2000)
    [30]王宇,姚强,王世昌,王翠萍,王欣怡.本生灯教学实验台改良及实验数据处理[J].实验技术与管理,2005,22(5):51-54
    [31]王海峰,陈义良,董刚,朱雯明.拉伸层流扩散火焰面结构及熄火的研究.工程热物理学报,2003,24(4):695-698
    [32]王宇,姚强.电场控制火焰中细颗粒生成及分布的研究进展[J].煤炭转化. 2005,28(4): 86-91
    [33]蒋利桥,赵黛青等.微尺度甲烷扩散火焰及其熄灭特性.燃烧科学与技术,2007,13(2):183-183
    [34]何琼,赵黛青,汪小憨等.喷管内传递特性对微尺度扩散火焰的影响[J].燃烧科学与技术.2009,15(3):280-285
    [35]周璟.乙醇燃料小型扩散火焰实验研究[D].广州:华南理工大学,2006
    [36]赖伟其.液体燃料射流扩散小火焰的实验研究[D].广州:华南理工大学,2007
    [37]杨泽亮,刘志成,甘云华.液体燃料小尺度扩散火焰影响因素分析[J].顺德职业技术学院学报,2009,7(4):15-18
    [38]程静.小尺度乙醇燃料扩散火焰的实验研究[D].广州:华南理工大学,2008
    [39]杨泽亮,甘云华,赖伟其等.液体燃料扩散小火焰的实验研究[J].热科学与技术,2009,8(2):151-155
    [40]陈春香,杨泽亮,甘云华.电场作用下扩散小火焰实验分析[J].节能, 2009,(8):16-18
    [41]杨泽亮,程静,甘云华.小尺度乙醇扩散火焰及管壁温度场的实验研究[J].热科学与技术,2009,8(1):44-48
    [42]杨泽亮,薛峰,甘云华.陶瓷管作燃烧器的乙醇扩散小火焰实验研究[J].热科学与技术,2008,7(4):367-372
    [43]杨泽亮,董觉非,甘云华.电场作用下乙醇汽化及其扩散火焰特性的实验研究[J].热科学与技术,2008,7(3):279-284
    [44] Yang Zeliang, Xu Tao, Gan Yunhua. Experimental study on the diffusion flame using liquid ethanol as fuel in mini-scale[C]. Proceedings of the ASME Micro/Nanoscale Heat Transfer International Conference, Tainan, Taiwan, 2008.
    [45] Gan Yunhua, Xue Feng, Yang Zeliang.Experimental study on the diffusion flame from small ceramic tube[C]. 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 2010.
    [46] Yang Zeliang; Cheng Jing; Xu Tao; Gan Yunhua. Experimental study of small diffusion flame under strong electric field[C]. 2008 Proceedings of the ASME Micro/Nanoscale Heat Transfer International Conference, Tainan, Taiwan,2008.
    [47]杨泽亮,陈邵有,甘云华等.磁场下液体乙醇微尺度扩散火焰的实验研究[J].华南理工大学学报(自然科学版),2010,38(3):114-117
    [48]甘云华,陈邵有,杨泽亮等.液体乙醇微尺度扩散火焰高度的影响因素研究[J].工程热物理学报,2010,31(11):1957-1960
    [49]陈邵有.电场与受限空间中微尺度扩散火焰的实验研究[D].广州:华南理工大学,2008
    [50]杨泽亮,周璟,赖伟其.乙醇燃料小型扩散火焰图像实验研究.中国教育学会工程热物理专业委员会第十二届全国学术会议:898-902
    [51]章克昌,吴佩琮.酒精工业手册[M].轻工业出版社,1989.12
    [52]陈良才,吕锋杰,茹更生,等.微小流量的光学测量方法探讨[J].计量技术,2005, 4:18-20
    [53]黄素逸.动力工程现代测试技术[M].武汉:华中科技大学出版社,2001:163-168
    [54] FLIR AGEMA Report 5.4 Operating Manual. 1999
    [55]蔡武昌.流程工业用小流量超声流量计[J].石油化工自动化,2003,5:62-64
    [56]胡涛,王鹰.一种简单的小流量自动检测方法[J].自动化与仪表,1999,14(2):l8-10
    [57]杨鲁伟,陈听宽,胡志宏.一种容积法小流量研究[J].实验力学,1996,11(3):316-320
    [58]陈效鹏,董绍彤,程久生,等.电雾化装置及雾化模型研究[J].实验力学,2000,15(1):97-103
    [59]郝红伟,施光凯. Origin 6.0实用教程.北京:中国电力出版社,2000.
    [60]叶卫平,方安平等. Origin 7.0科技绘图及数据分析.机械工业出版社,2004.
    [61]袁恩熙.工程流体力学[M].北京:石油工业出版社,1998年:82-85.
    [62]许晋源.燃烧学[M],北京:机械工业出版社1980:8-9
    [63]刘外丽,汪军,李张硕.进气温度对微型燃机燃烧室污染物排放性能的影响[J].能源研究与信息,2009,25(4):204-207
    [64] Hachert C L, Ellzey J L, Ezekoye O A. Effects of thermal boundary conditions on flame shape and quenching in ducts[J]. Combustion and Flame. 112(1998) 73-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700