42CrMo钢塑性成形中的损伤开裂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在金属材料的塑性加工中,损伤开裂是影响工件成形性能的重要因素之一,也逐渐成为塑性加工领域的研究热点。但是,如何准确描述塑性成形中的损伤开裂仍是一个难题。本文主要是以典型大锻件材料42CrMo钢为研究对象,建立了一种适用于该材料的韧性开裂损伤模型,并分析其锻造过程中的损伤演化规律。研究内容与主要成果包括以下四方面:
     通过热模拟试验,获得了典型大锻件材料42CrMo钢高温拉伸时的应力应变数据,结合微观组织与塑性理论深入分析了该材料的高温流变特性,建立了基于Zeller-Hollomon参数的高温流变本构方程。
     通过试探法确定了有限元模拟所用的材料属性;在连续介质力学框架下,引入变形温度与应变速率对材料损伤的影响,改进了Freudentha、Cockroft-Latham、Normalized C-L三种常用的韧性断裂准则,并进一步修正了Normalized C-L准则的改进模型,最终建立了适用于42CrMo钢的韧性开裂损伤模型,其预测结果与试验吻合很好,有效地证明了在建立大锻件材料的损伤开裂模型时,必须考虑变形温度和应变速率对损伤的影响。
     利用有限元计算的方法,研究了42CrMo (?)冈在锻造过程中的损伤程度及分布情况。结果表明:当温度为1200℃时,材料出现损伤的极限压下率为44%;当温度为950℃时,材料出现损伤的极限压下率为53%。此结果与试验结果相吻合,充分说明了所建立损伤开裂模型适用于该研究材料的锻造过程。
     通过有限元模拟了典型尺寸锻件的锻造过程,讨论了料宽比、砧宽比、变形温度、应变速率对材料损伤演化的影响规律,获得了不同变形工艺下的成形极限图。结果表明:变形温度与变形速率对材料锻造过程中的损伤影响较大,而料宽比与砧宽比对其影响较小,可以忽略;当速率为0.3s-1,温度为1150℃时,大锻件在锻造过程中的塑性最好,适于高温锻造。
In the hot forming process of metals or alloys, damage and fracture is one of the important factors affecting the final product quality, and also gradually becomes a research focus in plastic processing field. However, to describe the damage and fracture in hot forming process accurately is still a big problem. A ductile damage model is put forward for 42CrMo alloy, which is typical material for large forgings. The damage evolution behavior during the forging process is analyzed. The main contents of the dissertation include the following four parts:
     The high temperature tensile true stress-true strain curves of 42CrMo are obtained through thermal simulation experiments. The rheological properties of high temperature deformation for the studied material are discussed through microstructure and plasticity theory. The constitutive equation of the material at high temperature is established by introducing Zeller-Hollomon parameter.
     Based on the DEFORM-3D computing platform, the material properties for the finite element simulation are amended by the method of trial tests. Under the framework of continuum mechanics, three commonly used ductile damage models, including Freudenthal model, Cockroft-Latham model and Normalized C-L model, are improved, considering the effects of the deformation temperature and strain rate on the ductile damage. Further, the improved Normalized C-L model is modified. Finally, the ductile damage model is established for the studied material. A good agreement between the predicted and experimental results is obtained, which indicates that the effcts of the deformation temperature and strain rate on damage evolution should be considered while establishing the damage model for the studied material.
     By the method of FEM, the degree and distribution of ductile damage for 42CrMo steel in forging process are studied. The results show that the limit reduction ratio of 42CrMo steel is 44% when the deformation temperature is 1200℃, and the limit reduction ratio is 53% for the cases of 950℃. The results are consistent with the experimental results, and it shows that the established damage model is suitable for the forging process of the studied material.
     The forging processes are simulated for 42CrMo steel. The effects of blank width ratios, tool width ratios, deformation temperatures and strain rates on the damage evolution are investigated. The forming limit diagram is obtained under different deformation temperatures and strain rates. The results verify that the effect of width ratios and anvil width ratios on the damage evolution is small, and can be neglected; the optimized forming processes are:the deformation temperature is 1150℃and the strain rate is 0.3s-1.
引文
[1]谢水生,李雷等.金属塑性成形的有限元模拟技术[M].北京:北京科学出版社,2008
    [2]谢水生,王祖唐.金属塑性成形工步的有限元数值模拟[M].北京:冶金工业出版社出版社,1997
    [3]黄婧.基于连续损伤力学的金属板材成形极限研究[D].武汉:武汉理工大学博士学位论文,2006
    [4]苏丹.有限体积法模拟金属塑性成形技术研究[D].上海:上海交通大学硕士学位论文,2003
    [5]方刚,雷丽萍,曾攀.金属塑性成形过程延性断裂的准则及其数值模拟[J].机械工程学报,2002,38:21-25
    [6]刘先兰,张文玉,刘楚明.细观损伤力学及其在金属塑性加工中的应用[J].锻压技术,2008,33(1):9-12
    [7]黄建科,董湘怀.金属成形中韧性断裂准则的细观损伤力学研究进展[J].上海交通大学学报,2006,40(10):1748-1753
    [8]于忠奇,杨玉英,王永志,孙振忠.基于韧性断裂准则的铝合金板材成形极限预测[J].中国有色金属学报,2003,13(5):1223-1226
    [9]许晓静,张雪峰等.等通道转角挤压下变形体长度对应力的影响及开裂判据分析[J].机械工程学报,2008,44(1):222-226
    [10]陈勇,邱双全,张爱梅.Q235B热轧卷板冷弯开裂的原因分析[J].新疆钢铁,2007,(1):11-13
    [11]任运来,朱磊等.大型锻件锻造镦粗表面无开裂条件[J].中国机械工程,2009,20(8):883-886
    [12]于淑卿.低碳合金钢钢锭锻裂原因分析[J].大型铸锻件,1985,(2):113-115
    [13]张新明,叶凌英等.中间退火及轧制工艺对A1-Mg-Li合金塑性开裂及晶粒细化的影响[J].中南大学学报(自然科学版),2009,40(1):88-93
    [14]王军.损伤力学的理论与应用[M].北京:科学出版社,1997.
    [15]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002
    [16]汪大年.金属塑性成形原理[M].北京:机械工业出版社,1982
    [17]李尧.金属塑性成形原理[M].北京:机械工业出版社,2004
    [18]朱浩.车用铝合金变形损伤和断裂机理研究与材料表征及有限元模拟[D].兰州:兰州理工大学博士学位论文,2008
    [19]虞松,陈军,阮雪榆.韧性断裂准则的试验与理论研究[J].中国机械工程,2006,17(19):2049-2052
    [20]王立东,阮雪榆.双金属挤压成形的韧性损伤研究[J].兵器材料科学与工程, 1998,21(1):38-4
    [21]崔约贤,王长利.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社,1998
    [22]张学敏.Ti40阻燃合金高温变形机理及开裂准则研究[D].西安:西北工业大学硕士学位论文,2007
    [23]翟妮芝.数值模拟在板材成形极限分析中的应用[D].西安:西北工业大学硕士学位论文,2007
    [24]谢延敏,于沪平,陈军,阮雪榆.板料成形中韧性断裂准则应用研究进展[J].工程设计学报,2007,14(1):6-10,20
    [25]孙秦,杨锋平.金属延性断裂过程数值仿真研究与损伤破坏准则应用[J].结构强度研究,2008:517-522
    [26]A.M. Goijaerts, L.E. Govaert, F.P.T. Baaijens. Evaluation of ductile fracture models for different metals in blanking[J]. Journal of Materials Processing Technology,2001,110(3):312-323
    [27]F.A. Freudenthal. The inelastic behavior of solids[M]. New York:Wiley,1950
    [28]M.G. Cockcroft, D.J. Latham. Ductility and the workability of metals[J]. J. Inst. Metals.,1968,96:33-39
    [29]F.A. Mclintock. A criterion for ductile fracture by the growth of hole[J]. J. Appl. Mesh.,1968,35:363-371
    [30]P. Brozzo, B. Deluca, Rendina. A new method for the prediction of formability limits in metal sheets, sheet metal forming and formability [J]. In:Proceedings of the Seventh Biennial Conference of the International Deep Drawing Research Group,1972
    [31]李国琛,M.耶纳.塑性大应变微结构力学[M].北京:科学出版社,1998
    [32]M. Oyane. Criteria of ductile fracture stain[J]. Bulletin of JSME,1972,15(90): 1507-1513
    [33]R. Hambli, M. Reszka. Fracture criteria identification using an inverse technique method and blanking experiment[J]. International Journal of Mechanical Sciences, 2002,44(7):1349-1361
    [34]胡莉巾,詹梅,黄亮,杨合.韧性断裂准则与数值模拟相结合预测旋压破裂的方法[J].结构强度研究,2008:534-537
    [35]余心宏,翟妮芝,翟江波.应用韧性断裂准则预测板料的成形极限图[J].锻压技术,2007,32(5):44-47
    [36]王新云,夏巨谌,胡国安,石川孝司.增量锻造平行面过程中材料的损伤研究[J].华中科技大学学报,2008,36(8):89-91
    [37]K. Komori. Ductile fracture criteria for simulating shear by node separation method [J]. Theoretical and Applied Fracture Mechanics,2005,43(1):101-114
    [38]B.P.P.A. Gouveia, J.M.C. Rodrigues, P.A.F. Martins. Ductile fracture in metalworking:experimental and theoretical research[J]. Journal of Materials Processing Technology,2000,101(1-3):52-63
    [39]H. Takuda, K. Mori, N. Hatta. The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals[J]. Journal of Materials Processing Technology,1999,95(1-3):116-121
    [40]董湘怀,李志刚.发展中的塑性加工理论和模拟技术[J].2002年中国机械工程学会年会论文集,2002.
    [41]吴艳青,张克实.粗晶LY-12合金准超塑性单轴拉伸模拟[J].固体力学学报,2003,24(3):313-320
    [42]吴艳青,张克实等.LY12合金粗晶材料的超塑性变形机制[J].中国有色金属学报,2002,12(5):986-990
    [43]林兆荣主编.金属超塑性原理及应用[M].北京:航空工业出版社出版社,1990
    [44]朱亮,马蓉,侯国清.Cr15Mn9Cu2Ni1N不锈钢连铸坯的高温拉伸变形特性[J].塑性工程学报,2010,17(4):110-115
    [45]吴艳青,张克实.粘塑性损伤模型模拟准超塑性单轴拉伸行为[J].应用力学学报,2003,20(4):65-69
    [46]I. Philippart, H.J. Rack. High temperature, high strain deformation behavior of Ti-6.8Mo-4.5Fe-1.5Al[J]. Materials Science and Engineering A,1998, 254(1-2):253-267
    [47]J. Qiao, E.M. Taleff. Superplasticity-like creep behavior of coarse grained ternary Al alloys[J]. Transactions of Nonferrous Metals Society of China,2010,20(4): 564-571
    [48]M. Morakabati, M. Aboutalebi, S. Kheirandish, A. K. Taheri, S.M. Abbasi. Hot tensile properties and microstructural evolution of as cast NiTi and NiTiCu shape memory alloys[J]. Materials&Design,2011,32(1):406-413
    [49]王仲仁,苑世剑,胡连喜编.弹性与塑性力学基础[M].哈尔滨:哈尔滨工业大学出版社,1997
    [50]中华人民共和国国家技术监督局.GB/T 4338—1995.金属材料高温拉伸试验[S].北京:中国标准出版社,1995-10-10
    [51]Y. Ling. Uniaxial true stress-strain after necking[J]. AMP Journal of Technology, 1996,5:37-48
    [52]张帆,周伟敏主编.材料性能学[M].上海:上海交通大学出版社,2009
    [53]宋美娟.镁合金的超塑性与变形过程中损伤研究[D].重庆:重庆大学博士学位论文,2006
    [54]H.Y. Wu, W.C. Hsu. Tensile flow behavior of fine-grained AZ31B magnesium alloy thin sheet at elevated temperatures [J]. Journal of Alloys and Compounds, 2010,493(1-2):590-594
    [55]D.S. Fields, W.A. Backofen. Determination of strain hardening characteristics by torsion testing[J]. Proceedings-american Society of Testing Materials,1957,57: 1259-1272
    [56]M. Aghaie-Khafri, R. Mahmudi. Flow localization and plastic instability during the tensile deformation of Al alloy sheet[J]. JOM Journal of the Minerals, Metals and Materials Society.1998,50(11):50-52
    [57]T. Sakumas. Superplasticity in alloys[J].Current Opinion in Solid State and Materials Science,1997,2(3):296-299
    [58]H. Watanabe, H. Tsutsui, T. Mukai, M. Kohzu, S. Tanabe, K. Higashi. Deformation mechanism in a coarsed-grained Mg-Al-Zn alloy at elevated temperatures[J]. International Journal of Plasticity,2001,17(3):387-397
    [59]A. Smolej, M. Gnamu, E. Slacek. The influence of the thermomechanical processing and forming parameters on superplastic behaviour of the 7475 aluminium alloy[J]. Journal of Materials Processing Technology,2001,118(1-3): 397-402
    [60]B. Paul, R. Kapoor, J.K. Chakravartty, A.C. Bidaye, I.G. Sharma, A.K. SuriHot. Hot working characteristics of cobalt in the temperature range 600-950 [J]. Scripta Materialia,2009,60(2):104-107
    [61]陈学伟.TC11钛合金热锻成形过程中延性损伤演化模型的建立[D].大连:大连理工大学硕士学位论文,2007
    [62]张念生,姚荣.低碳钢真应力应变曲线的测定[J].生产率系统,1998,2:54-55.
    [63]蔺永诚,陈明松,钟掘.42CrMo钢的热压缩流变应力行为[J].中南大学学报:自然科学版,2006,39(3):549-553
    [64]李杰,尹志民,黄继武,王涛.超高强Al-Zn-Mg-Cu-Zr合金的热变形行为[J].稀有金属,2004,28(1):166-170
    [65]黄光杰,钱宝华,游红.45钢高温拉伸峰值应力和变形储能与Z参数的关系函数研究[J].材料工程,2007,12:21-25
    [66]王瑜,林栋樑,ChiC Law. TiAl合金高温拉伸流变应力与Zener-Hollomon因子的关系函数[J].上海交通大学学报,2000,34(3):338-341,346
    [67]林新波DEFORM-2D和DEFORM-3DCAE软件在模拟金属塑性变形过程中的应用[J].模具技术,2000,(3):75-80
    [68]周朝辉,曹海桥等.应用有限元分析软件进行金属塑性成形研究[J].制造技术与实践,2004,(5):34-35,41
    [69]周飞,彭颖红,阮雪榆DEFORMTM有限元分析系统及其在塑性加工中的应用[J].模具技术,1997,(4):20-27
    [70]李传民,王向丽,闫华军等.DEFORM5.03金属成形有限元分析实例知道教程[M].北京:机械工业出版社,2007
    [71]周朝辉,曹海桥等DEFORM有限元分析系统软件及其应用[J].热加工工艺, 2003,(4):51-52
    [72]陈学伟.TC11钛合金热锻成形过程中延性损伤演化模型的建立[J].大连理工大学硕士学位论文,2007
    [73]韩冰.7075z铝合金高温塑性变形行为研究[D].广州:广东工业大学工学硕士学位论文,2003
    [74]李明强,何全波,张汝彦.Zr-4合金棒真应力—真应变曲线的测试及处理[J].稀有金属材料与工程,1989,4:48-51
    [75]P.W. Bridgeman. Studies in large plastic flow and fracture[M]. New York: McGraw-Hill Book Company,1952
    [76]陈仙凤,金杰.410S21钢高温拉伸性能研究及数值模拟[J].上海金属,2008,30(3):30-34
    [77]陈仙凤.基于DEFORM-3D平台1Cr13板材热轧数值研究[D].杭州:浙江工业大学硕士学位论文,2008
    [78]H.K. Kim, W.J. Kim. Failure prediction of magnesium alloy sheets deforming at warm temperatures using the Zener-Holloman parameter[J]. Mechanics of Materials,2010,42(3):293-303
    [79]沈昌武.TA15、TC11钛合金热变形材料本构模型研究[D].西安:西北工业大学硕士学位论文,2007
    [80]郭富印,冯国环等FORTRAN算法汇编第三分册[M].北京:国防工业出版社,1982
    [81]Y.C. Lin, M.S. Chen, J. Zhong. Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel [J]. Journal of Materials Processing Technology,2008,205(1-3):308-315
    [82]Y.C. Lin, G. Liu. A new mathematical model for predicting flow stress of typical high-strength alloy steel at elevated high temperature[J]. Computational Materials Science,2009,48(1):54-58
    [83JY.C. Lin, M.S. Chen, J. Zhong. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel[J]. Computational Materials Science,2008,42(3): 470-477
    [84]Y.C. Lin, M.S. Chen, J. Zhong. Prediction of 42CrMo steel flow stress at high temperature and strain rate[J]. Mechanics Research Communications,2008,35(3): 142-150
    [85]Y.C. Lin, M.S. Chen, J. Zhong. Numerical simulation for stress/strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process[J]. Computational Materials Science,2008,43(4):1117-1122

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700