环南极企鹅海豹的有机生态地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿德雷企鹅和南极毛皮海豹是南大洋食物链顶端捕食者,他们对环境变化的反应敏感,是南极无冰区环境变化的指示计。研究历史时期企鹅、海豹的生态变化有助于更好地认识未来的全球变化对南大洋生态系统的影响。目前对南极企鹅、海豹生态变化的研究主要以野外调查、卫星遥感观测和粪土层标型元素、Sr和N同位素的方法为手段,应用有机地球化学方面的工作还不多。
     本文选取位于东南极西福尔丘陵阿德雷企鹅粪土沉积剖面DG2、西南极法尔兹半岛毛皮海豹粪土沉积剖面HN1和东南极罗斯岛阿德雷企鹅粪土沉积剖面MB4进行有机地球化学分析,以生物粪土沉积层为载体,利用生物标志物结合地质学方法与古气候学、生态学、动植物学等多学科交叉的方法,研究了环南极三个区域的有机地球化学性质和生态发展历史,结合气候变化和人类文明的发展,利用微观生物地球化学来探索生态、气候与环境变化之间的科学问题,探讨生物对环境的响应和海鸟、海兽对聚居地周围植物生态环境的影响,为研究环南极生态和环南极气候变化提供科学依据,也为更好的预测未来提供基础。涉及的主要内容和结果如下:
     1.东南极西福尔丘陵企鹅聚居地生态研究
     对东南极西福尔丘陵Gardner Island阿德雷企鹅粪土沉积剖面DG2开展了有机地球化学分析,研究了企鹅粪土层DG2的烃类、醇类和酸类等生物标志物。DG2沉积剖面的正烷烃以短链为主;脂肪酸组分偶奇优势明显,以C_(16),C_(18)和C_(24)一元饱和脂肪酸为主;不饱和脂肪酸含量很低,以C_(18:1)~(△9)为主,总体表明沉积剖面的沉积来源单一稳定,主要来源可能为淡水湖相沉积的藻类、细菌和水生苔藓输入,无大波动。醇类组分以高浓度的植醇、胆甾烷醇和胆甾醇为主,分别代表了植被和企鹅数量,指示了研究区域历史时期的生态变化。本章利用粪便甾醇恢复了阿德雷企鹅在西福尔丘陵地区8,500年来的数量变化,恢复此地历史时期的生态系统变化,并首次利用C_(24:0)酸作为水生苔藓的标志物,恢复历史时期水生苔藓的生长状况以及探讨水生苔藓和企鹅数量之间相互消长的关系。
     2.西南极法尔兹半岛海豹聚居地生态研究
     对西南极法尔兹半岛毛皮海豹粪土沉积剖面HN1开展了有机地球化学分析,这是首次利用生物标志物的方法来恢复历史时期海豹数量的变化。通过对采自该地区的海豹粪土沉积柱HN1的有机地球化学分析,发现HN1沉积剖面的正烷烃以短链及n-C_(23)为主,主要来源可能为湖相沉积的藻类、细菌和苔藓的输入。脂肪酸组分偶奇优势明显,以C_(16),C_(18)和C_(24)一元饱和脂肪酸为主,主要来源可能是浮游动物、细菌及苔藓;不饱和脂肪酸含量很低,以C_(16:1)和C_(18:1)为主,表明了沉积剖面的沉积源单一稳定,无大波动。醇类组分以高浓度的植物甾醇和粪便甾醇为主,分别代表了植被和海豹粪土沉积的输入,利用粪便甾醇和植醇恢复了该地区上个世纪以来海豹数量的变化和周围植被变化。20世纪上半叶,由于人为的大量捕杀,该地区海豹数量下降, 60年代后期由于人类禁止捕杀海豹,该地区海豹数量得以迅速恢复。该地区上个世纪以来人类活动对海豹数量变化有显著影响。与此同时,气候变暖在过去几十年中使植被和藻类增加,磷虾减少,磷虾数量的减少也影响了海豹数量的变化。
     3.东南极罗斯岛企鹅聚居地生态研究
     对东南极罗斯岛企鹅粪土沉积剖面MB4开展了有机地球化学分析,第一次利用生物标志物的方法来恢复该地区历史时期企鹅数量的变化。通过对东南极罗斯岛Cape Bird的企鹅粪土沉积剖面MB4的有机地球化学分析,可以了解到MB4沉积剖面的正烷烃主要分布在C_(15)到C_(30),以C_(17)、C_(23)和C_(29)为主,主要来源可能为周围环境中的苔藓输入。脂肪酸组分偶奇优势明显,以C_(16)和C_(24)一元饱和脂肪酸为主,主要来源可能是浮游动物、细菌及苔藓。醇类组分以C_(28,30)一元脂肪醇、植物甾醇和粪便甾醇为主。通过利用生物标志物:胆甾醇+胆甾烷醇、植醇、nC_(16)-ol、nC_(22)-ol和nC_(28)-ol来分别指示企鹅数量、植被状况、藻类、苔藓和地衣的变化,恢复罗斯岛Cape Bird中部地区阿德雷企鹅聚居地1,120年来的生态变化,探讨此地的沉积环境、有机质来源以及环境对此沉积的影响,探讨企鹅生态和自然过程对南大洋生态系统的影响,以及和周围环境之间的反馈关系。
     4.环南极地区粪土层生物标志物性质对比与分析
     我们用生物标志物的方法分析了环南极三个沉积剖面:东南极西福尔丘陵Gardner岛、西南极法尔兹半岛和东南极罗斯岛Cape Bird,通过分析这三个生物沉积剖面中的有机生物标志物分布,研究这三个区域沉积物由于周边植被和聚居地动物的不同而造成生物标志物的不同。烃类、脂肪醇和酸类的变化更多的是受到了采样点沉积古环境以及采样环境和古环境中周围植物输入的影响,甾醇类则是受到不同动物粪便来源的影响而显示出不同的标志物,可以对不同的动物粪便来源进行区分并恢复历史时期的生物数量变化。通过对比发现,生物标志物提供了沉积剖面更为全面的信息,可以完善对粪土沉积层性质的了解,加深了对区域生态和环境演变过程的理解。
Adélie penguin and fur seal are the top predators in the food chains of Southern Ocean and they are sensitive to the environmental changes. Therefore they are indicators of the Southern Ocean status. Rearches on the historical changes of ecosystems of penguins and seals contribute to a better understanding of the influences of global changes to the ecosystem of Sounthern Ocean. And the current methods of researching on the Antarctic penguins, seals ecological responses are field survey, satellite remote sensing methods, biogeochemical records and the istopes of N and Sr. But the works which are using organic geochemistry method are few.
     In the present study, we perform organic geochemic analyses on the Adélie penguin ornithogenic sediment core DG2 and MB4 in Vestfold Hills and Ross Island, East Antarctica separately, and fur seal excrement sediment core HN1 in Fieldes Peninsula, combine with geology and ancient climate, ecology, animal and plant science and other interdisciplinary approach, study the organic geochemistry and ecological history of the three regions around the Antarctica. By combine with changes of climate and development of human civilization, we can explore the problems between climate and environmental changes, biological responses to environmental and sea birds, sea animals on the colonies by using micro-ecological biogeochemistry. And these researches provide the scientific basises for future ecological researches and the researches of climate of the Antarctic ring. The main contents are summarized as follows:
     1. The evolution of penguin colony on Vestfold Hills, East Antarctica
     We collected an ornithogenic sediment core DG2 from Gardner Island in Vestfold Hills, East Antarctica, and reconstructed an 8,500 years variation history of penguin population and vegetation abundance on this island, and examined the evolution of the penguin colony. The results showed that the aliphatic hydrocarbons were mainly consisted of short-chain n-alkanes which likely derived from freshwater algae and bacteria. Meanwhile, the even-carbon fatty acids, such as n-C_(16), n-C_(18) and n-C_(24), dominated alkenoic acids and they principally originated from bacteria, freshwater moss or zooplankton. However, unsaturated fatty acids were predominated by C_(18:1) acid from freshwater algae to show good preservation and simple sourses of the sediments but trace amount in it. Furthermore, the concentrations of cholestanol, cholesterol and phytol which came from penguin excrements and vegetation were high in the alcohols and the fluctuations of them in the lake core might respond to the historical changes of penguin populations and vegetations. We used the levels of two molecular markers cholesterol and cholestanol as the proxy indicators of penguin population size. Other molecular markers, including C_(24:0) alkenoic acids, C_(18) n-alkanol and phytol were used as the proxy indicators of aquatic moss, algae, and general vegetation respectively. It’s shown that the growth of algae was mainly affected by the nutritional supply from penguin droppings, so their abundance was positively linked with penguin population. The growth of aquatic moss, however, was controlled more by the degree of water body transparency than by nutrient availability. Because the pollution of water body increased as penguin population grew, aquatic moss abundance showed a seesaw-like relationship with penguin population. These results suggested that penguins played a dominant role in this simple ecosystem in the Antarctic environment. The reconstructed relationship between penguin population and vegetation abundance may offer new insights to understand ancient Antarctic environment and ecology.
     2. The evolution of seal colony on Fieldes Peninsula, West Antarctica
     We collected a sediment core HN1 from the Fieldes Peninsula of West Antarctica, and performed organic geochemical analysis on it. Short-chain n-alkanes were the main components of aliphatic hydrocarbons, and they were likely derived from algae and bacteria; n-C_(23) was likely from moss. Fecal sterols and phytol respectively came from seal feces and vegetation, they were dominant in the alcohol compositions, and their fluctuations likely responded to historical changes of the ecosystem near the sediment. The even-carbon fatty acids, such as n-C_(16), n-C_(18) and n-C_(24), dominated the alkenoic acid compositions, and they mainly originated from bacteria, moss and zooplankton. The concentrations of unsaturated fatty acids were low and predominated by C_(16:1) and C_(18:1) unsaturated acids, and this showed that the sediment was well preserved and had a simple and stable source of organic materials. We used cholesterol, cholestanol, epicoprostanol, coprostanol, and seal hair numbers as the proxy indicators of seal population size and phytol as of general vegetation, and we reconstructed the 20~(th) century history of variation of the seal population and vegetation abundance on this island. In this study, The sealing industry in the early 20~(th) century caused the dramatic decline of seal population, and the ban of seal hunting since the 1960s led to its recovery of seal population. The seal population during the past century was primarily controlled by human activities and krill density. The reconstructed relation between seal population and vegetation abundance may offer new insights into Antarctic environment and ecology.
     3. The evolution of penguin colony on Ross Island, East Antarctica
     We collected an ornithogenic sediment core MB4 from Cape Bird in Ross Island, East Antarctica, and reconstructed an 1,120 years variation history of penguin population and vegetation abundance on this island, and examined the evolution of the penguin colony. The results showed that the aliphatic hydrocarbons were mainly consisted of long-chain n-alkanes which likely derived from mosses. Meanwhile, the even-carbon fatty acids, such as n-C_(16) and n-C_(24), dominated alkenoic acids and they principally originated from bacteria, freshwater moss or zooplankton. Furthermore, the concentrations of cholestanol, cholesterol and phytol which came from penguin excrements and vegetation were high in the alcohols and the fluctuations of them in the lake core might respond to the historical changes of penguin populations and vegetations. We used the levels of cholesterol and cholestanol, phytol, nC_(16)-ol, nC_(22)-ol and nC_(28)-ol as the proxy indicators of penguin population size, vegetable, algae, moss and lichen respectively. These results suggested that penguins played a dominant role in this simple ecosystem in the Antarctic environment. The reconstructed relationship between penguin population and vegetation abundance may offer new insights to understand ancient Antarctic environment and ecology.
     4. The contrast and analysis of biomarkers in different fields on Antarctica
     We analyzed three sediment profiles around Antarctica by using biomarkers: Adélie penguin ornithogenic sediment core DG2 and MB4 in Vestfold Hills and Ross Island, East Antarctica separately, and fur seal excrement sediment core HN1 in Fieldes Peninsula. By analyzing the distribution of biomarkers in the three sediments, we could research on the differents of plants around the research areas and the distribution of differents biomarkers. Hydrocarbons, alcohols and acids are more impacted by the environment and the input of plants. Sterols are impacted by the origines of differental animals’fecals. Therefore sterols can distinguish differental animals and reconstruct the changes of population in history. By comparison, the sedimentary biomarkers provide more comprehensive informations, improve the understanding of sediments, deepen the understanding of the evolutions of regional ecologic and environment.
引文
邓宏文和钱凯. 1993.沉积地球化学与环境分析[M]:甘肃科学技术出版社.
    傅家谟. 1982.有机地球化学[M]:北京科学出版社.
    傅家谟和盛国英. 1996.环境有机地球化学初探[J].地学前缘, 3: 127-132.
    傅家谟,盛国英,许家友,贾蓉芬,范善发和彭平安. 1991.应用生物标志化合物参数判识古沉积环境[J].地球化学, 1: 1-12.
    李任伟,李哲,王志珍和林大兴. 1988.分子化石指标在中国东部盆地古环境分析中的应用[J].沉积学报, 6: 108-119.
    李守军. 1999.正烷烃、姥鲛烷与植烷对沉积环境的指示意义.石油大学学报(自然科学版), 23: 4.
    李栓科. 1995.东南极拉斯曼丘陵区的冰川作用[J].南极研究(中文版),1995,7(4):7-16.
    刘东生,郑洪汉,袁宝印等. 1998.南极乔治王岛菲尔德斯半岛湖泊堆积物的环境记录.见:
    中国南极考察科学研究成果与进展[C].国家南极考察委员会主编,北京:海洋出版社, 349-361.
    刘晓东. 2003.中晚全新世南极无冰区沉积物的生态环境记录及比较[D].合肥:中国科学技术大学博士论文.
    刘晓东,孙立广和谢周清. 2002.南极无冰区古气候与冰盖进退历史研究进展[J].世界科技研究与发展, 24(4): 61-70.
    尚慧云和姜乃煌. 1983.陆相沉积盆地指相生物标记物及分子参数[J].沉积学报, 1: 23-30.
    孙立广,谢周清,刘晓东,尹学斌和朱仁斌. 2006.南极无冰区生态地质学[M]. //北京:科学出版社.
    孙立广. 2006.南极无冰区生态地质学及其形成与发展[J].自然杂志, (3): 150-154.
    孙立广和刘晓东. 2006.南极无冰区生态与环境变化在粪土层中的记录[J].气候变化研究进展, (2): 57-62.
    孙立广,谢周清和赵俊琳. 2000a.南极阿德雷岛湖泊沉积:企鹅粪土层识别[J].极地研究, (2): 105-112 .
    孙立广,谢周清和赵俊琳. 2000b.南极阿德雷岛湖泊沉积物Sr/Ba与B/Ga比值特征[J],海洋地质和第四纪地质, 20 (4): 44-46.
    孙立广,谢周清,赵俊琳,项亮. 2001.南极阿德雷岛湖泊沉积210Pb、137Cs定年及其环境意义[J].湖泊科学, 13(1): 93-96.
    孙立广,刘晓东,谢周清和赵俊琳. 2002.南极菲尔德斯半岛古海蚀龛沉积的古环境记录[J], 极地研究, 14(3): 163-173.
    涂光智. 1984.地球化学[M]:上海科学技术出版社
    汪建君. 2007.生物标志物在全新世古生态恢复中的应用与南极气溶胶特征[D].合肥:中国科学技术大学博士论文.
    汪建君和孙立广. 2008.两极与中低纬地区粪土层生物标志物性质比较[J].中国科学技术大学学报, (1): 18-25.
    谢周清. 2001.南极阿德雷岛地区湖泊沉积与企鹅生态环境演变[D].合肥:中国科学技术大学博士论文.
    谢周清,孙立广,程邦波,张莉和黄宇营. 2006.同步辐射加速器X荧光分析技术在极地环境研究中的应用[J].极地研究, 16(2): 99-105.
    谢周清,孙立广,刘晓东和赵俊琳. 2002.近2000年来南极菲尔德斯半岛西湖沉积物中稀土元素1/δEu特征与气候演变[J].沉积学报, (2): 303-306.
    尹雪斌. 2005.人类活动信息:企鹅海豹粪土层中的污染物记录与区域对比[D].合肥:中国科学技术大学博士论文.
    尹雪斌,孙立广,刘晓东和朱仁斌. 2004.南极生物粪中的汞富集[J].生态学报, 24(3): 630-634.
    张干,盛国英和傅家谟. 1999.固城湖沉积物中羟基酸和α,ω--二元酸的组成分布及其地球化学意义[J].地球化学, 28: 183-190.
    张干,盛国英和彭平安. 2000南极乔治王岛菲尔德斯半岛湖相沉积物的分子有机地球化学特征.科学通报, 5(增刊): 2758-2762.
    赵俊琳. 1991.南极长城站地区现代环境地球化学特征与自然环境演变[M]. //北京:科学出版社.
    朱仁斌. 2002.南极法尔兹半岛苔原温室气体的源与汇[D].合肥:中国科学技术大学博士论文.
    Ainley DG. 2002. The Adélie penguin: Bellwether of climate change[M]. Columbia University Press, New York.
    Ainley DG, Ballard G, Barton KJ, Karl BJ, Rau GH, Ribic CA and Wilson PR. 2003. Spatial and temporal variation of diet within a presumed metapopulation of Adélie Penguins [J]. Condor, 105: 95-106.
    Ainley DG, Ballard G and Dugger KM. 2006. Competition among penguins and cetaceans reveals trophic cascades in the western Ross Sea, Antarctica [J]. Ecology, 87: 2080-2093.
    Banerjee NR, Furnes H, Muehlenbachs K, Staudigel H and de Wit M. 2006. Preservation of ~3.4-3.5 Ga microbial biomarkers in pillow lavas and hyaloclastites from the Barberton Greenstone Belt, South Africa[J]. Earth and Planetary Science Letters, 241: 707-722.
    Barber LB and Writer JH. 1998. Impact of the 1993 flood on the distribution of organic contaminants in bed sediments of the Upper Mississippi River [J]. Environmental Scienceand Technology, 32: 2077-2083.
    Baroni C and Orombelli G. 1994. Abandoned penguin rookeries as Holocene Paleoclimatic indicators in Antarctica [J]. Geology, 22: 23-26.
    Bethell PH, Goad LJ and Evershed RP. 1994. The study of molecular markers of human activity: the use of coprostanol in the soil as an indicator of human faecal material[J]. Journal of Archaeol Science, 21: 619-632.
    Blumer M, Guillard RRL and Chase T. 1971a. Hydrocarbons of marine phytoplankton[J]. Marine Biology, 8: 183-189.
    Blumer M, Guillard RRL and Chase T. 1971b. Hydrocarbons of marine plankton[J]. Marine Biology, 8: 183-189.
    Blumer M, Mullin MM and Thomas DS. 1963. Pristane in zooplankton[J]. Science, 140: 974.
    Blumer M and Snyder WD. 1965. Isoprenoid hydrocarbons in recent sediments: presence of pristane and probable absence of phytane[J]. Science, 150: 1588-1589.
    Boon AR and Duinevald GCA. 1996. Phytopigments and fatty acids as molecular markers for the quality of near bottom particulate organic matter in the North Sea[J]. Joumal of Sea Research, 35.
    Boon JJ, Rijpstra WIC, Lange FD, Leeuw JWD, Yoshioka M and Shimizu Y. 1979. Black Sea sterol-a molecular fossil for dinoflagellate blooms[J]. Nature, 277: 125-127.
    Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Kranendonk MJV, Lindsay JF, Steele A and Grassineau NV. 2002. Questioning the evidence for Earth’s oldest fossils[J]. Nature, 416: 76-81.
    Brassell SC. 1993. Applications of biomarkers for delineating marine paleoclimate fluctuations during the Pleistocene[M]. New York: Plenum Press.
    Brassell SC and Eglinton G. 1988. Biological markers in lacustrine Chinese oil shales[J]. Geological Society, London, Special Publications, 40: 299-308.
    Brassell SC, Eglinton G, Maxwell JR and Philp RP. 1978. Natural background of alkanes in the aquatic environment[M]: Pergamon.
    Brassell SC, Wardroper AMK, Thomson ID, Maxwell JR and Eglinton G. 1981. Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments[J]. Nature, 290: 693-696.
    Bray EE and Evans ED. 1961. Distribution of n-paraffins as a clue to recognition of source beds[J]. Geochimica et Cosmochimica Acta, 22: 2-15.
    Bull ID, Lockheart MJ, Elhmmali MM, Roberts DJ and Evershed RP. 2002. The origin of faeces by means of biomarker detection[J]. Environ Int, 27: 647-654.
    Burns KA, Greenwood P, Benner R, Brinkman D, Brunskill G, Codi S and Zagorskis I. 2004. Organic biomarkers for tracing carbon cycling in the Gulf of Papua (Papua New Guinea)[J]. Continental Shelf Research, 24: 2373-2394.
    Burwood R, Cornet PJ, Jacobs L and Paulet J. 1990. Organofacies variation control on hydrocarbon generation: A Lower Congo Coastal Basin (Angola) case history[J]. Org Geochem, 16: 325-338
    Canuel EA and Martens CS. 1993. Seasonal-Variations in the Sources and Alteration of Organic-Matter Associated with Recently-Deposited Sediments[J]. Org Geochem, 20: 563-577.
    Carreira RS, Wagner ALR and Readman JW. 2004. Sterols as markers of sewage contamination in a tropical urban estuary (Guanabara Bay, Brazil): space-time variations[J]. Estuarine, Coastal and Shelf Science, 60: 587-598.
    Carrie RH, Mitchell L and Black KD. 1998. Fatty acids in surface sediment at the Hebridean shelf edge, west of Scotland[J]. Org Geochem, 29: 1583-1593.
    Chan K, Lam MH, Poon K, Yeung H and Chiu TKT. 1998. Application of sedimentary faecal stanols and sterols in tracing sewage pollution in coastal waters[J]. Water Research, 32: 225-235.
    Cranwell PA. 1973. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change[J]. Freshwater Biology, 3: 259-265.
    Cranwell PA. 1976. Decomposition of aquatic biota and sediment formation: lipid components of 2 blue-green algal species and of detritus resulting from microbial attack[J]. Freshwater Biology, 6: 481-488.
    Cranwell PA. 1984. Lipid geochemistry of sediments from Upton Broad, a small productive lake[J]. Org Geochem, 7: 25-37.
    Cranwell PA. 1985. Long-chain unsaturated ketones in recent sediments[J]. Geochimica et Cosmochimica Acta, 49: 1545-1551.
    Cranwell PA, Eglinton G and Robinson N. 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments. II = Lipides des organismes aquatiques, contribution potentielle aux sédiments lacustres. II[J]. Org Geochem, 11: 513-527.
    DamstéJSS, Kenig F, Koopmans MP, K?ster J, Schouten S, Hayes JM and Leeuwa JWD. 1995. Evidence for gammacerane as an indicator of water column stratification[J]. Geochimica et Cosmochimica Acta, 59: 1895-1900.
    Demaison GJ and Moore GT. 1980. Anoxic environments and oil source bed genesis[J]. Org Geochem, 2: 9-31.
    de Mendoza D and Cronan Jr JE. 1983. Thermal regulation of membrane lipid fluidity in bacteria[J]. Trends in Biochemical Sciences, 8: 49-52.
    Didyk BM, Simoneit BRT, Brassell SC and Eglinton G. 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature, 272: 216-222.
    Donato MM, Jurado AS, Antunes-Madeira MC and Madeira VMC. 2000. Membrane lipid composition of Bacillus stearo-thermophilus as affected by lipophilic environmental pollutants: an approach to membrane toxicity assessment[J]. Archives of Environmental Contamination and Toxicology, 39: 145-153.
    Eadie BJ. 1984. Distribution of polycyclic aromatic hydrocarbons in the Great Lakes[M]. New York: John Wiley.
    Eganhouse RP. 1986. Baseline assessment of Salem Harbor-Salem Sound and adjacent waters: organic geochemistry[C].
    Eglinton G, Gonzalez AG, Hamilton RJ and Raphael RA. 1962. Hydrocarbon constituents of the wax coatings of plant leaves: A taxonomic survey[J] Phytochemistry, 1: 89-102.
    Eglinton G and Hamilton RJ. 1963. The distribution of alkanes[M]. Academic.
    Eglinton G and Hamilton RJ. 1967. Leaf epicuticular waxes[J]. Science, 156.
    Elhmmali MM, Roberts DJ and Evershed RP. 2000. Combined analysis of bile acids and sterol/stanols from riverine particulates to assess sewage discharges and other faecal sourse[J]. Environmental Science and Technology, 34: 39-46.
    Emslie SD. 2001. Radiocarbon dates from abandoned penguin colonies in the Antarctic Peninsula region [J]. Antarctic Science, 13: 289-295.
    Emslie SD, Coats L and Licht K. 2007. A 45,000 yr record of Adélie penguins and climate change in the Ross Sea, Antarctica [J]. Geology 35: 61-64.
    Emslie SD, Fraser W, Smith RC and Walker W. 1998. Abandoned penguin colonies and environmental change in the Palmer Station area, Anvers Island, Antarctic Peninsula [J]. Antarctic Science, 10: 257-268.
    Emslie SD and Woehler EJ. 2005. A 9000-year record of Adélie penguin occupation and diet in the Windmill Islands, East Antarctica [J]. Antarctic Science, 17: 57-66.
    Espitalie J, Marquis F and Sage L. 1987. Organic geochemistry of the Paris basin. in J. Brooks and K. Glennie, eds. Petroleum Geology of North-West Europe[M]. London: Graham and Trotman.
    Evershed RP and Bethell PH. 1996. Application of multimolecular biomarker techniques to the identification of faecal material in archaeological soils and sediments[J]. ACS Symp Ser, 625: 157-172.
    Ficken KJ, Barber KE and Eglinton G. 1998a. Lipid biomarker, d13C and plant macrofossil stratigraphy of a Scottish montane peat bog over the last two millenia[J]. Org Geochem, 28: 217-237.
    Ficken KJ, Li B, Swain DL and Eglinton G. 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem, 31: 745-749.
    Ficken KJ, Street-Perrott FA, Perrott RA, Swain Dl, Olago DO and Eglinton G. 1998b. Glacial/interglacial variations in carbon cycling revealed by molecular and isotope stratigraphy of Lake Nkunga Mt. Kenya, East Africa[J]. Org Geochem, 29: 1701-1719.
    Filley TR, Freeman KH, Bianchi TS, Baskaran M, Colarusso LA and Hatcher PG. 2001. An isotopic biogeochemical assessment of shifts in organic matter input to Holocene sediments from Mud Lake, Florida[J]. Org Geochem, 32: 1153-1167.
    Fu JM, Seng GY, Peng PA, Brassell SC, Eglinton G and Jiang JQ. 1986. Peculiarities of salt lake sediments as potential source rocks in China[J] Org Geochem, 10: 119-126.
    Gardner GR and Pruell RJ. 1987. A histopathological and chemical assessment of winter flounder, lobster and soft-shelled clam indigenous to Quincey Bay study[J].
    Gelpi E, Schneidera H, Mann J and OróJ. 1970. Hydrocarbons of geochemical significance in microscopic algae[J]. Phytochemistry, 9: 603-612.
    Giger W, Schaffner C and Wakeham SG. 1980. Aliphatic and olefinic hydrocarbons in recent sediments of Greifensee, Switzerland[J]. Geochimica et Cosmochimica Acta, 44: 119-129.
    Goodwin ID. 1993. Holocene Deglaciation, Sea-level change, and the emergence of the Windmill Islands, Budd Coast, Antarctica [J]. Quaternary Research, 40: 70-80.
    Goossens H, Duren RR, de Leeuw JW and Schenck PA. 1989. Lipids and their mode of occurrence in bacteria and sediments-II. Lipids in the sediment of a stratified, freshwater lake[J]. Org Geochem, 14: 27-41.
    Grantham PJ and Douglas AG. 1980. The nature and origin of sesquiterpenoids in some tertiary fossil resins[J]. Geochimica et Cos Acta, 44: 1801-1810.
    Green G and Nichols PD. 1995. Hydrocarbons and sterols in marine sediments and soils at Davis station, Antarctica: a survey for human-derived contaminants[J]. Antarct Sci, 7: 137-144.
    Green G, Skerratt JH, Leeming R and Nichols PD. 1992. Hydrocarbon and coprostanol levels in seawater, sea-ice algae and sediments near Davis station in eastern Antarctica: A regional survey and preliminary results for a field fuel spill experiment[J]. Mar Pollut Bull, 25: 357-363.
    Hall PB and Douglas AG. 1983. The distribution of cyclic alkanes in two lacustrine deposits[C].Chichester: John Wiley.
    Haque MA and Russell NJ. 2004. Strains of Bacillus cereus vary in the phenotypic adaptation of their membrane lipid composition in response to low water activity, reduced temperature and growth in rice starch[J]. Microbiology, 150: 1397-1404.
    Hartmann MA. 1998. Plant sterols and the menbrane environment[J]. Trends Plant Science, 3: 170-175.
    Hatcher PG and McGillivary PA. 1979. Sewage contamination in the New York Bight. Coprostanol as an indicator[J]. Environmental Science and Technology, 13: 1225-1229.
    Hazel JR and Williams EE. 1990. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment[J]. Progress in Lipid Research, 29: 167-227.
    Heipieper HJ, Diefenbach R and Keweloh H. 1992. Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity[J]. Applied and Environmental Microbiology 58: 1847-1852.
    Henderson RJ, Millar RM and Sargent JR. 1995. Effect of growth temperature on the positional distribution of eicosapentaenoic acid and trans hexadecenoic acid in the phospholipids of a Vibrio species of bacterium[J]. Lipids, 30: 181-185.
    Hills IR, Whitehead EV, Anders DE, Cummins JJ and Robinson WE. 1966. An optically active triterpane, garnmacerane in Green River, Colorado, Oil Shale Bitumen[J]. Chemical Communications, 20: 752-754.
    Hites RA, Laflamme RE and Windsor Jr JG. 1980. Polycyclic aromatic hydrocarbons in marine/aquatic sediments: their ubiquity[J]. Advances in Chemistry Series, 185: 289-311.
    Ho ES and Meyers PA. 1994. Variability of early diagenesis in lake sediments: evidence from the sedimentary geolipid record in an isolated tarn[J]. Chiemical Geology, 112: 309-324.
    Hoefs J. 1987. Stable isotope geochemistry (minerals and rocks)[M]. Berlin: Springer-Verlag.
    Hoffmann CF, Mackenzie AS, Lewis CA, Maxwell JR, Oudin JL, Durand B and Vandenbroucke M. 1984. A biological marker study of coals, shales and oils from the Mahakam Delta, Kalimantan, Indonesia[J]. Chemical Geology, 42: 1-23.
    Hodgson DA and Convey P. 2005. A 7000-year record of oribatid mite communities on a maritime-Antarctic island: Responses to climate change [J]. Arctic Antarctic and Alpine Research, 37: 239-245.
    Hodgson DA and Johnston NM. 1997. Inferring seal populations from lake sediments [J]. Nature, 387: 30-31.
    Hodgson DA, Verleyen E, Sabbe K, Squier AH, Keely BJ, Leng MJ, Saunders KM and VyvermanW. 2005. Late Quaternary climate-driven environmental change in the Larsemann Hills, East Antarctica, multi-proxy evidence from a lake sediment core [J]. Quaternary Research, 64: 83-99.
    Huang WY and Meinschein WG. 1976. Sterols as source indicators of organic materials in sediments[J]. Cosmochimica Acta, 40: 323-330.
    Huang WY and Meinschein WG. 1979. Sterols as ecological indicators[J]. Geochimica et Cosmochimica Acta, 43: 739-745.
    Hunt JM. 1979. Petroleum Geochemistry and Geology[M]. San Francisco: W. H. Freeman.
    Jaffe R, Mead R, Hernandez ME, Peralba MC and DiGuida OA. 2001. Origin and transport of sedimentary organic matter in two subtropical estuaries: a comparative, biomarker-based study[J]. Org Geochem, 32: 507-526.
    Jeng W and Han B. 1994. Sedimentary coprostanol in Kaoshiung harbour and the Tan-Shui estuary, Taiwan[J]. Mar Pollut Bull, 28: 494-499.
    Kannenberg EL and Poralla K. 1999. Hopanoid biosynthesis and function in bacteria[J]. Naturwissenschaften, 86: 168-176.
    Kawamura K and Ishiwatari R. 1981. Polyunsaturated fatty acids in a lacustrine sediment as a possible indicator of paleoclimate[J]. Geochimica et Cosmochimica Acta, 45: 149-155.
    Kawamura K, Ishiwatari R and Yamazaki M. 1980. Identification of polyunsaturated fatty acids in surface lacustrine sediments[J]. Chemical. Geology, 28: 31-39.
    Kell DB. 1984. Diffusion of protein complexes in prokaryotic membranes: fast, free, random or directed? [J]. Trends in Biochemical Sciences, 9: 86-88.
    Kleemann G, Poralla K, Englert G, Kj?sen H, Liaaen-Jensen S, Neunlist S and Rohmer M. 1990. Tetrahymanol from the phototrophic bacterium Rhodopseudomonas palustris: first report of a gammacerane triterpene from a prokaryote[J]. Journal of General Microbiology, 136: 2551-2553.
    Knights BA, Dickson CA, Dickson JH and Breeze DJ. 1983. Evidence concerning the Roman military diet at Bearsden, Scotland, in the 2nd century A.D[J]. J Archaeol Sci, 10: 139-152.
    Laflamme RE and Hites RA. 1978. The global distribution of polycyclic aromatic hydrocarbons in recent sediments[J]. Geochimica et Cosmochimica Acta, 42: 289-303.
    LeBlanc LA, Latimer JS, Ellis JT and Quinn JG. 1992. The geochemistry of coprostanol in waters and surface sediments from Narragansett Bay. Estuarine, Coastal and Shelf[J]. Science, 34: 439-458.
    Leeming R, Ball A, Ashbolt N, Jones G and Nichols PD. 1994. Distinguishing between human and animal sources of faecal pollution[J]. Chemistry in Australia, 61: 434-435.
    Leeming R, Ball A, Ashbolt N and Nichols P. 1996a. Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters[J]. Water Res, 30: 2893-2900.
    Leeming R, Ball A, Ashbolt N and Nichols P. 1996b. Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters[J]. Water Research, 30: 2893-2900.
    Leythaeuser D and Schwarzkopf T. 1986. The pristane/n-heptadecane ratio as an indicator for recognition of hydrocarbon migration effects[J]. Org Geochem, 10: 191-197.
    Liu XD, Li HC, Sun LG, Yin XB, Zhao SP and Wang YH. 2006. delta C-13 and delta N-15 in the ornithogenic sediments from the Antarctic maritime as palaeoecological proxies during the past 2000 yr [J]. Earth and Planetary Science Letters, 243: 424-438.
    Liu XD, Sun LG, Xie ZQ, Yin XB and Wang YH. 2005. A 1300-year record of penguin populationsat Ardley Island in the Antarctic, as deduced from the geochemical data in the ornithogenic lake sediments [J]. Arctic Antarctic and Alpine Research, 37: 490-498.
    Liu XD, Sun LG, Xie ZQ, Yin XB, Zhu RB and Wang YH. 2007. A preliminary record of the historical seabird population in the Larsemann Hills, East Antarctica, from geochemical analyses of Mochou Lake sediments [J]. Boreas, 36: 182-197.
    Liu XD, Sun LG, Yin XB and Zhu RB. 2004. Paleoecological implications of the nitrogen isotope signatures in the sediments amended by Antarctic seal excrements [J]. Progress in Natural Science, 14: 786-792.
    Macdonald RW and Barrie LA. 2000. Contaminations in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways[J]. Science of Total Environment, 254: 93-234.
    Mackenzie AS, Brassell SC, Eglinton G and Maxwell JR. 1982. Chemical Fossils: The Geological Fate of Steroids[J]. Science, 217: 491-504.
    Mackenzie AS and McKenzie D. 1983. Isomerization and aromatization of hydrocarbons in sedimentary basins formed by extension[J]. Geological Magazine, 120: 417-470.
    Mannisto MK and Puhakka JA. 2001. Temperature- and growth-phaseregulated changes in lipid fatty acid structures of psychrotolerant groundwater Proteobacteria[J]. Archives of Microbiology, 177: 41-46.
    Matsumoto G, Toni T and Hanya L. 1982. High abundance of algal 24-ethylcholesterol in Antarctic lake sediment[J]. Nature, 299: 52-54.
    McCalley DV, Cookie M and Nickless G. 1981. Effect of sewage treatment on faecal sterols[J]. Water Research, 15: 1019-1025.
    Mello MR, Gaglianone PC, Brassell SC and Maxwell JR. 1988. Geochemical and biologicalmarker assessment of depositional environments using Brazilian offshore oils[J]. Marine and Petroleum Geology, 5: 205-223.
    Meyers PA. 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes[J]. Org Geochem, 34: 261-289.
    Meyers PA and Eadie BJ. 1993. Sources, degradation, and recycling of organic matter associated with sinking particles in Lake Michigan[J]. Org Geochem, 20: 47-56.
    Meyers PA and Lallier-Verges E. 1999. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates[J]. J Paleolimnol, 21: 345-372.
    Moldowan JM, Seifert WK and Gallegos EJ. 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks[J]. AAPG Bulletin, 69: 1255-1268.
    Mudge MM and Duce CE. 2005. Identifying the sourse, transport path and sinks of sewage derived organic matter[J]. Environmental Pollution, 136: 209-220.
    Mudge MM and Norris CE. 1997. Lipid biomarkers in the Conwy estuary (North Wales, U.K.): a comparison between fatty alcohols and sterols[J]. Mar Chem, 57: 61-84.
    Mudge SM, Bebianno MJ, East JA and Barreira LA. 1999. Sterols in the Ria Formosa lagoon, Portugal[J]. Water Research, 33: 1038-1048.
    Muir DCG, Grift NP and Lockhart WL. 1995. Spatial trends and historical profiles of organochlorine pesticides and Arctic lake sediments[J]. Science of Total Environment, 164: 447-457.
    Murtaugh JJ and Bunch RL. 1966. Sterols as a measure of faecal pollution[M]. Kansas City.
    Nichols PD, Leeming R, Rayner MS and Latham V. 1993. Comparison of the abundance of the faecal sterol coprostanol and faecal bacterial groups in innershelf water and sediment near Sydney, Australia[J]. Journal of Chromatography, 643: 189-195.
    Nishimura M. 1977. Origin of stanols in young lacustnine sediments[J]. Nature, 270: 711-712.
    Nishimura M and Koyama T. 1977. The occurrence of stanols in various living organisms and the behavior of sterols in contemporary sediments[J]. Geochimica et Cosmochimica Acta, 41.
    Nott CJ, Xie S, Avsejs LA, Maddy D, Chambers FM and Evershed RP. 2000. n-Alkane distributions in ombrotrophic mires as indicators of vegetation change relatedto climaticvariations[J]. Org Geochem, 31: 231-235.
    Ourisson G, Rohmer M and Poralla K. 1987. Prokaryotic hopanoids and other polyterpenoid sterol surrogates[J]. Annual review of microbiology, 41: 301-331.
    Peng X, Zhang G and Mai B. 2005. Tracing anthropogenic contamination in the Pearl River estuarine and marine environment of South China Sea using sterols and other organicmolecular markers[J]. Mar Pollut Bull, 50: 856-865.
    Peters KE and Moldowan JM. 1993. The biomarker guide: Interpreting molecular fossils in petroleum and ancient sediments[M]. United States: Englewood Cliffs, NJ (United States); Prentice Hall.
    Petri A and Baroni C. 1997. Penguin, a macintosh application for entry and presentation of radiocarbon-dated samples[J]. Radiocarbon,39: 61-65.
    Piironen V, Lindsay DG and Miettinen TA. 2000. Plant sterols:biosynthesis,biological function and their importance to human nutrition[J]. Journal of Science Food Agriculture, 80: 939-966.
    Poon K, Wong RW, Lam MH, Yeung H and Chiu TK. 2000. Geostatistical modelling of the spatial distribution of sewage pollution in coastal sediments[J]. Water Research, 34: 99-108.
    Powell TG and Snowdon LR. 1983. A composite hydrocarbon generation model[J]. Erdol Kohle Erdgas Petroleum 36: 163-170.
    Prahl FG, Eglinton G, Corner EDS and O'Hara SCM. 1985. Faecal lipids released by fish feeding on zooplankton[J]. Journal of the Marine Biological Association of the United Kingdom, 65: 547-560.
    Pratt LM. 1984. Influence of paleoenvironmental factors on preservation of organic matter in middle cretaceous greenhorn formation, Pueblo, Colorado[J]. AAPG Bulletin, 68: 1142-1159.
    Pu F and JingGui L. 1991. Characteristics of the biomarkers from nomarine crude oils in Chine-a review[J]. CHinese Journal of Geochemistry, 10: 131-139.
    Quinn PJ. 1981. The fluidity of cell membranes and its regulation[J]. Progress in Biophysics and Molecular Biology, 38: 1-104.
    Reedy CM, Eglinton TI and Ralic R. 2000. Even carbon number predominance of plant wax n-alkanes: a correction[J]. Org Geochem, 31: 331-336.
    Reeves AD and Patton D. 2001. Measuring change in sterol input to estuarine sediments[J]. Physics and Chemistry of the Earth, 54: 2902-2907.
    Rieley G, Collier RJ, Jones DM and Eglinton G. 1991a. The biogeochemistry of Ellesmere Lake, U.K.- I: source correlation of leaf wax inputs to the sedimentary record[J]. Org Geochem, 17: 901-912.
    Rieley G, Collier RJ, Jones DM and Eglinton G. 1991b. The Biogeochemistry of Ellesmere Lake, Uk .1. Source Correlation of Leaf Wax Inputs to the Sedimentary Lipid Record. Org Geochem, 17: 901-912.
    Risatti JB, Rowland SJ, Yon D and Maxwell JR. 1984. Stereochemical studies of acyclic isoprenoids-XII. Lipids of methanogenic bacteria and possible contributions to sediments[M]. Oxford: Pergamon Press.
    Robinson N, Cranwell PA, Finlay BJ and Eglinton G. 1984a. Lipids of aquatic organisms as potential contributors to lacustrine sediments. Org Geochem, 6: 143-152.
    Robinson N, Eglinton G, Brassell SC and Cranwell PA. 1984b. Dinoflagellate origin for sedimentary 4-methylsteroids and 5(H)-stanols[J]. Nature, 308: 439-442.
    Rosa MD, Gambacorta A and Grant WD. 1983. A C25,C25 diether core lipid from archaebacterial haloalkaliphiles[J]. Journal of General Microbiology, 129: 2333-2337.
    Rubinstein I, Sieskind O and Albrecht P. 1975. Rearranged sterenes in a shale: occurrence and simulated formation[J]. Journal of the Chemical Society, Perkin Transactions 1, 19: 1833-1836.
    Rullk(o|")ttera J, Mackenzie AS, Weltea DH, Leythaeuser D and Radke M. 1984. Quantitative gas chromatography - mass spectrometry analysis of geological samples[J] Org Geochem, 6: 817-827.
    Russell NJ. 1989. Functions of lipids: structural roles in membrane functions[M]. Toronto: Academic Press.
    Schoell M, Hwang RJ, Carlson RMK and Welton JE. 1994. Carbon isotopic composition of individual biomarkers in gilsonites (Utah)[J]. Org Geochem, 21: 673-683.
    Schultz DM and Quinn JG. 1974. Measurement of phytol in estuarine suspended organic matter[J]. Marine Biology, 27.
    Schwark L, Zink K and Lechterbeck J. 2002. Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments[J]. Geology, 30: 463-466.
    Seguel CG, Mudge SM, Salgado C and Toledo M. 2001. Tracing sewage in the marine environment: altered signatures in Concepcion Bay, Chile[J]. Water Research, 35: 4166-4173.
    Shi JY, Mackenzie AS, Alexander R, Eglinton G, Growar AP, Wolff G and Maxwell JR. 1982. A biological marker investigation of petroleums and shales from the Shengli oilfield, the People's Republic of China[J]. Chemical Geology, 35: 1-31.
    Shimizu Y, Alam M and Kobayashi A. 1976. Dinosterol, the major sterol with a unique side chain in the toxic dinoflagellate, Gonyaulax tamarensis[J]. Journal of the American Chemical Society, 98: 1059-1060.
    Simoneit BRT. 1977. The Black Sea, a sink for terrigenous lipids[J]. Deep-Sea Research, 24:813-830.
    Smith JA, Bentley MJ, Hodgson DA, Roberts SJ, Leng MJ, Lloyd JM, Barrett MS, Bryant C and Sugden DE. 2007. Oceanic and atmospheric forcing of early Holocene ice shelf retreat, George VI Ice Shelf, Antarctica Peninsula [J]. Quaternary Science Reviews, 26: 500-516.
    Sun J, Liu X D, Sun L G, Liu W Q. 2007. Using reflectance spectroscopy for the reconstruction of penguin palaeoecological process in Antarctic ornithogenic sediments [J]. Geochimica Et Cosmochimica Acta, 71: A986-A986.
    Sun LG, Liu XD, Yin XB, Xie ZQ and Zhao JL. 2005a. Sediments in palaeo-notches: potential proxy records for palaeoclimatic changes in Antarctica [J]. Palaeogeography Palaeoclimatology Palaeoecology, 218: 175-193.
    Sun LG, Liu XD, Yin XB, Zhu RB, Xie ZQ and Wang YH. 2004a. A 1,500-year record of Antarctic seal populations in response to climate change [J]. Polar Biology, 27: 495-501.
    Sun LG and Xie ZQ. 2001a. Changes in lead concentration in Antarctic penguin droppings during the past 3,000 years [J]. Environmental Geology, 40: 1205-1208.
    Sun LG and Xie ZQ. 2001b. Relics: penguin population programs [J]. Science Progress, 84: 31-44.
    Sun LG, Xie ZQ and Zhao JL. 2000. Palaeoecology - A 3,000-year record of penguin populations [J]. Nature, 407: 858-858.
    Sun LG, Yin XB, Liu XD, Zhu RB, Pan CP, Zhao YZ, Liu FM, Jiang SR and Wang YH. 2006a. Levels of hexachlorocyclohexanes and dichloro-diphenyl-trichloroethanes in penguin droppings collected from Ardley Island, the maritime Antarctic [J]. Human and Ecological Risk Assessment, 12: 328-338.
    Sun LG, Yin XB, Liu XD, Zhu RB, Xie ZQ and Wang YH. 2006b. A 2000-year record of mercuryand ancient civilizations in seal hairs from King George Island, West Antarctica [J]. Science of the Total Environment 368: 236-247.
    Sun LG, Yin XB, Pan CP and Wang YH. 2005b. A 50-years record of dichloro- diphenyl- trichloroethanes and hexachlorocyclohexanes in lake sediments and penguin droppings on King George Island, Maritime Antarctic [J]. Journal of Environmental Sciences-China, 17: 899-905.
    Sun LG, Zhu RB, Liu XD, Xie ZQ, Yin XB, Zhao SP and Wang YH. 2005c. HCI-soluble Sr-87/Sr-86 ratio in sediments impacted by penguin or seal excreta as a proxy for historical population size in the maritime Antarctic [J]. Marine Ecology-Progress Series, 303: 43-50.
    Sun LG, Zhu RB, Xie ZQ and Xing GX. 2002. Emissions of nitrous oxide and methane fromAntarctic Tundra: role of penguin dropping deposition [J]. Atmospheric Environment, 36: 4977-4982.
    Sun LG, Zhu RB, Yin XB, Liu XD, Xie ZQ and Wang YH. 2004b. A geochemical method for the reconstruction of the occupation history of a penguin colony in the maritime Antarctic [J]. Polar Biology, 27: 670-678.
    Taylor F, Whitehead J and Domack E. 2001. Holocene paleoclimate change in the Antarctic Peninsula: evidence from the diatom, sedimentary and geochemical record [J]. Marine Micropaleontology, 41: 25-43.
    Ten Haven HL, Leeuw JWD and Schenck PA. 1985. Organic geochemical studies of a Messinian evaporitic basin, northern Apennines (Italy) I: Hydrocarbon biological markers for a hypersaline environment[J] Geochimica et Cosmochimica Acta, 49: 2181-2191.
    Ten Haven HL, Rohmer M, Rullk(o|")tter J and Bisseret P. 1989. Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments[J]. Geochimica et Cosmochimica Acta, 53: 3073-3079.
    Tieguan W, Pu F and Swain FM. 1988. Geochemical characteristics of crude oils and sourse beds in different continental facies of four oil-bearing basin, China[J]. Geological Society, London, Special Publications, 40: 309-325.
    Tissot BP, Pelet R, Roucache J and Combar A. 1975. Alkanes as geochemical fossils indicators of geological environments[M]: Enadimsa.
    Unell M, Kabelitz N, Jansson JK and Heipieper HJ. 2007. Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids[J]. FEMS Microbiology Letters, 266: 138-143.
    Venkatesan MI and Mirsadeghi FH. 1992. Coprostanol as sewage tracer in McMurdo Sound, Antarctica[J]. Mar Pollut Bull, 25: 328-333.
    Venkatesan MI, Ruth E and Kaplan IR. 1986. Coprostanols in Antarctic marine sediments: A biomarker for marine mammals and not human pollution[J]. Mar Pollut Bull, 17: 554-557.
    Vivian CMG. 1986. Tracers of sewage sludge in the marine environment: A review[J]. Sci Total Environ, 53: 5-40.
    Volkman JK. 1986a. A review of sterol markers for marine and terrigenous organic matter. Org Geochem, 9: 83-99.
    Volkman JK. 1986b. A review of sterol markers for marine and terrigenous organic matter[J]. Org Geochem, 9: 83-99.
    Volkman JK, Barrett SM and Blackburn SI. 1999. Eustigmatophyte microalgae are potential sources of C-29 sterols, C-22-C-28 n-alcohols and C-28-C-32 n-alkyl diols in freshwater environments. Org Geochem, 30: 307-318.
    Wakeham SG, Schaffner C and Giger W. 1980. Polycyclic aromatic hydrocarbons in Recent lake sediments-II. Compounds derived from biogenic precursors during early diagenesis[J]. Geochimica et Cosmochimica Acta, 44: 415-429.
    Waples DW, Haug P and Welte DH. 1974. Occurrence of a regular C25 isoprenoid hydrocarbon in tertiary sediments representing a lagoonal-type, saline environment[J]. Geochimica et Cosmochimica Acta, 38: 381-387.
    Wolff GA, Lamb NA and Maxwell JR. 1986. The origin and fate of 4-methyl steroid hydrocarbons. I. Diagenesis of 4-methyl sterenes[J]. Geochimica et Cosmochimica Acta, 50: 335-342.
    Writer JH, Leenheer JA, Barber LB, Amy GL and Chapra SC. 1995. Sewage contamination in the Upper Mississippi River as measured by the faecal sterol, coprostanol[J]. Water Research, 29: 1427-1436.
    Wunsche L, Gulacar FO and Buchs A. 1987. Several unexpected marine sterols in a freshwater environment[J]. Org Geochem, 11: 215-219.
    Xie S, Nott CJ, Avsejs LA, Maddy D, Chambers FM and Evershed RP. 2004. Molecular and isotopic stratigraphy in an ombrotrophic mire for palaeoelirnate reconstruction[J]. Geochimica et Cosmochimica Acta, 68: 2849-2862.
    Xie ZQ and Sun LG. 2003. Fluoride content in bones of Adélie penguins and environmental media in Antarctica [J]. Environmental Geochemistry and Health, 25: 483-490.
    Xie ZQ and Sun LG. 2008. A 1,800-year record of arsenic concentration in the penguin dropping sediment, Antarctic [J]. Environmental Geology, 55: 1055-1059.
    Xie ZQ, Sun LG, Long NY, Zhang L, Kang SX, Wu ZQ, Huang YY and Ju X. 2003. Analysis of the distribution of chemical elements in Adélie penguin bone using synchrotron radiation X-ray fluorescence [J]. Polar Biology, 26: 171-177.
    Xie ZQ, Sun LG, Wang JJ and Liu BZ. 2002. A potential source of atmospheric sulfur from penguin colony emissions [J]. Journal of Geophysical Research-Atmospheres, 107(D22), 4617, doi:10.1029/2002JD002114.
    Yin XB, Sun LG, Zhu RB, Liu XD, Ruan DY and Wang YH. 2007. Mercury-selenium association in antarctic seal hairs and animal excrements over the past 1,500 years [J]. Environmental Toxicology and Chemistry 26: 381-386.
    Zhu RB, Kong DM, Sun LG, Geng JJ, Wang XR and Glindemann D. 2006a. Troposphericphosphine and its sources in coastal Antarctica [J]. Environmental Science & Technology, 40: 7656-7661.
    Zhu RB, Liu YS, Xu H, Ma J, Gong ZJ and Zhao SP. 2008. Methane emissions from three sea animal colonies in the maritime Antarctic [J]. Atmospheric Environment 42: 1197-1205.
    Zhu RB and Sun LG. 2005. Methane fluxes from tundra soils and snowpack in the maritime Antarctic [J]. Chemosphere, 59: 1583-1593.
    Zhu RB, Sun LG and Ding WX. 2005a. Nitrous oxide emissions from tundra soil and snowpack in the maritime Antarctic [J]. Chemosphere, 59: 1667-1675.
    Zhu RB, Sun LG, Kong DM, Geng JJ, Wang N, Wang Q and Wang XR. 2006b. Matrix-bound phosphine in Antarctic biosphere [J]. Chemosphere, 64: 1429-1435.
    Zhu RB, Sun LG, Yin XB, Xie ZQ and Liu XD. 2005b. Geochemical evidence for rapid enlargement of a gentoo penguin colony on Barton Peninsula in the maritime Antarctic [J]. Antarctic Science, 17: 11-16.
    陈立奇. 2002.南极和北极地区在全球变化中的作用研究[J].地学前缘, 9: 245-253.
    陈立奇. 2009. 21世纪的极地科学探索-面临的机遇和挑战[J].自然杂志, 31: 81-87.
    丁一汇,任国玉,石广玉,宫鹏,郑循华,翟盘茂,张德二,赵宗慈,王绍武,王会军,罗勇,
    陈德亮,高学杰和戴晓苏. 2006.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势[J].气候变化研究进展, 1: 3-8.
    方精云. 2000.全球生态学:气候变化与生态响应[M].北京:高等教育出版社.
    傅伯杰. 1996.景观多样性类型及其生态学意义[J]地理学报, 51: 454-462.
    蒋有绪. 2003.生物多样性研究进展与入世后的对策[J].世界科技研究进展, 25: 1-4.
    秦大河,丁一汇,苏纪兰,任贾文,王绍武,伍荣生,杨修群,王苏民,刘时银,董光荣,卢琦,
    黄镇国,杜碧兰和罗勇. 2005.中国气候与环境演变评估(Ⅰ):中国气候与环境变化及未来趋势[J].气候变化研究进展, 1: 4-9.
    秦大河和罗勇. 2008.全球气候变化的原因和未来变化趋势[J].科学对社会的影响, 2: 16-21.
    孙立广. 2006.南极无冰区生态地质学及其形成与发展[J].自然杂志, 3: 150-154.
    孙立广和刘晓东. 2006.南极无冰区生态与环境变化在粪土层中的记录[J].气候变化研究进展, (2): 57-62.
    孙立广,谢周清,刘晓东,尹雪斌和朱仁斌. 2006.南极无冰区生态地质学[M]. //北京:科学出版社.
    孙枢和李晓波. 2001.我国资源与环境科学近期发展战略刍议[J].地球科学进展, 16: 726-733.
    汪建君和孙立广. 2008.两极与中低纬地区粪土层生物标志物性质比较[J].中国科学技术大学学报, (1): 18-25.
    张新时. 1995.生物多样性研究进展[M].北京:中国技术出版社.
    Sun LG, Liu XD, Yin XB, Zhu RB, Xie ZQ and Wang YH. 2004. A 1,500-year record of Antarctic seal populations in response to climate change [J]. Polar Biology, 27: 495-501.
    Sun LG and Xie ZQ. 2001a. Changes in lead concentration in Antarctic penguin droppings during the past 3,000 years [J]. Environmental Geology, 40: 1205-1208.
    Sun LG and Xie ZQ. 2001b. Relics: penguin population programs [J]. Science Progress, 84: 31-44.
    Sun LG, Xie ZQ and Zhao JL. 2000. Palaeoecology - A 3,000-year record of penguin populations [J]. Nature, 407: 858-858.
    Wang JJ, Wang YH, Wang XM and Sun LG. 2007. Penguins and vegetations on Ardley Island, Antarctica: evolution in the past 2,400 years[J]. Polar Biol, 30: 1475-1481.
    刘晓东. 2003.中晚全新世南极无冰区沉积物的生态环境记录及比较[D].合肥:中国科学技术大学.
    沈静,徐汝梅,周国法,吴宝铃和黄风鹏. 1996.南极菲尔德斯半岛陆地、淡水、潮间带、浅海各生态系统的结构及其相互关系的研究[J].极地研究, 11: 100-112.
    王自磐. 2004.南极菲尔德斯半岛海鸟与种群分布[J].极地研究, 16: 271-280.
    吴宝玲. 1998.南极菲尔德斯半岛及其附近地区生态系统的研究[M].北京:海洋出版社.
    孙立广,谢周清,刘晓东,尹雪斌和朱仁斌. 2006.南极无冰区生态地质学[M]. //北京:科学出版社, 94-105.
    谢又予. 1993.中国南极长城站地区地貌与沉积[M].北京:海洋出版社.
    杨奇超,孙立广,孔德明,黄涛和王玉宏. 2009. 20世纪南极法尔兹半岛海豹数量变化及其影响因素[J].科学通报, 54: 3546-3552.
    赵烨. 2002.全新世晚期南极乔治王岛菲尔德斯半岛的海平面变化[J].地学前沿, 9: 137-142.
    Block W. 1985. Ecological and physiological studies of terrestrial arthropods in the Ross Dependency 194-85[J]. Br Antarct Surv Bull, 68: 115-122.
    Broady PA. 1986. Ecology and taxonomy of the terrestrial algae of the Vestfold Hills [C]. Land: Academic Press.
    Dochat TM, Marchant DR and Denton GH. 2000. Glacial geology of Cape Bird, Ross Island, Antarctica[J]. Geografiska Annaler, 82: 237-247.
    Duncan KW. 1979. A note on the distribution and abundance of the endemic collembolan Gomphiocephalus hodgsoni Carpenter 1908 at Cape Bird, Antarctica[J]. Mauri Ora, 7: 19-24.
    Huang T, Sun LG, Wang YH and Zhu RB. 2009. Penguin occupation in the Vestfold Hills[J]. Antarct Sci, 21: 131-134.
    Montague TL. 1988. Birds of Prydz Bay, Antarctica: Distribution and abundance [J]. Hydrobiologia, 165: 227-237.
    Seppelt RD. 1986a. Lichens of the Vestfold Hills [C]. London: Academic Press.
    Seppelt RD. 1986b. Mosses of the Vestfold Hills [C]. London: Academic Press.
    Seppelt RD, Broady PA, Pickard J and Adamson DA. 1988. Plants and landscape in the Vestfold Hills, Antarctica[J]. Hydrobiologia, 165: 185-196.
    Sinclair BJ and Sjursen H. 2001. Terrestrial invertebrate abundance across a habitat transect in Keble Valley, Ross Island, Antarctica[J]. Pedobiologia, 45: 57-69.
    Smith DJ. 1970. The ecology of Gomphiocephalus hodgsoni Carpenter (Collembola,Hypogastruridae) at Cape Bird, Antarctica[M]. New Zealand: MSc Thesis, University of Canterbury.
    Smith RC, Ainley D, Baker K and Domack EW. 1999. Marine ecosystem sensitivity to climate change[J]. Bioscience, 49: 393-404.
    Taylor RH, Wilson PR and Thomas BW. 1990. Status and trends of Adelie penguin populations in the Ross Sea region[J]. Polar Record, 26: 293-304.
    Wharton DA. 1998. Comparison of the biology and freezing tolerance of Panagrolaimus davidi, an Antarctic nematode, from field samples and cultures[J]. Nematologica, 44: 643-653.
    Whitehead MD and Johnstone GW. 1990. The distribution and estimated abundance of Adélie penguin breeding in Prydz Bay, Antarctica [C]. Proceedings of the NIPR Symposium on Polar Biology, 3: 91-98.
    Wilson GJ. 1983. Distribution and abundance of Antarctic and sub-Antarctic penguins[C], Vol. 4.
    Zhang QS. 1985. Geology and Geography of Late Quaternary in Vestfold, Antarctica[M]. In Proceeding of Antarctic Science Research. China: Science Press.
    Zhang QS and Peterson JA. 1984. A geomorphology and Late Quaternary geology of the Vestfold Hills, Antarctica[M], Vol. 133.
    陈祚伶和孙立广. 2007. DG2沉积柱中的企鹅历史记录[D].中国:中国科学技术大学.
    傅家谟和盛国英. 1992.环境有机地球化学与古气候[J].第四纪研究, 4: 306-320.
    傅家谟和盛国英. 1996.环境有机地球化学初探[J].地学前缘, 3: 127-132.
    李从玲. 1990.近代海洋沉积物(层)中姥鲛烷/植烷比值及其地球化学意义[J].海洋地质与第四纪地质, 10: 77-88.
    汪建君,孙立广等. 2006.南极阿德雷岛企鹅粪土沉积物分子地球化学特征[J].极地研究, 18: 245-253.
    张干,盛国英和傅家谟. 1999.固城湖沉积物中羟基酸和α,ω--二元酸的组成分布及其地球化学意义[J].地球化学, 28: 183-190.
    Adamson DA and Pickard J. 1986a. Cainozoic history of the Vestfold Hills[M]. Sydney: Academic Press.
    Adamson DA and Pickard J. 1986b. Cainozoic history of the Vestfold Hills[M]. In: J.Pickard (Editor), Antarctic Oasis. Academic Press, Sydney: 63-97.
    Baroni C and Orombelli G. 1994. Abandoned Penguin Rookeries as Holocene Paleoclimatic Indicators in Antarctica[J]. Geology, 22: 23-26.
    Bird MI, Chivas AR, Radnell CJ and Burton HR. 1991. Sedimentological and Stable-Isotope Evolution of Lakes in the Vestfold Hills, Antarctica[J]. Palaeogeogr Palaeocl, 84: 109-130.
    Bowman JP, Cavanagh J, Austin JJ and Sanderson K. 1996. Novel Psychrobacter species from Antarctic ornithogenic soils[J]. Int J Syst Bacteriol, 46: 841-848.
    Brassell SC, Wardroper AMK, Thomson ID, Maxwell JR and Eglinton G. 1981. Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments[J]. Nature, 290: 693-696.
    Bull ID, Lockheart MJ, Elhmmali MM, Roberts DJ and Evershed RP. 2002. The origin of faeces by means of biomarker detection[J]. Environ Int, 27: 647-654.
    Canuel EA and Martens CS. 1993. Seasonal-Variations in the Sources and Alteration of Organic-Matter Associated with Recently-Deposited Sediments[J]. Org Geochem, 20: 563-577.
    Cocks MP, Balfour DA and Stock WD. 1998. On the uptake of ornithogenic products by plants on the inland mountains of Dronning Maud Land, Antarctica, using stable isotopes[J]. Polar Biol, 20: 107-111.
    Comet PA and Eglinton G. 1987. The use of lipids as facies indicators[J]. Geological Society, London, Special Publications, 26: 99-117.
    Coolen MJL, Hopmans EC, Rijpstra WIC, Muyzer G, Schouten S, Volkman JK and Damste JSS. 2004. Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: Response of methanogens and methanotrophs to environmental change[J]. Org Geochem, 35: 1151-1167.
    Cranwell PA, Eglinton G and Robinson N. 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments. II = Lipides des organismes aquatiques, contribution potentielle aux sédiments lacustres. II[J]. Org Geochem, 11: 513-527.
    Domack EW, Jull AJT and Nakao S. 1991a. Advance of East Antarctic Outlet Glaciers during the Hypsithermal - Implications for the Volume State of the Antarctic Ice-Sheet under Global Warming. Geology, 19: 1059-1062.
    Domack EW, Jull AJT and Nakao S. 1991b. Advance of East Antarctic Outlet Glaciers during the Hypsithermal - Implications for the Volume State of the Antarctic Ice-Sheet under Global Warming[J]. Geology, 19: 1059-1062.
    Ellis JC. 2005. Marine birds on land: a review of plant biomass, species richness, and community composition in seabird colonies[J]. Plant Ecol, 181: 227-241.
    Emslie SD. 2001. Radiocarbon dates from abandoned penguin colonies in the Antarctic Peninsula region[J]. Antarct Science, 13: 289-295.
    Emslie SD, Berkman PA, Ainley DG, Coats L and Polito M. 2003. Late-Holocene initiation of ice-free ecosystems in the southern Ross Sea, Antarctica[J]. Mar Ecol-Prog Ser, 262: 19-25.
    Emslie SD and Woehler EJ. 2005. A 9000-year record of Adelie penguin occupation and diet in the Windmill Islands, East Antarctica[J]. Antarct Sci, 17: 57-66.
    Fitzsimons SJ and Colhoun EA. 1991. Pleistocene Glaciation of the King Valley, Western Tasmania, Australia[J]. Quaternary Res, 36: 135-156.
    Fitzsimons SJ and Colhoun EA. 1995. Form, Structure and Stability of the Margin of the Antarctic Ice-Sheet, Vestfold Hills and Bunger Hills, East Antarctica[J]. Antarct Sci, 7: 171-179.
    Fitzsimons SJ and Domack EW. 1993. Evidence for Early Holocene deglaciation of the Vestfold Hills, east Antarctica[J]. Polar Rec, 29: 237-240.
    Fraser WR, Trivelpiece WZ, Ainely DG and Trivelpiece SG. 1992a. Increases in Antarctic penguin populations: reduced competition with whales or a loss of sea ice due to global warming? Polar Biol, 11: 525-531.
    Fraser WR, Trivelpiece WZ, Ainley DG and Trivelpiece SG. 1992b. Increases in Antarctic Penguin Populations - Reduced Competition with Whales or a Loss of Sea Ice Due to Environmental Warming[J]. Polar Biol, 11: 525-531.
    Freese E, Sass H, Rutters H, Schiedjewski R and Rullkotter J. 2008. Variable temperature-related changes in fatty acid composition of bacterial isolates from German Wadden sea sediments representing different bacterial phyla[J]. Org Geochem, 39: 1427-1438.
    Fulford-Smith SP and Sikes EL. 1996. The evolution of Ace Lake, Antarctica, determined from sedimentary diatom assemblages[J]. Palaeogeogr Palaeocl, 124: 73-86.
    Heras X, Grimalt JO, Albaiges J, Julia R and Anadon P. 1989. Origin and diagenesis of the organic matter in Miocene freshwater lacustrine phosphates (Cerdanya Basin, Eastern Pyrenees) = Origine et diagenèse de la matière organique dans les phosphates lacustres du Miocène (Bassin de Cerdanya, Pyrénées Orientales)[J]. Org Geochem, 14: 667-677.
    Huang T, Sun LG, Wang YH and Zhu RB. 2008. The identification and comparison of the bio-elements of the penguin ornithogenic sediments sample from Davis Station and Great Wall Station[J]. Chin J Polar Sci (In Chinese with English abstract), 19: 36-44.
    Huang T, Sun LG, Wang YH and Zhu RB. 2009. Penguin occupation in the Vestfold Hills. Antarctic Science, 21: 131-134.
    Kaneda T. 1977. Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol Rev, 41: 391-418.
    Kaneda T. 1991. Iso-Fatty and Anteiso-Fatty Acids in Bacteria - Biosynthesis, Function, and Taxonomic Significance. Microbiol Rev, 55: 288-302.
    Kerry E. 1993. Bioremediation of experimental petroleum spills on mineral soils in the Vestfold Hills, Antarctica[J]. Polar Biology, 13: 163-170.
    Leeming R, Ball A, Ashbolt N and Nichols P. 1996. Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters. Water Res, 30: 2893-2900.
    Matsuda H and Koyama T. 1977. Early diagenesis of fatty acids in lacustrine sediments--II. A statistical approach to changes in fatty acid composition from recent sediments and some source materials[J]. Geochim Cosmochim Ac, 41: 1825-1834.
    McMinn A, Hejnis H, Harle K and McOrist G. 2001. Late-Holocene climate change recorded in sediment cores from Ellis Fjord, eastern Antarctica[J]. Holocene, 11: 291-300.
    Meyers PA. 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes[J]. Org Geochem, 34: 261-289.
    Michel RFM, Schaefer CEGR and Dias LE. 2006. Ornithogenic gelisols (cryosols) from Maritime Antarctica: Pedogenesis, vegetation, and carbon studies[J]. Soil Sci Soc Am J, 70: 1370-1376.
    Montague TL. 1988. Birds of Prydz Bay, Antarctica: Distribution and abundance [J]. Hydrobiologia, 165: 227-237.
    Olafur I, Christian H, Paul AB, Svante B, Eric C, Ian DG, Brenda H, Kazuomi H, Martin M, Per M and Michael LP. 1998. Antarctic glacial history since the Last Glacial Maximum: an overview of the record on land[J]. Antarct Sci, 10: 326-344.
    Pickard J and Seppelt RD. 1984. Holocene occurrence of the moss bryum algens Card. in the Vestfold Hills, Antarctica[J]. J Bryol, 13: 209-217.
    Quilty PG. 2006. Landform evolution in the Marine Plain region, Vestfold Hills, East Antarctica[J]. Antarct Sci, 18: 239-259.
    Rathburn AE, Pichon JJ, Ayress MA and DeDeckker P. 1997. Microfossil and stable-isotope evidence for changes in Late Holocene palaeoproductivity and palaeoceanographic conditions in the Prydz Bay region of Antarctica. Palaeogeography Palaeoclimatology Palaeoecology, 131: 485-510.
    Roberts D and McMinn A. 1996. Relationships between surface sediment diatom assemblages and water chemistry gradients in saline lakes of the Vestfold Hills, Antarctica[J]. Antarct Sci, 8: 331-341.
    Roberts D and McMinn A. 1998. A weighted-averaging regression and calibration model for inferring lakewater salinity from fossil diatom assemblages in saline lakes of the Vestfold hills: a new tool for interpreting Holocene lake histories in Antarctica[J]. J Paleolimnol, 19: 99-113.
    Roberts D and McMinn A. 1999. A diatom-based palaeosalinity history of Ace Lake, Vestfold Hills, Antarctica[J]. Holocene, 9: 401-408.
    Roberts D, van Ommen TD, McMinn A, Morgan V and Roberts JL. 2001. Late-Holocene East Antarctic climate trends from ice-core and lake-sediment proxies[J]. Holocene, 11: 117-120.
    Romanenko LA, Lysenko AM, Rohde M, Mikhailov VV and Stackebrandt E. 2004. Psychrobacter maritimus sp nov and Psychrobacter arenosus sp nov., isolated from coastal sea ice and sediments of the Sea of Japan[J]. Int J Syst Evol Micr, 54: 1741-1745.
    Rontani JF and Volkman JK. 2003. Phytol degradation products as biogeochemical tracers in aquatic environments[J]. Org Geochem, 34: 1-35.
    Schoell M, Hwang RJ, Carlson RMK and Welton JE. 1994. Carbon isotopic composition of individual biomarkers in gilsonites (Utah)[J]. Org Geochem, 21: 673-683.
    Shivaji S, Reddy GSN, Raghavan PUM, Sarita NB and Delille D. 2004. Psychrobacter salsus sp. nov. and Psychrobacter adeliensis sp. nov. isolated from fast ice from Adelie Land, Antarctica[J]. Syst Appl microbiol 27: 628-635.
    Sun LG and Xie ZQ. 2001. Changes in lead concentration in Antarctic penguin droppings duringthe past 3,000 years[J]. Environ Geol, 40: 1205-1208.
    Sun LG, Xie ZQ and Zhao JL. 2000. Palaeoecology - A 3,000-year record of penguin populations[J]. Nature, 407: 858-858.
    Sun LG, Zhu RB, Liu XD, XIE ZQ, Yin XB, Zhao SP and Wang YH. 2005. HCl-soluble 87Sr/86Sr ratio in sediments impacted by penguin or seal excreta as a proxy for historical population size in the maritime Antarctica[J]. Mar Ecol-Prog Ser, 303: 43-50.
    Sun LG, Zhu RB and Yin XB. 2004. A geochemical method for the reconstruction of the occupation history of a penguin colony in the maritime Antarctic[J]. Polar Biol, 27: 670-678.
    Swain EB. 1985. Measurement and interpretation of sedimentary pigments[J]. Freshwater Biology, 15: 53-75.
    Tatur A, Myrcha A and Niegodzisz J. 1997. Formation of abandoned penguin rookery ecosystems in the maritime Antarctica[J]. Polar Biol, 17: 405-417.
    Taylor F and McMinn A. 2001. Evidence from diatoms for Holocene climate fluctuation along the East Antarctic margin. Holocene, 11: 455-466.
    Venkatesan MI and Santiago CA. 1989. Sterols in ocean sediment: novel tracers to examine habitats of cetaceans, pinnipeds, penguins and humans[J]. Mar Biol, 102: 431-437.
    Vidal E, Jouventin P and Frenot Y. 2003. Contribution of alien and indigenous species to plant-community assemblages near penguin rookeries at Crozet archipelago[J]. Polar Biol, 26: 432-437.
    Wagner B and Seppelt R. 2006. Deep-water occurrence of the moss Bryum pseudotriquetrum in Radok Lake, Amery Oasis, East Antarctica[J]. Polar Biol, 29: 791-795.
    Wang JJ, Wang YH, Wang XM and Sun LG. 2007. Penguins and vegetations on Ardley Island, Antarctica: evolution in the past 2,400 years[J]. Polar Biol, 30: 1475-1481.
    Wang Z, Patrick PD and Paul AB. 2001. Sea level change and environmental evolution of coastal lakes in Vestfold Hills, Antarctica[J]. Chin J Polar Sci (In Chinese with English abstract), 13: 69-81.
    Woehler EJ and Johnstone GW. 1991. Status and conservation of seabirds of the Australian Antarctic Territory. Seabird: Status and Conservation. ICBP Technical Publication, 11: 279-308.
    Woehler EJ, Tierney TJ and Burton HR. 1989. The distribution and abundance of Adelie penguin, Pygoscelis adeliae, at the Vestfold Hills[J]. ANARE Res Notes, 70: 1-41.
    Yoon JH, Lee CH, Yeo SH and Oh TK. 2005. Psychrobacter aquimaris sp nov and Psychrobacter namhaensis sp nov., isolated from sea water of the South Sea in Korea[J]. Int J Syst EvolMicr, 55: 1007-1013.
    Zhang QS. 1992a. Late Quaternary environmental changes in the Antarctic and their correlation with global change. Tokyo: Terra Scientific Publishing Company.
    Zhang QS. 1992b. Late Quaternary environmental changes in the Antarctic and their correlation with global change. In Recent Progress in Antarctic Earth Science (Y. Yoshida, K. Kaminuma and K. Shiraishi, eds). Tokyo: Terra Scientific Publishing Company.
    Zwartz D, Bird M, Stone J and Lambeck K. 1998. Holocene sea-level change and ice-sheet history in the Vestfold Hills, East Antarctica[J]. Earth Planet Sc Lett, 155: 131-145.
    李守军. 1999.正烷烃、姥鲛烷与植烷对沉积环境的指示意义.石油大学学报(自然科学版), 23: 4.
    孙立广,谢周清,刘晓东,尹雪斌和朱仁斌. 2006.南极无冰区生态地质学[M]. //北京:科学出版社, 94-105.
    汪建君,孙立广,胡建芳,罗泓灏和王新明. 2006.南极阿德雷岛企鹅粪土沉积物分子地球化学特征.极地研究, 18: 245-253.
    杨奇超,孙立广,孔德明,黄涛和王玉宏. 2009. 20世纪南极法尔兹半岛海豹数量变化及其影响因素[J].科学通报, 54: 3546-3552.
    赵烨. 2002.全新世晚期南极乔治王岛菲尔德斯半岛的海平面变化[J].地学前沿, 9: 137-142.
    Adamson DA and Pickard J. 1986. Cainozoic history of the Vestfold Hills. In: J.Pickard (Editor), Antarctic Oasis. Academic Press, Sydney: 63-97.
    Akiyama M, Hayashi M and Matsumoto G. 1990. Plant remains and related substances in the Past lacustrine sediments of the Riiser- Larsen area, Enderby Land, east Antarctic. Proceedings of the NIPR Symposium on Polar Biology, 3: 207-217.
    Atkinson A, Siegel V, Pakhomov E and Rothery P. 2004. Long-term decline in krill stock and increase in salps within the Southern Ocean[J]. Nature, 432: 100-103.
    Barlow KE, Boyd IL, Croxall JP, Reid K, Staniland IJ and Brierley AS. 2002. Are penguins and seals in competition for Antarctic krill at South Georgia? Marine Biology, 140: 205-213.
    Bull ID, Lockheart MJ, Elhmmali MM, Roberts DJ and Evershed RP. 2002. The origin of faeces by means of biomarker detection. Environ Int, 27: 647-654.
    Canuel EA and Martens CS. 1993. Seasonal-Variations in the Sources and Alteration of Organic-Matter Associated with Recently-Deposited Sediments. Org Geochem, 20: 563-577.
    Casaux R, Baroni A and Ramon A. 2006. The diet of the weddell seal Leptonychotes weddellii at the Danco Coast, Antarctic Peninsula. Polar Biol, 29: 257-262.
    Casaux R, Carlini A, Corbalan A, Bertolin L and DiPrinzio CY. 2009. The diet of the Weddell seal Leptonychotes weddellii at Laurie Island, South Orkney Islands. Polar Biol, 32: 833-838.
    Comet PA and Eglinton G. 1987. The use of lipids as facies indicators. Geological Society, London, Special Publications, 26: 99-117.
    Corsolini S. 2009. Industrial contaminants in Antarctic biota. J Chromatogr A, 1216: 598-612. Costa DP, Klinck JM, Hofmann EE, Dinniman MS and Burns JM. 2008. Upper ocean variability in west Antarctic Peninsula continental shelf waters as measured using instrumented seals. Deep-Sea Res Pt Ii, 55: 323-337.
    Cranwell PA, Eglinton G and Robinson N. 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments. II = Lipides des organismes aquatiques, contribution potentielle aux sédiments lacustres. II[J]. Org Geochem, 11: 513-527.
    Croll DA and Tershy BR. 1998. Penguins, fur seals, and fishing: prey requirements and potential competition in the South Shetland Islands, Antarctica. Polar Biol, 19: 365-374.
    Croxall JP. 1992. Southern ocean environmental changes: effects on seabird, seal and whalepopulations. Philosophical Transactions: Biological Sciences, 338: 319-328.
    Croxall JP and Prince PA. 1979. Antarctic seabird and seal monitoring studies. Polar Record, 19: 573-595.
    Curtis C, Stewart BS and Karl SA. 2009. Pleistocene population expansions of Antarctic seals. Mol Ecol, 18: 2112-2121.
    De la Mare WK. 1997. Abrupt mid-twentieth-century decline in Antarctic sea-ice extent from whaling records. Nature(Lodon), 389: 57-60.
    Domack EW, Jull AJT and Nakao S. 1991. Advance of East Antarctic Outlet Glaciers during the Hypsithermal - Implications for the Volume State of the Antarctic Ice-Sheet under Global Warming. Geology, 19: 1059-1062.
    Eglinton G and Hamilton RJ. 1967. Leaf epicuticular waxes. Science, 156: 1322-1335.
    Ficken KJ, Li B, Swain DL and Eglinton G. 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem, 31: 745-749.
    Filley TR, Freeman KH, Bianchi TS, Baskaran M, Colarusso LA and Hatcher PG. 2001. An isotopic biogeochemical assessment of shifts in organic matter input to Holocene sediments from Mud Lake, Florida. Org Geochem, 32: 1153-1167.
    Fraser WR and Trivelpiece WZ. 1996. Foundations for Ecological ResearchWest of the Antarctic Peninsula, Vol. 70.
    Fraser WR, Trivelpiece WZ, Ainely DG and Trivelpiece SG. 1992. Increases in Antarctic penguin populations: reduced competition with whales or a loss of sea ice due to global warming? Polar Biol, 11: 525-531.
    Fu JM and Sheng GY. 1996. Preliminary study on environmental organic geochemistry[J]. Earth Science Frontiers, 3: 127-132.
    Hegseth EN and Von Quillfeldt CH. 2002. Low phytoplankton biomass and ice algal blooms in the Weddell Sea during the ice-filled summer of 1997. Antarctic Science, 14: 231-243.
    Heras X, Grimalt JO, Albaiges J, Julia R and Anadon P. 1989. Origin and diagenesis of the organic matter in Miocene freshwater lacustrine phosphates (Cerdanya Basin, Eastern Pyrenees) = Origine et diagenèse de la matière organique dans les phosphates lacustres du Miocène (Bassin de Cerdanya, Pyrénées Orientales)[J]. Org Geochem, 14: 667-677.
    Hodgson DA and Johnston NM. 1997. Inferring seal populations from lake sediments[J]. Nature, 387: 30-31.
    Huang J, Sun LG, Huang W, Wang YH and Wang XM. 2010. The ecosystem evolution of penguin colonies in the past 8,500 years on Vestfold Hills, East Antarctica[J]. Polar Biol, 33: 1399-1406.
    Kawamura K and Ishiwatari R. 1981. Polyunsaturated fatty acids in a lacustrine sediment as a possible indicator of paleoclimate. Geochim Cosmochim Ac, 45: 149-155.
    Laws RM. 1985. The ecology of the Southern Ocean. Am. Sci., 73: 26-40.
    Learmonth JA, MacLeod CD, Santos MB, Pierce GJ, Crick HQP and Robinson RA. 2006. Potential effects of climate change on marine mammals. Oceanogr Mar Biol, 44: 431-464.
    Martins CC, Venkatesan MI and Montone RC. 2002. Sterols and linear alkylbenzenes in marine sediments from Admiralty Bay, King George Island, South Shetland Islands[J]. Antarctic Science, 14: 244-252.
    Matsuda H and Koyama T. 1977. Early diagenesis of fatty acids in lacustrine sediments--II. A statistical approach to changes in fatty acid composition from recent sediments and some source materials. Geochimica et Cosmochimica Acta, 41: 1825-1834.
    Matsumoto Gl, Watanuki K and Torii T. 1987. Further study on the vertical distribution of organic constituents in an Antarctic lake: Lake Vanda. Proceedings of the NIPR symposium on polar biology 1: 219-232.
    Meyers PA. 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem, 34: 261-289.
    Miranda KC, Metcalfe TL, Metcalfe CD, Robaldo RB, Muelbert MMC, Colares EP, Martinez PE and Bianchini A. 2007. Residues of persistent organochlorine contaminants in Southern elephant seals (Mirounga leonina) from Elephant Island, Antarctica. Environ Sci Technol, 41: 3829-3835.
    Olafur I, Christian H, Paul AB, Svante B, Eric C, Ian DG, Brenda H, Kazuomi H, Martin M, Per M and Michael LP. 1998. Antarctic glacial history since the Last Glacial Maximum: an overview of the record on land[J]. Antarct Sci, 10: 326-344.
    Ourisson G, Albrecht P and Rohmer M. 1982. Predictive microbial biochemistry -- From molecular fossils to procaryotic membranes. Trends in Biochemical Sciences 7: 236-238.
    Rathburn AE, Pichon JJ, Ayress MA and DeDeckker P. 1997. Microfossil and stable-isotope evidence for changes in Late Holocene palaeoproductivity and palaeoceanographic conditions in the Prydz Bay region of Antarctica. Palaeogeography Palaeoclimatology Palaeoecology, 131: 485-510.
    Reid K and Croxall JP. 2001. Environmental response of upper trophic-level predators reveals a system change in an Antarctic marine ecosystem. P Roy Soc Lond B Bio, 268: 377-384.
    Rieley G, Collier RJ, Jones DM and Eglinton G. 1991. The Biogeochemistry of Ellesmere Lake, Uk .1. Source Correlation of Leaf Wax Inputs to the Sedimentary Lipid Record. Org Geochem, 17: 901-912.
    Robinson N, Cranwell PA, Finlay BJ and Eglinton G. 1984. Lipids of aquatic organisms as potential contributors to lacustrine sediments. Org Geochem, 6: 143-152.
    Rontani JF and Volkman JK. 2003. Phytol degradation products as biogeochemical tracers in aquatic environments[J]. Org Geochem, 34: 1-35.
    Skvarca P, Rack W, Rott H and Donangelo TIY. 1999. Climatic trend and the retreat and disintegration of ice shelves on the Antarctic Peninsula: an overview. Polar Res, 18: 151-157.
    Smith RIL. 1988. Destruction of Antarctic terrestrial ecosystems by a rapidly increasing fur seal population[J]. Biological Conservation, 45: 55-57.
    Smith RIL. 1990. Signy Island as a paradigm of biological and environmental change in Antarctic terrestrial ecosystems. Berlin: Springer-Verlag.
    Sun LG, Liu XD, Yin XB, Zhu RB, Xie ZQ and Wang YH. 2004. A 1,500-year record of Antarctic seal populations in response to climate change. Polar Biol, 27: 495-501.
    Sun LG, Xie ZQ and Zhao JL. 2000. Palaeoecology - A 3,000-year record of penguin populations[J]. Nature, 407: 858-858.
    Sun LG, Yin XB, Liu XD, Zhu RB, Xie ZQ and Wang YH. 2006. A 2000-year record of mercury and ancient civilizations in seal hairs from King George Island, West Antarctica. Sci Total Environ, 368: 236-247.
    Tao L, Kannan K, Kajiwara N, Costa MM, Fillmann G, Takahashi S and Tanabe S. 2006. Perfluorooctanesulfonate and related fluorochemicals in albatrosses, elephant seals, penguins, and Polar Skuas from the Southern Ocean. Environ Sci Technol, 40: 7642-7648.
    Targett TE. 1981. Trophic ecology and structure of coastal Antarctic fish communities. Mar. Ecol. Progr. Ser. , 4: 243-263.
    Taylor F and McMinn A. 2001. Evidence from diatoms for Holocene climate fluctuation along the East Antarctic margin. Holocene, 11: 455-466.
    Tollit DJ, Heaslip SG, Barrick RL and Trites AW. 2007. Impact of diet-index selection and the digestion of prey hard remains on determining the diet of the Steller sea lion (Eumetopias jubatus). Can J Zool, 85: 1-15.
    Vaughan DG and Doake CSM. 1996. Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature, 379: 328-331.
    Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ and Turner J. 2003. Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60: 243-274.
    Venkatesan MI and Santiago CA. 1989. Sterols in ocean sediments: novel tracers to examine habitats of cetaceans, pinnipeds, penguins and humans Marine Biology, 102: 431-437.
    Volkman JK, Allen DI and Stevenson PL. 1986. Bacterial and algal hydrocarbons in sediments from a saline Antaretic lake. Ace Lake Org Geochem, 10: 671-681.
    Volkman JK, Barrett SM and Blackburn SI. 1999. Eustigmatophyte microalgae are potential sources of C-29 sterols, C-22-C-28 n-alcohols and C-28-C-32 n-alkyl diols in freshwater environments. Org Geochem, 30: 307-318.
    Wang JJ, Wang YH, Wang XM and Sun LG. 2007. Penguins and vegetations on Ardley Island, Antarctica: evolution in the past 2,400 years[J]. Polar Biol, 30: 1475-1481. Yang. in Press. seal. science, 14: 13.
    Yin XB, Sun LG, Zhu RB, Liu XD, Ruan DY and Wang YH. 2007. Mercury-selenium association in antarctic seal hairs and animal excrements over the past 1,500 years. Environ Toxicol Chem, 26: 381-386.
    Yves F. 2005. Biological invasions in the Antarctic: extent, impacts and implications[J]. Biological Reviews, 80: 45-72.
    Zhang G, Sheng GY, Peng PA and Zheng HH. 2000. Molecular organic geochemical peculiarities of lacustrine core sediments in Fildes Peninsula, King George Island, Antarctica[J]. Chinese Sci Bull (In Chinese with English abstract), 45: 67-70.
    李守军. 1999.正烷烃、姥鲛烷与植烷对沉积环境的指示意义[J].石油大学学报(自然科学版), 23: 4.
    李从玲. 1990.近代海洋沉积物(层)中姥鲛烷/植烷比值及其地球化学意义[J].海洋地质与第四纪地质, 10: 77-88.
    孙立广,谢周清,刘晓东,尹雪斌和朱仁斌. 2006.南极无冰区生态地质学[M]. //北京:科学出版社, 94-105.
    汪建君,孙立广,胡建芳,罗泓灏和王新明. 2006.南极阿德雷岛企鹅粪土沉积物分子地球化学特征.极地研究, 18: 245-253.
    Ainley DG. 2002. The Adélie Penguin: bellwether of climate change[M]. New York: Columbia University Press.
    Baroni C and Orombelli G. 1994. Abandoned Penguin Rookeries as Holocene Paleoclimatic Indicators in Antarctica[J]. Geology, 22: 23-26.
    Barry JP and Dayton PK. 1988. Current patterns in McMurdo Sound, Antarctica and their relationship to local biotic communities[J]. Polar Biol, 8: 357-376.
    Brassell SC, Wardroper AMK, Thomson ID, Maxwell JR and Eglinton G. 1981. Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments[J]. Nature, 290: 693-696.
    Bull ID, Lockheart MJ, Elhmmali MM, Roberts DJ and Evershed RP. 2002. The origin of faeces by means of biomarker detection[J]. Environ Int, 27: 647-654.
    Canuel EA and Martens CS. 1993. Seasonal-Variations in the Sources and Alteration of Organic-Matter Associated with Recently-Deposited Sediments. Org Geochem, 20: 563-577.
    Comet PA and Eglinton G. 1987. The use of lipids as facies indicators. Geological Society, London, Special Publications, 26: 99-117.
    Cranwell PA, Eglinton G and Robinson N. 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments. II = Lipides des organismes aquatiques, contribution potentielle aux sédiments lacustres. II[J]. Org Geochem, 11: 513-527.
    Didyk BM, Simoneit BRT, Brassell SC and Eglinton G. 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature, 272: 216-222.
    Emslie SD. 2001. Radiocarbon dates from abandoned penguin colonies in the Antarctic Peninsula region[J]. Antarct Science, 13: 289-295.
    Emslie SD, Berkman PA, Ainley DG, Coats L and Polito M. 2003. Late-Holocene initiation ofice-free ecosystems in the southern Ross Sea, Antarctica[J]. Mar Ecol-Prog Ser, 262: 19-25.
    Fu JM and Sheng GY. 1996. Preliminary study on environmental organic geochemistry[J]. Earth Science Frontiers, 3: 127-132.
    Goossens H, Duren RR, de Leeuw JW and Schenck PA. 1989. Lipids and their mode of occurrence in bacteria and sediments-II. Lipids in the sediment of a stratified, freshwater lake[J]. Org Geochem, 14: 27-41.
    Grove JM. 1988. The Little Ice Age[M]. London: Methuen.
    Heras X, Grimalt JO, Albaiges J, Julia R and Anadon P. 1989. Origin and diagenesis of the organic matter in Miocene freshwater lacustrine phosphates (Cerdanya Basin, Eastern Pyrenees) = Origine et diagenèse de la matière organique dans les phosphates lacustres du Miocène (Bassin de Cerdanya, Pyrénées Orientales)[J]. Org Geochem, 14: 667-677.
    Huang J, Sun LG, Huang W, Wang YH and Wang XM. 2010. The ecosystem evolution of penguin colonies in the past 8,500 years on Vestfold Hills, East Antarctica[J]. Polar Biol, 33: 1399-1406.
    Kerry- Jayne W. 1990. Fluctuations in populations of Adelie penguins at Cape Bird, Antarctica[J]. Polar Biol, 26: 305-308.
    Lambert DM, Ritchie PA, Millar CD, Holland B and Drummond AJ. 2002. Rates of evolution in ancient DNA from Adélie penguins[J]. Science 295: 2270-2273.
    Liu XD, Sun LG, Xie ZQ, Yin XB and Wang YH. 2005. A 1300-year record of penguin populationsat Ardley Island in the Antarctic, as deduced from the geochemical data in the ornithogenic lake sediments [J]. Arctic Antarctic and Alpine Research, 37: 490-498.
    Liu XD, Sun LG, Xie ZQ, Yin XB, Zhu RB and Wang YH. 2007. A preliminary record of the historical seabird population in the Larsemann Hills, East Antarctica, from geochemical analyses of Mochou Lake sediments [J]. Boreas, 36: 182-197.
    Liu XD, Sun LG, Yin XB and Zhu RB. 2004. Paleoecological implications of the nitrogen isotope signatures in the sediments amended by Antarctic seal excrements [J]. Progress in Natural Science, 14: 786-792.
    Lorius CL, Merlivat L, Jouzel J and Pourchet MA. 1979. 30,000-yr isotope climatic record from Antarctic ice[J]. Nature, 280: 644-648.
    Lyons WB, Frape SK and Welch KA. 1999. History of McMurdo Dry Valley lakes, Antarctica, from stable chlorine isotope data[J]. Geology, 27: 527-530.
    Lyons WB, Tyler SW, Wharton JR, Mcmknight DM and Vaughn BH. 1998. A late Holocene desiccation of Lake Hoare and Lake Fryxell, McMurdo Dry Valleys, Antarctica[J].Antarct Sci, 10: 247-256.
    Matsuda H and Koyama T. 1977. Early diagenesis of fatty acids in lacustrine sediments--II. A statistical approach to changes in fatty acid composition from recent sediments and some source materials. Geochimica et Cosmochimica Acta, 41: 1825-1834.
    Meyers PA. 2003a. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem, 34: 261-289.
    Meyers PA. 2003b. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes[J]. Org Geochem, 34: 261-289.
    Mosley-Thompson E, Thompson LG, Grootes PM and Gunderstrup N. 1990. Little Ice Age (Neoglacial) paleoenvironmental conditions at Siple station, Antarctica[J]. Annals of Glaciology, 14: 199-204.
    Polito M, Emsile SD and Walker W. 2002. A1000-year record of Adélie penguin diets in the southern Ross Sea[J]. Antarct Sci, 14: 327-332.
    Rontani JF and Volkman JK. 2003. Phytol degradation products as biogeochemical tracers in aquatic environments[J]. Org Geochem, 34: 1-35.
    Sun LG, Liu XD, Yin XB, Xie ZQ and Zhao JL. 2005. Sediments in palaeo-notches: potential proxy records for palaeoclimatic changes in Antarctica [J]. Palaeogeography Palaeoclimatology Palaeoecology, 218: 175-193.
    Sun LG and Xie ZQ. 2001a. Changes in lead concentration in Antarctic penguin droppings during the past 3,000 years [J]. Environmental Geology, 40: 1205-1208.
    Sun LG and Xie ZQ. 2001b. Relics: penguin population programs [J]. Science Progress, 84: 31-44.
    Sun LG, Xie ZQ and Zhao JL. 2000. Palaeoecology - A 3,000-year record of penguin populations [J]. Nature, 407: 858-858.
    Sun LG, Yin XB, Liu XD, Zhu RB, Pan CP, Zhao YZ, Liu FM, Jiang SR and Wang YH. 2006. Levels of hexachlorocyclohexanes and dichloro-diphenyl-trichloroethanes in penguin droppings collected from Ardley Island, the maritime Antarctic [J]. Human and Ecological Risk Assessment, 12: 328-338.
    Sun LG, Zhu RB, Yin XB, Liu XD, Xie ZQ adn Wang YH. 2004. A geochemical method for the reconstruction of the occupation history of a penguin colony in the maritime Antarctic [J]. Polar Biology, 27: 670-678.
    Smith RC, Ainley D, Baker K and Domack EW. 1999. Marine ecosystem sensitivity to climate change[J]. Bioscience, 49: 393-404.
    Smith RIL. 1990. Signy Island as a paradigm of biological and environmental change in Antarcticterrestrial ecosystems[M]. In Antarctic Ecosystems (K.R. Kerry and G. Hempal, eds), pp. 32-50. Berlin: Springer-Verlag.
    Stonehouse B. 1967. Occurrence and effects of open water in McMurdo Sound, Antarctica, during winter and early spring[J]. Polar Record, 13: 775-778.
    Taylor RH, Wilson PR and Thomas BW. 1990. Status and trends of Adelie penguin populations in the Ross Sea region[J]. Polar Record, 26: 293-304.
    Trivelpiece WZ, Trivelpiece SG, Geupel GR, Kjelmyr J and Volkman NJ. 1990. Adélie and chinstrap penguins: their potential as monitors of the southern ocean marine ecosystem[M]. Berlin: Springer-Verlag,.
    Venkatesan MI and Santiago CA. 1989. Sterols in ocean sediment: novel tracers to examine habitats of cetaceans, pinnipeds, penguins and humans[J]. Mar Biol, 102: 431-437.
    Wang JJ, Wang YH, Wang XM and Sun LG. 2007. Penguins and vegetations on Ardley Island, Antarctica: evolution in the past 2,400 years[J]. Polar Biol, 30: 1475-1481.
    Watanuki Y, Kato A, Naito Y, Robertson G and Robinson S. 1997. Diving and foraging behaviour of Adélie penguins in areas with and without fast sea-ice[J]. Polar Biol, 17: 296-304.
    Wilson GJ. 1983. Distribution and abundance of Antarctic and sub-Antarctic penguins[C], Vol. 4. Wilson PR, Ainley DG, Nur N, Jacobs SS, Barton KJ, Ballard G and Comiso JC. 2001. Adélie penguin population change in the pacific sector of Antarctica: relation to sea-ice extent and the Antarctic Circumpolar Current[J]. Mar Ecol-Prog Ser, 213: 301-309.
    Xie ZQ and Sun LG. 2003. Fluoride content in bones of Adélie penguins and environmental media in Antarctica [J]. Environmental Geochemistry and Health, 25: 483-490.
    Xie ZQ and Sun LG. 2008. A 1,800-year record of arsenic concentration in the penguin dropping sediment, Antarctic [J]. Environmental Geology, 55: 1055-1059.
    Yin XB, Sun LG, Zhu RB, Liu XD, Ruan DY and Wang YH. 2007. Mercury-selenium association in antarctic seal hairs and animal excrements over the past 1,500 years [J]. Environmental Toxicology and Chemistry 26: 381-386.
    Zhu RB, Kong DM, Sun LG, Geng JJ, Wang XR and Glindemann D. 2006. Tropospheric phosphine and its sources in coastal Antarctica [J]. Environmental Science & Technology, 40: 7656-7661.
    Zhu RB, Liu YS, Xu H, Ma J, Gong ZJ and Zhao SP. 2008. Methane emissions from three sea animal colonies in the maritime Antarctic [J]. Atmospheric Environment 42: 1197-1205.
    陈祚伶和孙立广. 2007. DG2沉积柱中的企鹅历史记录[D].中国:中国科学技术大学.
    孙立广和刘晓东. 2006.南极无冰区生态与环境变化在粪土层中的记录[J].气候变化研究进展, 2: 57-62.
    孙立广,谢周清,刘晓东,尹雪斌和朱仁斌. 2006.西南极乔治王岛和东南极拉斯曼丘陵典型无冰区概述[M]. In南极无冰区生态地质学(彭胜朝,罗吉and李久进, eds), pp. 37-39.中国:科学出版社.
    杨奇超,孙立广,孔德明,黄涛和王玉宏. 2009. 20世纪南极法尔兹半岛海豹数量变化及其影响因素[J].科学通报, 54: 3546-3552.
    Boon AR and Duinevald GCA. 1996. Phytopigments and fatty acids as molecular markers for the quality of near bottom particulate organic matter in the North Sea[J]. Joumal of Sea Research, 35.
    Brassell SC, Wardroper AMK, Thomson ID, Maxwell JR and Eglinton G. 1981. Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments[J]. Nature, 290: 693-696.
    Cranwell PA, Eglinton G and Robinson N. 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments. II = Lipides des organismes aquatiques, contribution potentielle aux sédiments lacustres. II[J]. Org Geochem, 11: 513-527.
    Goossens H, Duren RR, de Leeuw JW and Schenck PA. 1989. Lipids and their mode of occurrence in bacteria and sediments-II. Lipids in the sediment of a stratified, freshwater lake[J]. Org Geochem, 14: 27-41.
    Heras X, Grimalt JO, Albaiges J, Julia R and Anadon P. 1989. Origin and diagenesis of the organic matter in Miocene freshwater lacustrine phosphates (Cerdanya Basin, Eastern Pyrenees) = Origine et diagenèse de la matière organique dans les phosphates lacustres du Miocène (Bassin de Cerdanya, Pyrénées Orientales)[J]. Org Geochem, 14: 667-677.
    Huang T, Sun LG, Wang YH and Zhu RB. 2009. Penguin occupation in the Vestfold Hills. Antarctic Science, 21: 131-134.
    Leeming R, Ball A, Ashbolt N and Nichols P. 1996. Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters. Water Res, 30: 2893-2900.
    Martins CC, Venkatesan MI and Montone RC. 2002. Sterols and linear alkylbenzenes in marine sediments from Admiralty Bay, King George Island, South Shetland Islands[J]. Antarctic Science, 14: 244-252.
    Meyers PA. 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes[J]. Org Geochem, 34: 261-289.
    Sun LG and Xie ZQ. 2001. Changes in lead concentration in Antarctic penguin droppings during the past 3,000 years[J]. Environ Geol, 40: 1205-1208.
    Sun LG, Xie ZQ and Zhao JL. 2000. Palaeoecology - A 3,000-year record of penguin populations[J]. Nature, 407: 858-858.
    Sun LG, Zhu RB and Yin XB. 2004. A geochemical method for the reconstruction of the occupation history of a penguin colony in the maritime Antarctic[J]. Polar Biol, 27: 670-678.
    Trivelpiece WZ, Trivelpiece SG, Geupel GR, Kjelmyr J and Volkman NJ. 1990. Adélie and chinstrap penguins: their potential as monitors of the southern ocean marine ecosystem[M]. Berlin: Springer-Verlag,.
    Venkatesan MI and Santiago CA. 1989. Sterols in ocean sediment: novel tracers to examine habitats of cetaceans, pinnipeds, penguins and humans[J]. Mar Biol, 102: 431-437.
    Wang JJ, Wang YH, Wang XM and Sun LG. 2007. Penguins and vegetations on Ardley Island, Antarctica: evolution in the past 2,400 years[J]. Polar Biol, 30: 1475-1481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700