遥感图像的融合及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,图像融合已成为图像理解和计算机视觉领域中的一项重要而有用的新技术,多源遥感图像数据融合也成为遥感领域的研究热点,其目的是将来自多信息源的图像数据加以智能化合成,产生比单一传感器数据更精确、更可靠的描述和判决,使融合图像更符合人和机器的视觉特性,更有利于诸如目标检测与识别等进一步的图像理解与分析。它在军事、民用方面有着极为广泛的应用。本文对来自不同途径的多源遥感图像的融合方法及其应用进行了研究,主要工作如下:
    图像空间配准是多源遥感图像融合前非常重要的一步,其误差大小直接影响融合结果的有效性,它是进行多源遥感图像数据融合的前提与基础。在研究了信号的傅立叶变换的性质和特点的基础上,将傅立叶相位相关技术进行扩展,用于实现遥感图像自动配准。该方法的主要优点是在不需要寻找控制点和传感器参数的情况下进行图像自动配准。通过对数-极坐标变换、利用傅立叶变换的比例特性、旋转特性和相位相关技术确定图像间的比例、旋转和平移关系,实验结果表明了此方法的可行性和有效性。
    提出了一种基于互信息相似性判据的分层遥感图像配准方法,通过小波变换构造图像金字塔,从金字塔的最顶层开始搜索,根据互信息最大的原则确定图像间的变换参数,并作为下一层搜索的粗略位置,然后逐层细化,实现由粗到细的搜索过程。将此算法应用于遥感图像,得到了有效、精确的配准结果。
    在分析了基于傅立叶变换的配准方法和基于互信息准则的分层配准方法的优缺点的基础上,提出了将傅立叶变换和基于互信息相似性判据相结合的分层图像配准方法,克服了基于互信息的分层配准方法耗时长的缺点,且利用分层细化的搜索策略增加了基于傅立叶变换的的误差修正过程,提高了配准精度。
    分析了多源遥感图像融合的层次、模型、结构及其特点,着重研究和分析了像素级多源遥感图像融合的概念、方法,对多源遥感图像融合效果的评价方法进行了深入的研究,在已有的评价方法的基础上将它们进行了整理、分类,提出和建立了一套对图像融合效果及融合方法性能进行定性、定量评价的方法和准则。
    研究和分析了几种常用的多源遥感图像的方法(包括多光谱图像的融合方法):直接平均法、HIS 变换法、Borvey 法、主成分分析法和高通滤波法等,通过实验比较了这
In recent years, image fusion has been an important and useful technique for image analysis and computer vision. Multi-sensor image fusion has attracted many attentions in remote sensing area. The aim of image fusion is to combine multiple source image data from various sensors intelligently and to obtain more detailed, complete description and decision than any of the individual source images. As a result of this processing, the fused image is more useful for human and machine perception or further image processing tasks such as object detection and recognition. In this dissertation, we focus on the techniques and applications of the multiple remote sensing image fusion.
    In this dissertation, an automated FFT-based technique is proposed for registration of remote sensing images having different spatial resolution and relative rotation and shift. The proposed method is an extension of the phase correlation technique. The main characteristic of the algorithm is to align two images automatically without requiring either control points or sensor’s parameters. Fourier scaling properties and Fourier rotational properties are used to find scale and rotational movement by Log-polar coordinate transform. The phase correlation technique determines the transnational movement. Experimental results show that satisfactory effect has been obtained by applying our method.
    A pyramid approach for remote sensing image registration based on mutual information is presented. The image pyramid is obtained by using the wavelet transform. Coarse-to-fine multi-resolution search approaches have been proposed to increase accuracy and efficiency. An exhaustive search algorithm is applied at the coarsest level of the image pyramid. Registration at higher levels can be performed with the result at the pervious level serving as the initial condition. Our algorithm has been applied on remote sensing images.
    Main advantages and drawbacks of two registration methods mentioned above were analyzed. In order to save the computarional time and improve registration accuracy, a new coarse-to-fine hierarchical strategy for image registration based on the combination of FFT with mutual information approaches.
    Based on the comprehensive review and summarization of previous articles and researching achievements, basic concepts, levels, models, structures, techniques and applications of the multi-source remote sensing image data fusion, especially for pixel-based image fusion, are discussed. Furthermore, assessments of the image fusion performance are studied. Several evaluation criteria are presented in this dissertation. These evaluation criteria are classified according to condition and purpose. The methods of pixel-based remote sensing image fusion are analyzed and studied (including direct average method, HIS transformation, The Brovey method, PCA method and HPF method), these methods are compared qualitatively and quantitatively according to sharpness, information content, spatial resolution and preserving the spectral characters of source multi-spectral images and so on. We mainly studied and discussed multi-resolution image fusion approaches. These approaches are classified into two types: direction and no-direction multi-resolution analysis. For no-direction multi-resolution analysis, three pyramids are presented including laplacian pyramid, contrast pyramid and ratio pyramid. The decomposition, reconstruction, and image fusion based on these pyramids were introduced. The effects of the type of pyramid, the number of pyramid decomposition level, the scheme of fusion and the size of local region to the fusion result were investigated. Some important conclusions were drawn through a great deal experiments. For direction multi-resolution analysis, sensing image fusion techniques based on wavelet transform and direction gradient pyramid transform were proposed. Their characters, decomposition, reconstruction, and image fusion based on these two techniques were detailed. Furthermore, we investigate a pixel level image fusion algorithm based on a novel multi-resolution transform called steerable pyramid, which is both aliasing free and translation invariant. The characteristics of steerable pyramid and the scheme of image fusion by using steerable pyramid were discussed. We analyzed the effect of the number of orientation band-pass filters and the decomposition level to the fusion result. In order to resolve the problem of dim target detection, a novel approach based on image fusion and mathematical morphology was proposed. First, the original images were fused
    using steerable pyramid transform technique based on effective fusion scheme. The targets can be enhanced and clearer in fused image. Second, mathematical morphology method was applied to detect the target based on the fused image. The experimental results show that the effect of our method is satisfactory. A series of experiments on image registration, fusion, and object detection are given in this dissertation. We also got some worthy conclusions and put forward some new conceptions.
引文
[1] 朱述龙, 张占睦. 遥感图像获取与分析. 北京: 科学出版社, 2000.
    [2] 周成虎, 骆剑承, 杨晓梅等. 遥感影像地学理解与分析. 北京: 科学出版社, 1999.
    [3] 贾永红. 多源遥感影像数据融合方法及其应用的研究[博士论文]. 武汉大学图书馆,2001.
    [4] 李德仁. 论自动化和智能化空间对地观测数据处理系统的建立. 环境遥感, 1994, 9(1): 1-10.
    [5] 周前祥, 敬忠良, 姜世忠. 多源遥感影像信息融合研究现状与展望. 宇航学报, 2002, 23(5): 89-94.
    [6] Aggarwal J K. Multi-sensor fusion for computer vision. Berlin: Springer-Verlag. 1993.
    [7] Zhang Z, Blum R S. A categorization of multiscale-decomposition-based image fusion scheme with a performance study for a digital camera application. Proceedings of the IEEE, 1999, 87(8): 1315-1326.
    [8] Varshney P K. Multi-sensor data fusion. Electronics and Communication Engineering Journal, 1997, 9(12): 245-253.
    [9] Roggerman M C, Mills J P, and Rogers S K. Multi-sensor information fusion for targed detection and classification. Proceedings of SPIE, 1988, 931: 8-31.
    [10] Leckie D C. Synergism of SAR and visible/infrared data for forest type discrimination. Photogrammetric Engineering and Romote Sensing, 1990, 56(9): 1237-1246.
    [11] Schistad A H, Jain A K, Taxt T. Multisource classification of remotely sensed data: fusion of landsat TM and SAR images. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 768-778.
    [12] Bloom A, Fielding E, Fu X. A demostration of stereo photogrammetry with combined SIR-B and Landsat TM images. International Journal of Remote Sensing, 1988, 9(5): 1023-1038.
    [13] Franklin, S. E., and Blodgett, C. F. An example of satellite multisensor data fusion. Computers and Geoscience, 1993, 19, 577-583.
    [14] Chavez, P. S., Sides, S. C., and Anderson, J. A. Comparison of three different methods to merge multiresolution and multispectral data: TM & SPOT pan. Photogrammetric Engineering and Remote Sensing, 1991, 57, 295-303.
    [15] Ranchin, T., Wald, L., and Mangolini, M. The ARSIS method: a general solution for improving spatial resolution of images by the means of sensor fusion. Fusion of Earth Data, Proceedings EARSeL Conference, Cannes, France, 1996 (Paris: European Space Agency).
    [16] Strobl, D., Raggam, J., and Buchroithner, M. F. Terrain correction geocoding of a multi-sensor image data set. Proceedings 10th EARSeL Symposium, T oulouse, France (Paris: European Space Agency), 1990: 98-107.
    [17] Welch, R., Jordon, T. R., and Luvall, J. C. Geocoding and stereo display of tropical forest multisensor data sets. Photogrammetric Engineering and Remote Sensing, 1990,56:1389-1392.
    [18] Ehlers, M. Multisensor image fusion techniques in remote sensing, ISPRS Journal of Photogrammetry and Remote Sensing, 1991, 46: 19-30.
    [19] Bloom, A., Fielding, E., and Fu, X. A demonstration of stereophotogrammetry with combined SIR-B and Landsat-TM images. International Journal of Remote Sensing, 1988, 9: 1023-1038.
    [20] Toutin, T., and Rivard, B. A new tool for depth perception of multi-source data. Photogrammetric Engineering and Remote Sensing, 1995, 61: 1209-1211.
    [21] Raggam, J., Almer, A., and Strobl, D. A combination of SAR and optical line scanner imagery for stereoscopic extraction of 3-D data. ISPRS Journal of Photogrammetry and Remote Sensing, 1994, 49: 11-21.
    [22] Leckie, D. G., 1990, Synergism of SAR and visible/infrared data for forest type discrimination. Photogrammetric Engineering and Remote Sensing, 1990, 56: 1237-1246.
    [23] Schistad-Solberg, A. H., Jain, A. K., and Taxt, T. Multisource classi? cation of remotely sensed data: fusion of Landsat TM and SAR images. I.E.E.E. T ransactions on Geoscience and Remote Sensing, 1994, 32: 768-778.
    [24] Mouat, D. A., Mahin, G. G., and Lancaster, J. Remote sensing techniques in theanalysis of change detection. Geocarto International, 1993, 2: 39-50.
    [25] Kohl, H.-G., Nezry, E., and De Groof, H. Crop acreage estimation with ERS-1 PRI images. Earth Observation Quarterly, 1994, 46: 6-9.
    [26] Aschbacher, J., and Lichtenegger, J. Complementary nature of SAR and optical data: a case study in the Tropics. Earth Observation Quarterly, 1990, 31, 4-8.
    [27] Daily M.I., Farr T., Elachi C. Geologic interpretation from composited radar and Landsat imagery Photogrwetric Engineering and Remote Sensing,1979,45(8): 1109-1116
    [28] Laner D.T., Todd W. J. Land cover mapping with merged Landsat RBV and MSS stereoscopic images.Proc.of the ASP Fall Technical Conference, San FranCiso,1981,680-689
    [29] Moran M. S. A window-based technique for combining Landsat Thematic Mapper thermal data with higher-resolution multispectral data over agricultural lands. Photogrammetric Engineering and Remote Sensing, 1990, 56(3): 337-342
    [30] Ehlers M.Multi-sensor image fusion techniques in remote sensing. ISPRS Journal of Photogrammetry and remote Sensing, 1991, 46(l):19-30
    [31] Yesou H, Besnus Y, Rolet Y. Extraction of spectral information from Landsat TM data and merger with SPOT panchromatic imagery—a contribution to the study of geological structures. ISPRS Journal of Photogrammetry and remote Sensing,1993,48(1):23-36
    [32] Pellemans A. H. J. M., Jordans R. W. L Allwijn R. Merging multispectral and panchroomatic SPOT images with respect to the radiometric properties, Sensor Photogrammetric Engineering and Remote Sensing, 1993, 59(l): 81-87
    [33] Chavez P. S., Sides S. C., Anderson J. A. Comparison of three different methods to merge multiresolution and multispectral data: TM & SPOT pan. Photogrammetric Engineering and Remote Sensing, 1991,57(3): 265-303
    [34] Solberg S., Jain A. K., Taxt T. Multisource classification of remotely sensed data: fusion of Landsat TM and SAR images. IEEE Trans. on Geosciences and Remote Sensing, 1994,32(4): 768-777.
    [35] Solberg S., Jain A. K., Taxt. T. A Markov random field model for classification of multisource satellite imagery. IEEE Trans. on Geosciences and Remote Sensing, 1996,34(1): 100-113.
    [36] Pohl C, Van Genderen J L. Multisensor image fusion in remote sensing: concepts, methods and applications. International Journal of Remote Sensing, 1998, 19(5): 823-854.
    [37] 夏明革, 何友, 唐小明等. 像素级图像融合方法分类与比较. 火力与指挥控制, 2002, 27(3): 1-4.
    [38] Solberg S, Jain A K, Taxt T. Multisource classification of remotely sensed data: fusion of Landsat TM and SAR images. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 768-778.
    [39] 瞿继双, 王超, 王正志. 基于数据融合的遥感图像处理技术. 中国图像图形学报, 2002, 7(10): 987-993.
    [40] 江东, 王钰, 王建华等. 多源图像信息融合的理论与技术. 甘肃科学学报, 2002, 14(1): 41-45.
    [41] 贾永红, 李德仁, 孙家柄. 多源遥感影像数据融合. 遥感技术与应用, 2000, 15(1): 41-44.
    [42] 杨凯. 遥感图像处理原理与方法. 北京: 测绘出版社, 1988.
    [43] Brown L G. A survey of image registration techniques [J] ACM Computing Surveys, 1992, 24(4): 325-376
    [44] 钮永胜, 倪国强. 多传感器图像自动配准技术研究. 光学技术, 1999, (1):16-18
    [45] Harold S. Stone, Michael T. Orchard, Ee-Chien Chang, etal. A Fast Direct Fourier-Based Algorithm for Subpixel Registration of Images. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(10): 2235-2243
    [46] B.srinivasa Reddy, B. N. Chatterji, An FFT-Based Technique for Translation, Rotation, and Scale-Invariant Image Registration. IEEE Transactions on image processing, and Remote Sensing, 1996,5(8): 1266-1271
    [47] Harold S. Stone, Robert Wolpov. Blind Cross-Spectral Image Registration Using Prefiltering and Fourier-Based Translation Detection [J]. IEEE transactions on geosciences and remote sensing, 2002, 40(3): 637-650.
    [48] T. M. Cover, J. A. Thomas. Elements of information theory [M]. John Wiley and Sons, Inc., New York, 1991
    [49] Papoulis. Probability, Random Variables, and Stochastic Processes [M]. McGraw-Hill, Inc., 3rd ed., 1991.
    [50] Cole-Rhodes, A.A., Johnson, K.L., LeMoigne, J. etal. Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient. IEEE Transactions on Image Processing, 2003, 12(12): 1495 –1511
    [51] Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A. Mutual-information-based registration of medical images: a survey. IEEE Transactions on Medical Imaging, 2003,22(8): 986 –1004
    [52] Skouson, M.B., Quji Guo, Zhi-Pei Liang. A bound on mutual information for image registration. IEEE Transactions on Medical Imaging, 2001,20(8): 843 –846.
    [53] Thevenaz, P., Unser, M. Optimization of mutual information for multiresolution image registration. IEEE Transactions on Image Processing, 2000, 9(12) 2083 –2099
    [54] Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A. Image registration by maximization of combined mutual information and gradient information IEEE Transactions on Medical Imaging, 2000, 19(8): 809 –814
    [55] Hua-mei Chen, Varshney, P.K. Mutual information-based CT-MR brain image registration using generalized partial volume joint histogram estimation IEEE Transactions on Medical Imaging, 2003, 22(9): 1111 –1119
    [56] Hua-Mei Chen, Varshney, P.K., Arora, M.K. Performance of mutual information similarity measure for registration of multitemporal remote sensing images IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(11): 2445 –2454
    [57] Maes, F., Collignon, A., Vandermeulen, D., etal. Multi-modality image registration by maximization of mutual information [J]. IEEE Transactions on Medical Imaging, 1997,16(2): 187-198.
    [58] Anand Rangarajan, Haili Chui and James S. Duncan. Rigid point feature registration using mutual information [J]. Medical Image Analysis, 1999, 3(4): 425-440
    [59] Likar, F. Pernus. A hierarchical approach to elastic registration based on mutual information [J]. Image and Vision Computing, 2001,19: 33–44
    [60] Brown L G. A survey of image registration techniques [J]. ACM Computing Surveys,1992, 24(4): 325-376
    [61] Fonesca L.M. G., Manjunath B. S. Registration techniques for multisensor remotely sensed imagery [J]. Photogrammetric Engineering and Remote Sensing, 1996,62(9): 1049-1056
    [62] 焦李成, 保铮.小波理论与应用:进展与展望[J].电子学报,1993,21(7):91-96.
    [63] Daubechies I. Orthogonal bases of compactly supported wavelets [J]. Com. PureAppl. Math., 1988, 41(2): 909-996.
    [64] Harold S. Stone, Jacqueline Le Moigne, and Morgan McGuire. The Translation Sensitivity of Wavelet-Based Registration [J]. IEEE Transactions On Pattern Analysis And Machine Intelligence, 1999,21(10): 1074~1081.
    [65] Pohl C, Van Genderen J L. Multisensor image fusion in remote sensing: concepts, methods and applications. International Journal of Remote Sensing, 1998, 19(5): 823-854.
    [66] 夏明革, 何友, 唐小明等. 多传感器图像融合综述. 电光与控制, 2002, 9(4): 1-7.
    [67] Thomopoulos C A. Sensor integration and data fusion. Proceedings of SPIE, 1989, 1198: 178-191.
    [68] Vrabel J. Multispectral imagery advanced band sharpening study. Photogrammetric Engineering & Remote Sensing, 2000, 66(1): 73-79.
    [69] Carper W J. The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data. Photogrammetric Engineering and Remote Sensing, 1990, 56(3): 459-467.
    [70] 贾永红, 李德仁, 孙家柄等. 四种IHS 变换用于SAR与TM影像复合的比较. 遥感学报, 1998, 2(2): 103-106.
    [71] Loughich W P. Principal component analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing, 1981, 57(9): 1203-1208.
    [72] Singh A, Harrison A. Standardized principal components. International Journal of Romote Sensing, 1985, 6(5): 883-896.
    [73] 杨存建, 许君, 张增祥. SAR 和TM 图像主成分变换融合中不同主分量替换的比较. 国土资源遥感, 2001, 49(3): 30-35.
    [74] C. Pohl. Multisensor image fusion in remote sensing: concepts, methods and applications. International Journal of Remote Sensing, 1998, 19(5):823-854.
    [75] Chavez P S Jr, Sides S C, Anderson J A. Comparison of three different methods to merge multiresolution and multispectra data: TM & SPOT pan [J]. Photogrammetric Engineering and Remote Sensing, 1991, 57(3): 295~303
    [76] Sheffigara V K. A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set [J]. Photogrammetric Engineering and Remote Sensing, 1992, 58(5) :561~567
    [77] Yéson H, BesnusY, Polet J. Extraction of spectral information from Landsat TM data and merger with SPOT panchromatic imagery-a contribution to be study of geological structures [J]. ISPRS Journal of Photogram metry and Remote Sensing, 1993, 48(5): 23~36
    [78] Hankerson D, Harris G A, Johnson P D. Introduction to information theory and data compression, New York: CRC Press, 1997.
    [79] Pal N R, Pal S K. Entropy: a new definition and its applications. IEEE Transcations on Systems, Man, and Cybernetics, 1991, 21(5): 1260-1270.
    [80] 王文杰,唐娉,朱重光. 一种基于小波变换的图像融合算法. 中国图像图形学报A, 2001, 6(11): 1130-1136.
    [81] 李树涛, 王耀南, 龚理专. 多聚焦图像融合中最佳小波分解层数的选取. 系统工程与电子技术, 2002, 24(6): 45-48.
    [82] Xydeas C S, Petrovic V S. Objective pixel-level image fusion performance measure. Proceedings of SPIE, 2000, 4051: 89-98.
    [83] 王海晖, 彭嘉雄, 吴巍. 多源遥感图像融合效果评价方法研究. 计算机工程与应用, 2003, 39(25): 33-37.
    [84] Wald L, Ranchin T, Mangolini M. Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images. Photogrammetric Engineering and Remote Sensing, 1997, 63(3): 691-699.
    [85] 王昱. 数字遥感影像构像质量评价方法初探. 遥感信息, 2000, 15(4): 32-33.
    [86] 贾永红, 李德仁. 选择最佳彩色变换用于遥感影像复合的定量评价方法. 测绘通报, 1997, 12(1): 2-4.
    [87] 杨煊, 裴继红, 杨万海. 基于模糊积分的融合图像评价方法. 计算机学报, 2001, 24(8): 815-818.
    [88] Liu, Z., Tsukada, K., Hanasaki, K., etal. Image fusion by using steerable pyramid. Pattern Recognition Letters, 2001,22: 929-939
    [89] Burt P T, Adelson E H. The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 1983, 31(4): 532-540.
    [90] Adelson E H, Anderson C H, Bergen J R et al. Pyramid methods in image processing. RCA Engineer, 1984, 30(5): 33-41.
    [91] Ogden J M, Bergen J R, Burt P J. Pyramid-based computer graphics. RCA Engineer, 1985, 30(5): 4-15
    [92] 刘贵喜, 杨万海.基于多尺度对比度塔的图像融合方法及性能评价[J].光学学报,2001,21(11):1336~1342
    [93] 刘贵喜. 多传感器数据融合算法研究,博士论文,2001.1
    [94] Burt P T, Adelson E H. The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 1983, 31(4): 532-540.
    [95] Adelson E H, Anderson C H, Bergen J R et al. Pyramid methods in image processing. RCA Engineer, 1984, 30(5): 33-41.
    [96] Ogden J M, Bergen J R, Burt P J. Pyramid-based computer graphics. RCA Engineer, 1985, 30(5): 4-15.
    [97] Toet A. Multiscale contrast enhancement with application to image fusion. Optical Engineering, 1992, 31(5): 1026-1031.
    [98] Toet A, Van Ruyven L J, Valeton J M. Merging thermal and visual images by a contrast pyramid. Optical Engineering, 1989, 28(7): 789-792.
    [99] Toet A. Hierachinal image fusion. Machine Vision and Applications, 1990, 3(1): 1-11.
    [100] Toet A. Image fusion by a ratio of low-pass pyramid. Pattern Recognition Letters, 1989, 9(4): 245-253.
    [101] Aiazzi B, Alparone L, Baronti S et al. Assessment of pyramid-based multisensor image data fusion. Proceedings of SPIE, 1998,3500: 237-248.
    [102] Hellwich O, Wiedemann C. Multisensor data fusion for automated scene interpretation. Proceedings of SPIE, 1999, 3871: 284-295.
    [103] Akerman A. Pyramid techniques for multisensor fusion. Proceedings of SPIE, 1992, 1828: 124-131.
    [104] Toet A. A morphological pyramidal image decomposition. Pattern Recognition Letters, 1989, 9(4): 255-261.
    [105] Burt P J, Kolczynski R J. Enhanced image capture through fusion. Proceeding of 4th International Conference on Computer Vision, 1993, Berlin, Germany. 173-182.
    [106] Wilson T A, Rogers S K, Kabrisky M. Perceptual based image fusion for hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(4): 1007-1017.
    [107] Burt, P. J., Kolczynski, P.J. Enhanced image capture through fusion. Proc. Fourth Internat. Conf. On Computer vision, Berlin, Germany, 1993, pp: 173-182
    [108] Terry A. Wilson, Steven K. Rogers. Perceptual-Based Image Fusion for Hyper-spectral Data [J]. IEEE Transactions on Geo-science and Remote Sensing. 1997,35(4): 1007~1017
    [109] 强赞霞,彭嘉雄,王洪群. 基于方向梯度局部方差的分层遥感图像融合,数据采集与处理,2003,18(4):369-372
    [110] 刘贵喜, 赵曙光, 杨万海. 基于梯度塔形分解的多传感器图像融合,光电子·激光,2001,12(3):293-296
    [111] Mallat S G, Multifrequency channel decompositions of images and wavelet models, IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(12): 2091-2110.
    [112] Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
    [113] 小波分析导论. 西安: 西安交通大学出版社, 1995.
    [114] Yocky D A. Multiresolution wavelet decomposition image merger of Landsat thematic mapper and SPOT panchromatic data. Photogrammertric Engineering & Remote Sensing, 1996, 62(9): 1067-1074.
    [115] 程正兴, 张伟. 一种基于小波变换的图像压缩. 工程数学学报, 1999, 15(3): 18-27.
    [116] Daubechies I. The wavelet transform, time-frequency location and singal analysis. IEEE Transactions on Information Theory, 1990, 36(9): 961-1005.
    [117] Vetterli M, Herley C. Wavelets and filter banks: theory and design. IEEE Transactions on Signal Processing, 1992, 40(11): 2207-2232.
    [118] Jiang X, Zhou L, Gao Z. Multispectral image fusion using wavelet transform. Proceedings of SPIE, 1996, 2898: 35-42.
    [119] Chipman L J, Orr T M, and Graham L N. Wavelets and image fusion. Proceedings of SPIE, 1995, 2569: 208-219.
    [120] Mallat S.G. Multiresolution approximation and wavelet orthogonal bases of L2(R). Trans. American Math. Society, 1989, 315(1): 69-87
    [121] Daubechies I. Orthonormal bases of compactly supported wavelets. Comm. Pure and Applied Mathematics, 1988, 41: 909-996
    [122] Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory, 1990, 36(5): 961-1003
    [123] W.T. Freeman, E.H. Adelson. The design and use of steerable filters, IEEE Transaction on Pattern Analysis and Machine Intelligence, 1991,13 (9): 891–907.
    [124] W.T. Freeman, E.H. Adelson. Steerable filters for early vision, image analysis, and wavelet decomposition. Proceedings of 3rd International Conference on Comput. Vision (Osaka, Japan), pp.406–415.
    [125] E. Simoncelli, W.T. Freeman, The steerable pyramid: a flexible architecture for multiscale derivative computation. 2nd Annual International Conference on Image Processing, Washington, DC, October 1995.
    [126] E.P. Simoncelli, W.T. Freeman, E.H. Adelson, et al. Shiftable multiscale transforms. IEEE Transactions on Information Theory, 1992,38 (2): 587–607.
    [127] Zanxia Qiang, Jiaxiong Peng, Image fusion by using steerable pyramid. Advances in systems and Applications, 2004, 4(1): 151-156
    [128] Zheng Liu, Yeong Khing Ho, Kazuhiko Tsukada, et al. Using multiple orientational filters of steerable pyramid for image registration. Information Fusion, 2002, 3: 203–214
    [129] Iztok Koreny, Andrew Lainez, Fred Taylory. Image fusion using steerable dyadic wavelet transform, In Proc. IEEE Int. Conf. Image Process, Washington, D.C. vol3: 232-235
    [130] Soille, P., Pesaresi, M. Advances in mathematical morphology applied to geoscience and remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(9): 2042 –2055
    [131] Peters, R.A. A new algorithm for image noise reduction using mathematical. Morphology. IEEE Transactions on Image Processing, 1995, 4(5): 554 –568
    [132] Yamada, H., Yamamoto, K., Hosokawa, K. Directional mathematical morphology and reformalized Hough transformation for the analysis of topographic maps. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15( 4): 380 –387
    [133] Bangham, J.A., Marshall, S. Image and signal processing with mathematical morphology. Electronics & Communication Engineering Journal, 1998, 10(3): 117 –128
    [134] Banerji, A., Goutsias, J. A morphological approach to automatic mine detection problems, IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4): 1085 –1096
    [135] Jang, B. K., Chin, R.T. Analysis of thinning algorithms using mathematical morphology. IEEE Transactions on Pattern Recogination and Machine Intelligence, 1990, 12(6): 541 –551
    [136] 崔屹. 图像处理与分析—数学形态学方法及应用[M]. 北京:科学出版社, 2000.
    [137] 徐飞, 施晓红. MATLAB 应用图像处理[M]. 西安:西安电子科技大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700