纳米结构的表面增强效应及DNA分子操纵
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在单分子层次上对DNA分子进行研究,对深入理解复杂的生命机制具有重要意义。但是单分子的信号强度往往非常低,普通的仪器设备难以检测到如此弱的信号。贵金属纳米结构的表面增强效应可将表面附近分子的荧光与拉曼散射增强几个数量级,利用贵金属纳米结构基底有可能实现DNA的单分子检测。本论文研究了纳米结构的表面增强效应,并探索了纳米结构基底在DNA表面增强检测与拉直操纵中的应用。
     首先,制备出一种新型的银纳米芽结构,考察了基于银纳米芽结构表面增强基底的性能。银纳米芽结构由固态离子学方法制备,表面高度粗糙;在银纳米芽基底上检测到较低浓度的染料小分子Rhodamine6G的表面增强拉曼散射信号;比较了自然氧化与加热氧化对银纳米芽基底的影响,发现氧化会显著改变基底表面增强能力。
     其次,以银膜结构为对象研究了氧化对基底表面增强性质的影响。检测了不同氧化时间下Rhodamine6G在银膜基底上的表面增强光谱,观测到表面增强拉曼散射与表面增强荧光随着氧化时间增加而同步地振荡,氧化后的银膜基底表面增强拉曼性质优于未氧化的银膜基底;测量了氧化过程中银膜基底氧化层厚度与表面粗糙度的变化,从检测物分子与基底的距离和基底的表面结构两方面分析了氧化对基底表面增强性质的影响机制。
     最后,将纳米结构应用于λDNA的表面增强检测与拉直操纵。使用银纳米芽基底在单分子水平探测到λDNA的拉曼信号,与扫描拉曼光谱成像结合检测到结构更精细的λDNA拉曼光谱;在荧光成像检测中观察到银纳米芽基底氧化前后对λDNA分子荧光的淬灭与增强效应;利用亲水的超顺排碳纳米管阵列定向操纵λDNA分子,使其沿碳纳米管方向自动排列拉直;获得λDNA分子光断裂过程的实时荧光图像,并估算了在超顺排碳纳米管基底上拉直的λDNA分子的受力与光断裂后的弹性回缩速率。
     本论文的研究将有助于表面增强相关理论的完善和DNA单分子检测技术的进一步发展。
Study of DNA molecules in single molecule level is of great importance to theunderstanding of complicated life mechanism. However, single molecule signal isusually very weak and hard to be detected by ordinary devices. The surfaceenhancement effect of noble metal nanostructures is able to enhance the fluorescenceand Raman scattering of molecules in the vicinity by several degrees of magnitude.Such significant enhancement provides a potential approach to single moleculedetection of DNA. For such purpose, this dissertation studied the surface enhancementeffect of nanostructures, and explored its application in surface enhanced detection andstretching manipulation of DNA molecules.
     Firstly, a novel silver nanobud structure was fabricated and the surface enhancingperformance of silver-nanobud-based substrates was investigated. The silver nanobudstructure with a highly rough surface was manufactured from a solid state ionics method.We managed to detect the surface enhanced Raman scattering signal of Rhodamine6Gon silver nanobud substrates in low concentration. Natural oxidation and heatedoxidation of silver nanobud substrates were also studied, and the surface enhancingability of silver nanobud substrates was found to be evidently altered by oxidationprocess.
     Secondly, details of how oxidation affects surface enhancement for silver filmsubstrates was examined. Surface enhanced spectra of Rhodamine6G on silver filmsubstrates for different oxidation time were detected. The surface enhanced Ramanscattering and surface enhanced fluorescence presented a synchronous oscillation withincreasing oxidation time. Besides, surface enhanced Raman scattering effect of oxydicsubstrates was better than that of newly-fabricated substrates. Surface roughness andsilver oxide layer thickness of the silver film substrate were measured through itsoxidation. The mechanism of oxidation affecting surface enhancement intensity wasanalyzed based on changes in molecular-substrate distance and surface properties.
     Finally, nanostructures were applied in surface enhanced detection andstretching manipulation of λDNA molecules. The Raman signal of λDNA insingle molecule level was detected with surface enhancement from silvernanobud substrates. Quenching and enhancement of fluorescence were observed in fluorescence imaging of λDNA molecules on silver nanobud substrates. Onthe other hand, hydrophilic super-aligned carbon nanotube arrays wereemployed to manipulate the stretching direction of λDNA molecules, andstretched λDNA molecules were arranged along the direction of carbonnanotubes automatically. Meanwhile, the real time fluorescence images ofλDNA-photocleavage were obtained. The stress on λDNA molecules fromsuper-aligned carbon nanotube substrates and the rebounding velocity of λDNAafter photocleavage were extimated.
     This dissertation could be helpful to surface enhancement theories andsingle molecule detection of DNA.
引文
[1] Kumanom M, Carroll D J, Denu J M, et al. Calcium-mediated inactivation of the MAP kinasepathway in sea urchin eggs at fertilization. Dev Biol,2001,236:244-257.
    [2] Gerger A, Koller S, Weger W, et al. Sensitivity and specificity of confocal laser-scanningmicroscopy for in vivo diagnosis of malignant skin tumors. Cancer,2006,107:193-200.
    [3] Jayawardena M B, Yee L H, Rainbow I J, et al. Surfactant enhanced lipase containing filmscharacterized by confocal laser scanning microscopy. Colloids Surf B,2011,82:291-296.
    [4] Betzig E, Chichester R J. Single molecules observed by near-field scanning opticalmicroscopy. Science,1993,262:1422-1425.
    [5] Teetsov J A, Vanden Bout D A. Imaging molecular and nanoscale order in conjugatedpolymer thin films with near-field scanning optical microscopy. J Am Chem Soc,2001,123:3605-3606.
    [6] Trevisan E, Fabbretti E, Medic N, et al. Novel approaches for scanning near-field opticalmicroscopy imaging of oligodendrocytes in culture. Neuroimage,2010,49:517-524.
    [7] Axelrod D. Total internal reflection fluorescence microscopy in cell biology. Traffic,2001,2:764-774.
    [8] Kuhn J R, Pollard T D. Real-time measurements of actin filament polymerization by totalinternal reflection fluorescence microscopy. Biophys J,2005,88:1387-1402.
    [9] Bowser D N, Khakh B S. Two forms of single-vesicle astrocyte exocytosis imaged with totalinternal reflection fluorescence microscopy. PNAS,2007,104:4212-4217.
    [10] Furman C A, Chen R, Guptaroy B, et al. Dopamine and amphetamine rapidly increasedopamine transporter trafficking to the surface: live-cell imaging using total internal reflectionfluorescence microscopy. J Neurosci,2009,29:3328-3336.
    [11] Hoover D K, Lee E J, Yousaf M N. Total internal reflection fluorescence microscopy of celladhesion on patterned self-assembled monolayers on gold. Langmuir,2009,25:2563-2566.
    [12] Patil S M, Mehta A, Jha S, et al. Heterogeneous amylin fibril growth mechanisms imaged bytotal internal reflection fluorescence microscopy. Biochemistry,2011,50:2808-2819.
    [13] Reviakine I, Brisson A. Formation of supported phospholipid bilayers from unilamellarvesicles investigated by atomic force microscopy. Langmuir,2000,16:1806-1815.
    [14] Giessibl F J. Advances in atomic force microscopy. Rev Mod Phys,2003,75:949-983.
    [15] Gross L, Mohn F, Moll N, et al. The chemical structure of a molecule resolved by atomicforce microscopy. Science,2009,325:1110-1114.
    [16] Paredes J L, Villar-Rodil S, Solis-Fernandez P, et al. Atomic force and scanning tunnelingmicroscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir,2009,25:5957-5968.
    [17] Shaw J E, Oreopoulos J, Wong D, et al. Coupling evanescent-wave fluorescence imaging andspectroscopy with scanning probe microscopy: challenges and insights from TIRF-AFM. SurfInterface Anal,2006,38:1459-1471.
    [18] Oreopoulos J, Epand R F, Epand R M, et al. Peptide-induced domain formation in supportedlipid bilayers: Direct evidence by combined atomic force and polarized total internalreflection fluorescence microscopy. Biophys J,2010,98:815-823.
    [19] Roy R, Hohng S, Ha T. A practical guide to single-molecule FRET. Nat Methods,2008,5:507-516.
    [20] Albertazzi L, Arosio D, Marchetti L, et al. Quantitative FRET analysis with theE(0)GFP-mCherry fluorescent protein pair. Photochem Photobiol,2009,85:287-297.
    [21] Jiang Shan, Zhang Yong. Upconversion nanoparticle-based FRET system for study of siRNAin live cells. Langmuir,2010,26:6689-6694.
    [22] Choi U B, Strop P, Vrljic M, et al. Single-molecule FRET-derived model of thesynaptotagmin1-SNARE fusion complex. Nat Struct Mol Biol,2010,17:318-324.
    [23] Wallrabe H, Periasamy A. Imaging protein molecules using FRET and FLIM microscopy.Curr Opin Biotechnol,2005,16:19-27.
    [24] Shcherbo D, Souslova E A, Goedhart J, et al. Practical and reliable FRET/FLIM pair offluorescent proteins. BMC Biotechnol,2009,9:24.
    [25] Grecco H E, Roda-Navarro P, Girod A, et al. In situ analysis of tyrosine phosphorylationnetworks by FLIM on cell arryas. Nat Methods,2010,7:467-472.
    [26] Sprague B L, McNally J G. FRAP analysis of binding: proper and fitting. Trends Cell Biol,2005,15:84-91.
    [27] Wright K M, Wood N T, Roberts A G, et al. Targeting of TMV movement protein toplasmodesmata requires the actin/ER network: evidence from FRAP. Traffic,2007,8:21-31.
    [28] Engel S, Scolari S, Thaa B, et al. FLIM-FRET and FRAP reveal association of influenza virushaemagglutinin with membrane rafts. Biochem J,2010,425:567-573.
    [29] Chiantia S, Kahya N, Ries J, et al. Effects of ceramide on liquid-ordered domains investigatedby simultaneous AFM and FCS. Biophys J,2006,90:4500-4508.
    [30] Stasevich T J, Mueller F, Michelman-Ribeiro A, et al. Cross-validating FRAP and FCS toquantify the impact of photobleaching on in vivo binding estimates. Biophys J,2010,99:3093-3101.
    [31] Lyubchenko Y L, Shlyakhtenko L S. AFM for analysis of structure and dynamics of DNAand protein-DNA complexes. Methods,2009,47:206-213.
    [32] Lin Yi, Shen Xincheng, Wang Jingjing, et al. Measuring radial Young’s modulus of DNA bytapping mode AFM. Chin Sci Bull,2007,52:3189-3192.
    [33] Hards A, Zhou C Q, Seitz M, et al. Simultaneous AFM manipulation and fluorescenceimaging of single DNA strands. ChemPhysChem,2005,6:534-540.
    [34] Bensimon D, Simon A J, Bensimon A, et al. Stretching DNA with a receding meniscus:experiments and models. Phys Rev Lett,1995,74:4754-4757.
    [35] Lyon W A, Fang M M, Nie S M, et al. A dual-beam optical microscope for observation andcleavage of single DNA molecules. Anal Chem,1998,70:1744-1748.
    [36] Michalet X, Ekong R, Fougerousse F, et al. Dynamic molecular combing: Stretching thewhole human genome for high-resolution studies. Science,1997,227:1518-1523.
    [37]刘玉峰,王鹏业,窦硕星,等.利用分子梳方法研究单个DNA-YOYO-1复合体的光漂白性质.化学物理学报,2005,18:651-653.
    [38] Neely R K, Dedecker P, Hotta J I, et al. DNA fluorocode: a single molecule, optical map ofDNA with nanometer resolution. Chem Sci,2010,1:453-460.
    [39] Oshige M, Yamaguchi K, Matsuura S, et al. A new DNA combing method for biochemicalanalysis. Anal Biochem,2010,400:145-147.
    [40]林丹樱,刘晓晨,王鹏飞,等.拉直的单个DNA分子的全内反射荧光实时成像研究.光谱学与光谱分析,2010,30:1266-1270.
    [41] Benke A, Mertig M, Pompe A. PH-and salt-dependent molecular combing of DNA:experiments and phenomenological model. Nanotechnology,2011,22:035304.
    [42] Yan J, Skoko D, Marko J F. Near-field-magnetic-tweezer manipulation of single DNAmolecules. Phys Rev E,2004,70:011905.
    [43]冉诗勇,王晓玲,付文博,等.纯化组蛋白引起的DNA凝聚.科学通报,2007,52:1615-1619.
    [44] Clauvelin N, Audoly B, Neukirch S. Mechanical response of plectonemic DNA: an analyticalsolution. Macromolecules,2008,41:4479-4483.
    [45] Chen H, Yan J. Effects of kink and flexible hinge defects on mechanical responses of shortdouble-stranded DNA molecules. Phys Rev E,2008,77:041907.
    [46] Roland C B, Hatch K A, Prentiss M, et al. DNA unzipping phase diagram calculated viareplica theory. Phys Rev E,2009,79:051923.
    [47]侯锡苗,张兴华,魏孔吉,等.用单分子技术研究抗癌药物顺铂对DNA结构的影响.物理,2010,39:108-112.
    [48] Fu Wenbo, Chen Hu, Li Ming, et al. Kinetics of single DNA compaction by hexaamminecobalt chloride. J Comput Theor Nanosci,2010,7:213-217.
    [49]薛永来,冯喜增,侯森.单分子操作技术在核酸研究中的应用.化学通报,2005,8:601-607.
    [50] Mangeol P, Cote D, Bizebard T, et al. Probing DNA and RNA single molecules with a doubleoptical tweezer. Eur Phys J E,2006,19:311-317.
    [51] Kegler K, Salmon M, Kremer F. Forces of interaction between DNA-garfted colloids: anoptical tweezer measurement. Phys Rev Lett,2007,98:058304.
    [52] Biancaniello P L, Kim A J, Crocker J C. Long-time stretched exponential kinetics in singleDNA duplex dissociation. Biophys J,2008,94:891-896.
    [53]吴智辉,莫华.拉曼光镊技术在不同细胞中应用的进展.中国医学物理学杂志,2009,26:1554-1569.
    [54] Steinbock L J, Otto O, Skarstam D R, et al. Probing DNA with micro-and nanocapillaries andoptical tweezers. J Phys Condens Matt,2010,22:454113.
    [55] Marheineke K, Hyrien O. Aphidicolin triggers a block to replication origin firing in xenopusegg extracts. J Biol Chem,2001,276:17092-17100.
    [56]杜军,周晓军.荧光原位杂交技术在实体瘤诊断中的应用.医学研究生学报,2009,22:213-216.
    [57] Muller P, Schmitt E, Jacob A, et al. COMBO-FISH enables high precision localizationmicroscopy as a prerequisite for nanostructure analysis of genome loci. Int J Mol Sci,2010,11:4094-4105.
    [58] Yan H, Park S H, Finkelstein G, et al. DNA-templated self-assembly of protein arrays andhighly conductive nanowires. Science,2003,301:1882-1884.
    [59] Keren K, Berman R S, Buchstab E, et al. DNA-templated carbon nanotube field-effecttransistor. Science,2003,302:1380-1382.
    [60] Becerril H A, Woolley A T. DNA-templated nanofabrication. Chem Soc Rev,2009,38:329-337.
    [61] Maune H T, Han S P, Barish R D, et al. Self-assembly of carbon nanotubes intotwo-dimensional geometries using DNA origami templates. Nat Nanotechnol,2010,5:61-66.
    [62] Yang Liangbao, Bao Zhiyong, Wu Yucheng, et al. Clean and reproducible SERS substrates forhigh sensitive detection by solid phase synthesis and fabrication of Ag-coated Fe3O4microspheres. J Raman Spectrosc,2012,43:848-856.
    [63]周增会,王桂英,徐至展.表面增强拉曼光谱术在生命科学及单分子研究中的应用与进展.激光与光电子学进展,2005,42:9-13.
    [64] Haran G. Single-molecule Raman spectroscopy: A probe of surface dynamics and plasmonicfields. Acc Chem Res,2010,43:1135-1143.
    [65] Rycenga M, Xia Xiaohu, Moran C H, et al. Generation of hot spot with silver nanocubes forsingle-molecule detection by SERS. Angew Chem Int Ed,2011,50:5473-5477.
    [66] Aldeanueva-Potel P, Carbo-Argibay E, Pazos-Perez N, et al. Spiked gold beads as substratesfor single-particle SERS. ChemPhysChem,2012,13:2561-2565.
    [67] Wood R W. Diffraction gratings for gratuitous distribution. Science,1901,13:33.
    [68] Ritchie R H. Plasma losses by fast electrons in thin films. Phys Rev,1957,106:874-881.
    [69] Stern E A, Ferrell R A. Surface plasma oscillations of a degenerate electron gas. Phys Rev,1960,120:130-136.
    [70] Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustratedtotal reflection. Z Physik,1968,216:398-410.
    [71] Kretschm E, Raether H. Radiative decay of non radiative surface plasmons excited by light. ZNaturforsch,1968, A23:2135-2136.
    [72] Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silverelectrode. Chem Phys Lett,1974,26:163-166.
    [73] Lee A, Andrade G, Ahmed A, et al. Probing dynamic generation of hot-spots in self-assembledchains of gold nanorods by SERS. J Am Chem Soc,2011,133:7563-7570.
    [74] Ou F S, Hu Min, Naumov I, et al. Hot-spot engineering in polygonal nanofinger assembliesfor SERS. Nano Lett,2011,11:2538-2542.
    [75] Sun Lanlan, Sun Yujing, Xu Fugang, et al. Atomic force microscopy and SERS detection ofDNA based on DNA-nanoparticle complexes. Nanotechnology,2009,20:125502.
    [76] Hong Guosong, Tabakman S M, Welsher K, et al. Metal-enhanced fluorescence of carbonnanotubes. J Am Chem Soc,2010,132:15920-15923.
    [77] Ragas X, Gallardo A, Zhang yongxia, et al. Singlet oxygen phosphorescence enhancement bysilver islands films. J Phys Chem C,2011,115:16275-16281.
    [78] Jeon T I, Kim K J. Terahertz conductivity of anisotropic single walled carbon nanotube films.Appl Phys Lett,2002,80:3403-3405.
    [79] Wang Y, Wang X, Rybczynski J, et al. Triangular lattice of carbon nanotube arrays fornegative index of refraction and subwavelength lensing effect. Appl Phys lett,2005,86:153120.
    [80] Yang Zupo, Ci Lijie, Bur JA, et al. Experimental observation of an extremely dark materialmade by a low-density nanotube array. Nano Lett,2008,8:446-451.
    [81]张艳荣.碳纳米管的研究现状及应用.中国科技信息,2008,16:36-38.
    [82] Wang Yu, Di Chongan, Liu Yunqi, et al. Optimizing single-walled carbon nanotube films forapplications in electroluminescent devices. Adv Mater,2008,20:4442-4449.
    [83]赵起迪,张振华.低偏压下单层碳纳米管的输运特征.物理学报,2010,59:8098-8103.
    [84]杨远超,刘亮,姜开利,等.基于碳纳米管长线场发射的真空测量.真空,2010,47:75-78.
    [85] Hazani M, Naaman R, Hennrich F, et al. Confocal fluorescence imaging ofDNA-functionalized carbon nanotubes. Nano Lett,2003,3:153-155.
    [86] Zhao Xiongce, Johnson J K. Simulation of adsorption of DNA on carbon nanotubes. J AmChem Soc,2007,129:10438-10445.
    [87] Wu Yanrong, Phillips J A, Liu Haipeng, et al. Carbon nanotubes protect DNA strands duringcellular delivery. ACS Nano,2008,2:2023-2028.
    [88] Liu Qiaoling, Chen Bo, Wang Qinli, et al. Carbon nanotubes as molecular transporters forwalled plant cells. Nano Lett,2009,9:1007-1010.
    [89]刘元方,刘佳蕙,王海芳.未修饰碳纳米管的细胞毒性机理及其影响因素.上海大学学报,2010,16:447-459.
    [90] Liu Kai, Sun Yinghui, Chen Lei, et al. Controlled growth of super-aligned carbon nanotubearrays for spinning continuous unidirectional sheets with tunable physical properties. NanoLett,2008,8:700-705.
    [91] Jeanmaire D L, Van Duyne R P. Surface Raman spectroelectrochemistry part1. J ElectroanalChem,1977,84:1-20.
    [92] Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Ramanscattering. Phys Rev Lett,1997,78:1667-1670.
    [93] Kneipp K, Kneipp H, Itzkan I, et al. Ultrasensitive chemical analysis by Raman spectroscopy.Chem Rev,1999,99:2957-2976.
    [94] Nie S M, Emery S R. Probing single molecules and single nanoparticles by surface-enhancedRaman scattering. Science,1997,275:1102-1106.
    [95] Lee C H, Tian Limei, Abbas A, et al. Directed assembly of gold nanorods using alignedelectrospun polymer nanofibers for highly efficient SERS substrates. Nanotechnology,2011,22:275311.
    [96] Margueritat J, Gehan H, Grand J, et al. Influence of the number of nanoparticles on theenhancement properties of SERS active area: Sensitivity versus Repeatability. ACS Nano,2011,5:1630-1638.
    [97] Castillo F, De la Rosa E, Perez E. Gold aggregates on silica templates and decorated silicaarrays for SERS applications. Eur Phys J D,2011,63:301-306.
    [98] Lakowicz J R, Shen B, Gryczynski Z, et al. Intrinsic fluorescence from DNA can be enhancedby metallic particles. Biochem Biophys Res Commun,2001,286:875-879.
    [99] Parfenov A, Gryczynski I, Malicka J, et al. Enhanced fluorescence from fluorophores onfractal silver surfaces. J Phys Chem,2003,107:8829-8833.
    [100] Liaw J W, Tsai H Y, Huang C H. Size-dependent surface enhanced fluorescence of goldnanorod: Enhancement or quenching. Plasmonics,2012,7:543-553.
    [101] Dong Jun, Zheng Hairong, Li Xuqiang, et al. Surface-enhanced fluorescence from silverfractallike nanostructures decorated with silver nanoparticles. Appl Opt,2011,50:G123.
    [102] Sharma H, Agarwal D C, Shukla A K, et al. SERS and fluorescence emission of goldnanoparticle-multiwalled carbon nanotube hybrids. J Raman Spectrosc,2013,44:12-20.
    [103] Liu Y J, Zhao Y P. Simple model for SERS from tilted silver nanorod array substrates. PhysRev B,2008,78:075436.
    [104] Yin Y D, Gao L, Qiu C W. Electromagnetic theory of tunable SERS manipulated withspherical anisotropy in coated nanoparticles. J Phys Chem C,2011,115:8893-8899.
    [105] Moore J E, Morton S M, Jensen L. Importance of correctly describing charge-transferexcitations for understanding the chemical effect in SERS. J Phys Chem Lett,2012,3:2470-2475.
    [106] Kern A M, Meixner A J, Martin O. Molecule-dependent plasmonic enhancement offluorescence and Raman scattering near realistic nanostructures. ACS Nano,2012,6:9828-9836.
    [107] Fano U. Effects of configuration interaction on intensities and phase shifts. Phys Rev,1961,124:1866.
    [108] Lombardi J R, Birke R L. The theory of surface-enhanced Raman scattering. J Chem Phys,2012,136:144704.
    [109] Chan T F, Ha C, Phong A, et al. A simple DNA stretching method for fluorescence imaging ofsingle DNA molecules. Nucleic Acids Res,2006,34:e113.
    [110] Nyamjav D, Ivanisevic A. Alignment of long DNA molecules on templates generated viaDip-Pen nanolithography. Adv Mater,2003,15:1805-1809.
    [111] Shin M, Kwon C, Kim S K, et al. Formation of λ-DNA’s in parallel-and crossed-line arraysby molecular combing and scanning–probe lithography. Nano Lett,2006,6:1334-1338.
    [112] Tkachenko A V. Electrostatic effects in DNA stretching. Phys Rev E,2006,74:041801.
    [113] Tang Jing, Trahan D W, Doyle P S. Coil-stretch transition of DNA molecules in slitlikeconfinement. Macromolecules,2010,43:3081-3089.
    [114] Kim K, Kim D J, Cho E, et al. Nanograting-based Plasmon enhancement for TIRFM of livecells. Nanotechnology,2009,20:015202.
    [115] He Rueiyu, Su Yuandeng, Cho Kengchi, et al. Surface plasmon-enhanced two-photonfluorescence microscopy for live cell membrane imaging. Opt Express,2009,17:5987-5997.
    [116] Lin Chunyu, Chiu Kuochih, Chang Chiayuan, et al. Surface Plasmon-enhanced and quenchedtwo-photon excited fluorescence. Opt Express,2010,18:12807-12817.
    [117] Chiu Kuochih, Liu Chunyu, Dong Chenyuan, et al. Optimizing silver film for surfacePlasmon-coupled emission induced two-photon excited fluorescence imaging. Opt Express,2011,19:5386-5396.
    [118]顾本源.表面等离子体亚波长光学原理和新颖效应.物理,2007,36:280-287.
    [119]刘国华,常露,张维,等. SPR传感技术的发展与应用.仪表技术与传感器,2005,11:1-5.
    [120] Wu Yingcai, Gu Zhengtian. Research on the optimum thickness of metallic thin film utilizedto excite surface plasmon resonance. Chin Phys Soc,2008,57:2295-2299.
    [121]吴世康,汪鹏飞.表面等离子共振——一种新型化学检测方法的原理.影像科学与光化学,2008,26:157-168.
    [122] Michaels A M, Jiang Jiang, Brus L. Ag nanocrystal junctions as the site for SERS of singleRhodamine6G molecules. J Phys Chem B,2000,104:11965-11971.
    [123] Moskovits M. Surface-enhanced spectroscopy. Rev Mod Phys,1985,57:783-825.
    [124]方景礼,武勇.表面增强激光喇曼光谱的原理及应用.表面技术,1994,23:167-194.
    [125]殷一丁.分子吸附在各向异性介电核-金属壳层结构附近的表面增强拉曼散射理论研究.苏州大学学报,2011,27:48-52.
    [126]王丽.贵金属纳米结构的光学特性和利用表面等离子体增强光学效应的研究[博士学位论文].杭州:浙江大学材料科学与工程系,2011.
    [127]李佳伟,白莹,莫育俊,等.天线共振子理论对吡啶分子在铁钴镍衬底上SERS增强因子的计算.光谱学与光谱分析,2006,3:463-466.
    [128]杨志林,吴德印,任斌,等.铑电极在紫外区的表面增强拉曼散射机理.光谱学与光谱分析,2004,6:682-685.
    [129]王健,朱涛,符小艺,等.金纳米粒子组装体系SERS化学增强的研究.物理化学学报,1998,6:485-489.
    [130] Campion A, Gallo A R, Harris C B, et al. Electronic energy transfer to metal surfaces-a test ofclassical image dipole theory at short distances. Chem Phys Lett,1980,73:447-450.
    [131] Geddes C D, Lakowicz J R. Metal enhanced fluorescence. J Fluoresc,2002,12:121-129.
    [132] Kummerlen J, Leitner A, Brunner H, et al. Enhanced dye fluorescence over silver islandfilms-analysis of the distance dependence. Mol Phys,1993,80:1031-1046.
    [133] Aslan K, Leonenko Z, Lakowicz J R, et al. Annealed silver-island films for applications inmetal enhanced fluorescence: Interpretation in terms of radiating plasmons. J Fluoresc,2005,15:643-654.
    [134]吕凤婷,郑海荣,房喻.表面增强荧光研究进展.化学进展,2007,19:256-266.
    [135] Li Jianfeng, Huang Yifan, Ding Yong, et al. Shell-isolated nanoparticle-enhanced Ramanspectroscopy. Nature,2010,464:392-395.
    [136] Guerrero A R, Aroca R F. Surface-enhanced fluorescence with shell-isolated nanoparticles.Angew Chem Int Ed,2011,50:665-668.
    [137] Zhang Ruohu, Wang Zhuyuan, Song Chunyuan, et al. Surface-enhanced fluorescence fromfluorophore-assembled monolayers by using Ag@SiO2nanoparticles. ChemPhysChem,2011,12:992-998.
    [138] Funatsu T, Harada Y, Tokunaga M, et al. Imaging of single fluorescent molecules andindividual ATP turnovers by single myosin molecules in aqueous-solution. Nature,1995,374:555-559.
    [139] Bensimon A, Simon A, Chiffaudel A, et al. Alignment and sensitive detection of DNA by amoving interface. Science,1994,265:2096-2098.
    [140]张益,陈圣福,欧阳振乾,等.单个DNA分子的拉直操纵和成像.科学通报,2000,45:490-493.
    [141]申梓刚,黄一波,李宾,等.水和乙醇对DNA分子二维操纵的机制研究.核技术,2007,30:793-796.
    [142]郑鹄志,张志凌,庞代文.“分子梳”研究进展.分析科学学报,2006,22:108-112.
    [143]刘玉颖,王鹏业,窦硕星.应用分子梳技术对DNA单分子的研究.自然科学进展,2007,4:421-427.
    [144] Xu Dapeng, Dong Zhanmin, Sun Jialin. Fabrication of high performance surface enhancedRaman scattering substrates by a solid-state ionics method. Nanotechnology,2012,23:125705.
    [145] Pristinski D, Tan S L, Erol M, et al. In situ SERS study of Rhodamine6G adsorbed onindividually immobilized Ag nanoparticles. J Raman Spectrosc,2006,37:762-770.
    [146] Luo Zhixun, Woodward W H, Castleman A W. Distinguishable behavior of multiple andindividual Rhodamine-6G molecules on spherical Ag nanoparticles examined via timedependence of the SERS spectra. J Raman Spectrosc,2012,43:1905-1912.
    [147] Watanabe H, Hayazawa N, Inouye Y, et al. DFT vibrational calculations of Rhodamine6Gadsorbed on silver: Analysis of tip-enhanced Raman spectroscopy. J Phys Chem B,2005,109:5012-5020.
    [148] Zhang Yinghui, Chen Dongming, He Tianjing, et al. Surface-enhanced Raman spectroscopyof metallotetrapheny-porphyrins adsorbed on Ag2O and silver colloids. Electrochemistry,2001,7:59-62.
    [149] Raju N R C, Kumar K J, Subrahmanyam A. Silver oxide thin films for SERS studies. AIPConf Proc,2010,1267:1005-1006.
    [150] Buchel D, Mihalcea C, Fukaya T, et al. Sputtered silver oxide layers for SERS. Appl PhysLett,2001,79:620-622.
    [151]董军,赵久强,李绪强,等.机械抛光铜金属表面对罗丹明的荧光增强效应.光子学报,2012,41:874-877.
    [152] Gleitsmann T, Stegemann B, Bernhardt T M. Femtosecond-laser-activated fluorescence fromsilver oxide nanoparticles. Appl Phys Lett,2004,84:4050-4052.
    [153] Pettinger B, Bao X, Wilcock I, et al. Thermal-decomposition of silver-oxide monitored byRaman-spectroscopy-from AgO unit to oxygen-atoms chemisorbed on the silver surface.Angew Chem Int Ed,1994,33:85-86.
    [154] Liu Peng, Liu Liang, Wei Yang, et al. Fast high-temperature response of carbon nanotube filmand its application as an incandescent display. Adv Mater,2009,21:3563-3566.
    [155] Fu Weiqi, Liu Liang, Jiang Kaili, et al. Super-aligned carbon nanotube films as aligning layersand transparent electrodes for liquid crystal displays. Carbon,2010,48:1876-1879.
    [156] Sun Yinghui, Liu Kai, Miao Jiao, et al. Highly sensitive SERS substrate made fromsuperaligned carbon nanotubes. Nano Lett,2010,10:1747-1753.
    [157] Peticolas W L. Raman spectroscopy of DNA and proteins. Methods Enzymol,1995,246:389-416.
    [158] Deng H, Bloomfield V A, Benevides J M, et al. Dependence of the Raman signature ofgenomic B-DNA on nucleotide base sequence. Biopolymers,1999,50:656-666.
    [159] Wei H, Xu H. Surface-enhanced Raman scattering of λ-DNA. Appl Phys A,2007,89:273-275.
    [160] De Gelder J, De Gussem K, Vandenabeele P, et al. Reference database of Raman spectra ofbiological molecules. J Raman Spectrosc,2007,38:1133-1147.
    [161]欧阳钟灿. DNA单分子弹性理论.物理,2003,32:728-731.
    [162] Smith S B, Cui Yujia, Bustamante C. Overstretching B-DNA: The elastic response ofindividual double-stranded and single-stranded DNA molecules. Science,1996,271:795-799.
    [163]陆坤权,刘寄星.软物质物理学导论.北京:北京大学出版社,2006.
    [164] Armitage B. Photocleavage of nucleic acids. Chem Rev,1998,98:1171-1200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700