甲醛胁迫下枯草芽孢杆菌孢子萌发拉曼光谱特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芽孢杆菌休眠孢子的萌发是孢子恢复到营养生长的第一个决定性步骤。孢子被营养性萌发剂和各种非营养信号诱导而萌发恢复到营养细胞状态。芽孢萌发后就丧失了对外界胁迫的抵抗力。
     2,6-二羧酸吡啶(DPA-Ca2+)是细菌芽孢特有的成分,其在芽孢抗性和稳定性方面有很重要的作用,随着DPA-Ca2+释放,不含DPA-Ca2+的芽孢就失去对外界胁迫的抗性。研究芽孢DPA-Ca2+释放行为及其外界胁迫下芽孢成分变化,对于深入了解细菌芽孢抗性机制有重要意义。运用激光镊子拉曼光谱技术(LTRS)研究了单个枯草杆菌芽孢响应甲醛胁迫过程中动态的变化过程以及DPA-Ca2+释放方式,并结合多元统计分析方法统计分析芽孢用甲醛处理前后的成分差异。结果表明:甲醛胁迫下芽孢耐受甲醛能力比萌发后DPA-Ca2(?)完全释放的芽孢强500多倍;与萌发剂诱导或氯气、高温湿热胁迫不同,甲醛的胁迫不会引起芽孢DPA-Ca2+的释放,甲醛是直接穿透细菌孢子多层屏障进到孢子内部作用于孢子的蛋白质和DNA。多元统计方法分析1000mM甲醛胁迫芽孢后芽孢内生物大分子的光谱数据显示,导致芽孢致死原因是甲醛损伤核酸的嘌呤碱、G-C碱基对,破坏蛋白质的C-C主链,对膜脂也有一定的伤害。1.5mM甲醛胁迫萌发后芽孢(germinated spores)的致死原因除了破坏蛋白质的C-C主链以外,也伤害其侧链;对腺嘌呤和膜脂类有轻微的损伤。958cm-1的载荷绝对值最大,提示甲醛对萌发后芽孢伤害最大是它的蛋白质。
     氯气和湿热胁迫枯草芽孢杆菌孢子,其核心DPA-Ca2+(?)释放与孢子致死并不是同步的,孢子被胁迫致死时孢子内依然还保留有DPA-Ca2+,氯气和湿热处理孢子都能使核心DPA-Ca2+(?)释放,此过程非常迅速,一般在1-2分钟释放完,DPA-Ca2+完全释放后跟随着1655cm-1谱峰漂移到1665cm-1蛋白质主链有序结构(α-螺旋)减少,无规则卷曲增加,导致蛋白质分子空间结构发生变化。主成分分析(PCA)分析结果表明:氯气主要破坏芽孢的内膜,引起DPA-Ca2+释放,氯气进到孢子内部破坏孢子蛋白质的C-C主链,损伤核酸,导致芽孢致死;高温损伤了酪氨酸的对羟苯基环、色氨酸的吲哚环,蛋白质的侧链基团受到破坏甚至破裂,同时胁迫会引起脯氨酸的积累,表明湿热胁迫主要损伤其蛋白质或使酶失活。
     枯草芽孢杆菌是可以同化甲醛的非甲基营养菌,其营养细胞可以通过核酮糖单磷酸途径(RuMP)同化甲醛为自身细胞的组分。为了探究枯草芽孢杆菌萌发后孢子(germinated spores)响应甲醛胁迫过程的生理反应及其耐受甲醛机理,利用激光镊子拉曼光谱系统(LTRS)研究不同浓度甲醛胁迫萌发后孢子(g. spore) 2 h的响应过程。结果显示,营养细胞和萌发后的孢子(g. spores)都具有耐受甲醛的能力,但营养细胞的耐受能力远强于萌发后的孢子(g. spores),与营养细胞含有相同的遗传物质和功能性蛋白的萌发后孢子(g. spores)不能吸收、代谢甲醛。萌发后孢子(g. spores)响应甲醛胁迫的拉曼光谱特征峰的走势显示,0.4 mmol/L甲醛胁迫萌发后的孢子(g. spore),在0-1.5 h范围内代表蛋白质、脂类和核酸的特征峰变化峰强增加的幅度大于孢子在不含甲醛的培养基中变化趋势,这种变化趋势反映了萌发后孢子(g. spores)在受到甲醛胁迫初期做出较强烈的响应模式,很多基因的表达水平上升,细胞内代谢水平增加,大分子物质积累也跟着增加,在第1.5 h后体内各组分下降,表明细胞受到轻度的伤害;0.8 mmol/L甲醛胁迫萌发后孢子,细胞体内成分下降的临界点提前到了第1.0 h,归属核酸的谱峰一开始就慢慢下降,显示整个过程DNA不能进行复制,归属膜磷脂和蛋白质的C-S伸缩振动的谱峰在0.5 h后即呈明显下降趋势,提示0.8 mmol/L甲醛胁迫细胞后,甲醛导致膜脂碳氢链断裂;1.0 mmol/L甲醛胁迫下,谱峰下降的临界时间点是第0.5 h,表明细胞对该浓度甲醛产生了剧烈的胁迫效应,在0.5 h后就导致生物大分子含量严重下降,最终使细胞受到的伤害逐步加重。
The germination of Bacillus spores is the first step to return the vegetative growth, and is induced by nutrients and a variety of non-nutrient agents, and spores completely loss resistance to outer stress.
     As a characteristic composition of bacteria spores, pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA]) plays an important role in spores resistance as well as spores stability to many environmental stresses. Following DPA-Ca2+ released entirely, spores lose their refraction and resistance completely. It is significant to explore the behavior of DPA-Ca2+ release and the rule of compositional changes in spores under environmental stresses for understanding the resistance mechanism of bacterial spores. We reported the application of laser tweezers Raman spectroscopy (LTRS) to research the character of DPA-Ca2+ release, the dynamics of an individual spore and the component difference combined with Principal Components Analysis (PCA) under formaldehyde stress. The results indicated that the toleration ability of spores to formaldehyde is 500 times stronger than germinated spores (DPA-Ca2+ released completely); Formaldehyde treatment didn't cause DPA-Ca2+ release of spores, which was different with germinants induction or chlorine/high temperature and wet heat stress:Formaldehyde was to penetrate multilayer barriers of the bacterial spore into the spores internal and interact with proteins and DNA directly. The PCA results showed that killing of spores by 1000mM of formaldehyde is due to damaging purine and G-C bases of nucleic acid, C-C backbone, and also harming to membrane lipids partly; oppositely, killing of germinated spores treated with 1.5mM of formaldehyde is due to C-C main chain and side chain damage, which adenine and membrane lipid have been damaged slightly, the maximum absolute value of PC1(principal component1) loading of 958cm-1 exhibited that the max damage to germinated spores by formaldehyde was spores proteins.
     the spores of bacillus subtitles in response to bleaching water and wet heat, the release of DPA-Ca+ from its core is not couple with spores'death, Ca2+-DPA retain when Spores were dead. bleaching water and wet heat make DPA-Ca2+ release; this process is very fast, generally in 1-2 minutes. after DPA-Ca2+ releasing, the band of 1655cm-1 shifts to 1665cm-1,α-helix of protein decreasing, no regular coil increasing, so space structure of Protein changes. Principal Components Analysis (PCA) analysis results indicate:bleaching mainly damage the spore's inner membrane, causing DPA-Ca2+ release, Chlorine damage C-C Lord chain of protein breaking into the spores, Damaging nucleic acid, making g.spores dead; high temperature damage the hydroxyl phenyl rings of Tyrosine、the indoles rings of tryptophan, damage side chain of Protein, even rupture, following accumulation of proline,suggesting that damage protein or make enzyme deactivation in wet heat stress.
     Bacillus subtilis is non-methylotrophic bacteria which can assimilate formaldehyde, whose vegetative cell can transform formaldehyde to one's own components by RuMP (Ribulose monophosphate) pathway. In order to explore germinated spores'(g.spore) of bacillus subtitles physical reaction and tolerance mechanism in response to formaldehyde, researching on the process of different concentrations formaldehyde stress g. spore 2 hours by laser tweezers Raman spectra system (LTRS).The result shows, g.spores contain the same genetic material and functional proteins with vegetative cell, which have the ability of tolerating formaldehyde, but the ability of vegetative cell is stronger than g.spore, and g.spore can't absorb and metabolize formaldehyde. The Raman spectrum band changes of g.spores in response to formaldehyde stress displays:g.spores in 0.4mmol/L formaldehyde medium, whose Change intensity of protein, Lipid and nucleic acid is stronger than g.spores in no formaldehyde medium, The trends reflect that g.spores makes a strong response pattern early in formaldehyde stress, many gene expression level rise, cells metabolism level increases, macromolecular substances accumulation also follow increase, After the 1.5 hours, various components in vivo decrease, showing cells are mild hurt; g.spores in 0.8mmol/L formaldehyde medium, various components in vivo decrease at 1.0 hour, the band of nucleic acid decreases slowly at the very start, indicating DNA can't duplicate in the whole process, the bands of membrane phospholipids and C-S(protein) stretching mode decline obviously after 0.5 hours, which suggests formaldehyde Causing the membrane lipid hydrocarbon chain breakedown;g.spores in 1.0mmol/L formaldehyde medium, the bands decrease at 0.5 hour, suggesting the concentration formaldehyde makes a severe stress effect on cells, the content of biological macromolecules drops significantly after 0.5 hour, making cell hurts gradually deteriorated.
引文
[1]Setlow P. Resistance of bacterial spores. In Bacterial stress responses. Storz G, Hengge-Aronis R. Washington, DC:American Society for Microbiology,2000:217-30.
    [2]Paidhungat M, Setlow P. Spore germination and outgrowth [M] Bacillus subtilis and its relatives:from genes to cells.Hoch JA, Losick R, Sonenshein AL. Washington, DC: American Society for Microbiology,2002:537-48.
    [3]Gould GW. Germination [M] The Bacterial spore. Gould GW, Hurst A. New York: Academic Press,1969:397-444.
    [4]Setlow P. Dormant spores receive an unexpected wake-up call. Cell,2008, 135(3):410-2.
    [5]Jedrzejas MJ, Setlow P. Comparison of the binuclear metalloenzymes diphosphoglycerate-independent phosphoglycerate mutase and alkaline phosphatase:their mechanism of catalysis by a phosphoserine intermediate. Chem Rev,2001,101(3):607-18.
    [6]Setlow B, Melly E, Setlow P. Properties of spores of Bacillus subtilis blocked at an intermediate stage of spore germination. J Bacteriol,2001,183(16):4894-9.
    [7]Cowan AE, Koppel DE, Setlow B, et al. A cytoplasmic protein is immobile in the cytoplasm of dormant spores of Bacillus subtilis:implications for spore dormancy. Proc Natl Acad Sci USA,2003,100(7):4209-14.
    [8]Moir A. How do spores germinate? JAppl Microbiol,2006,101(3):526-30.
    [9]Setlow P. Spore germination. Cur Opin Microbiol,2003,6(6):550-56.
    [10]吴艳艳,孙长坡,高继国,等.苏云金芽孢杆菌HD-73菌株芽孢萌发条件的优化及质粒pHT73对芽孢萌发的影响.中国农业科技导报,2007,9(3):98-103.
    [11]Keynan A. Spore structure and its relations to resistance,dormancy and germination, Spores Ⅶ, ChamblissG. And Vary J. C. Washington DC., American Society for Microbiology,1978:43-53.
    [12]Moir A, Smith DA. The genetics of bacterial spore germination. Annu Rev Microbiol, 1990,44:531-53.
    [13]Popham DL, Helin J, Costello CE, et al. Muramiclactam in peptidoglycan of Bacillus subtilis spores is required for spore outgrowth but not for spore dehydration or heat resistance.Proc Natl Acad Sci USA,1996,93(26):15405-10.
    [14]Foster SJ, Johnstone K. Pulling the trigger; the mechanism of bacterial spore germination. Mol Microbiol,1990,4(1):137-41.
    [15]Setlow B, Wahome PG, Setlow P. Release of small molecules during germination of spores of Bacillus species. J Bacteriol,2008,190(13):4759-63.
    [16]Ishikawa S, Yamane K, Sekiguchi J. Regulation and characterization of a newly deduced cell wall hydrolase gene (CwlJ) which affects germination of Bacillus subtilis spores. J Bacteriol,1998,180(6):1375-80.
    [17]Atrih A, Foster SJ. The role of peptidoglycan structure and structural dynamics during endospore dormancy and germination. Antonie Leeuwenhoek,1999,75(4):299-307.
    [18]Behravan J, Chirakkal H, Masson A,et al. Mutations in the gerP locus of Bacillus subtilis and Bacillus cereus affect access of germinants to their targets in spores. J Bacteriol,2000,182(7):1987-94.
    [19]Moir A, Lafferty E, Smith DA. Genetic-analysis of spore germination mutants of Bacillus subtilis 168-correlation of phenotype with map location. J Gen Microbiol,1979, 111(1):165-80.
    [20]Zuberi AR, Moir A, Feavers IM. The nucleotide sequence and gene organization of the gera spore germination operon of Bacillus subtilis 168. Gene,1987,51(1):1-11.
    [21]Corfe BM, Sammons RL, Smith DA, et al. The Gerb region of the Bacillus subtilis 168 chromosome encodes a homolog of the gera spore germination operon. Microbiology UK,1994,140:471-78.
    [22]Barlass PJ, Houston CW, Clements MO, et al. Germination of Bacillus cereus spores in response to 1-alanine and to inosine:the roles of gerL and gerQ operons. Microbiology,2002,148(Pt7):2089-95.
    [23]Ireland JAW, Hanna PC. Amino acid- and purine ribonucleoside-induced germination of Bacillus anthracis Delta Sterne endospores:gerS mediates responses to aromatic ring structures. J Bacteriol,2002,184(5):1296-303.
    [24]McCann KP, Robinson C, Sammons RL, et al. Alanine germination receptors of Bacillus subtilis. Lett Appl Microbiol,1996,23(5):290-4.
    [25]梁亮,盖玉玲,胡坤,等.苏云金芽孢杆菌gerA操纵子在芽孢萌发中的作用.微 生物学报,2008,48(3):281-6.
    [26]Moir A, Corfe BM, Behravan J. Spore germination. Cell Mol Life Sci,2002,59(3): 403-9.
    [27]Zuberi MA, Moir A, Feavers IM. The nucleotide sequence and gene organisation of the gerA spore germination operon of Bacillus subtilis 168. Gene,1987,51(1):1-11.
    [28]Feavers IM, Foulkes J, Setlow B, et al. The regulation of transcription of the gerA spore germination operon of Bacillus subtilis. Mol Microbiol,1990,4(2):275-82.
    [29]Cowan AE, Olivastro EM, Koppel DE, et al. Lipids in the inner membrane of dormant spores of Bacillus species are largely immobile. Proc Natl Acad Sci USA,2004, 101(20):7733-38.
    [30]Stewart G, Eaton MW, Johnstone K, et al. An investigation of membrane fluidity changes during sporulation and germination of Bacillus megaterium Km measured by electronspin and nuclear magnetic-resonance spectroscopy. Biochim Biophys Acta,1980, 600(2):270-90.
    [31]Paidhungat M, Setlow B, Driks A, et al. Characterization of spores of Bacillus subtilis which lack dipicolinic acid. J Bacteriol,2000,182(19):5505-12.
    [32]Chen D, Huang SS, Li YQ. Real-time detection of kinetic germination and heterogeneity of single Bacillus spores by laser tweezers Raman spectroscopy. Anal Chem, 2006,78(19):6936-41.
    [33]Huang SS, Chen D, Pelczar PL, et al. Levels of Ca-DPA in individual Bacillus spores determined using microfluidic Raman tweezers. Bacteriology,2007,189(13):4681-7
    [34]Vepachedu VR, Setlow P. Analysis of the germination of spores of Bacillus subtilis with temperature sensitive spo mutations in the spoVA operon. FEMS Microbiol Lett, 2004,239(1):71-7.
    [35]Vepachedu VR, Setlow P. Analysis of interactions between nutrient germinant receptors and SpoVA proteins of Bacillus subtilis spores. FEMS Microbiol Lett,2007, 274(1):42-7.
    [36]Southworth TW, Guffanti AA, Moir A, et al. GerN, an endospore germination protein of Bacillus cereus, is a Na+/H+-K+ antiporter. J Bacteriol,2001,183(20):5896-903.
    [37]Thackray PD, Behravan J, Southworth TW. et al. GerN, an antiporter homologue important in germination of Bacillus cereus endospores. J Bacteriol,2001,183(2):476-82.
    [38]Clements MO, Moir A. Role of the gerⅠ operon of Bacillus cereus 569 in the response of spores to germinants. J Bacteriol,1998,180(4):6729-35.
    [39]Paredes-Sabja D, Setlow P, Sarker MR. GerO, a putative Na+/H+-K+ antiporter, is essential for normal germination of spores of the pathogenic bacterium Clostridium perfringens. J Bacteriol,2009,191(12):3822-31.
    [40]Atrih A, Foster SJ The role of peptidoglycan structure and structural dynamics during endospore dormancy and germination. Antonie Van Leeuwenhoek,1999,75(4):299-307
    [41]Johnstone K. The trigger mechanism of spore germination current concepts. Soc Appl Bacteriol Symp Ser,1994,23:17S-24S.
    [42]Boland FM, Atrih A, Chirakkal H, et al. Complete sporecortex hydrolysis during germination of Bacillus subtilis 168 requires SleB and YpeB. Microbiology,2000,146(Pt1): 57-64.
    [43]Chirakkal H, O'Rourke M, Atrih A, et al. Analysis of spore cortex lytic enzymes and related proteins in Bacillus subtilis endospore germination. Microbiology,2002,148(Pt 8):2383-92.
    [44]Bagyan I, Setlow P. Localization of the cortex lytic enzyme CwlJ in spores of Bacillus subtilis. J Bacteriol,2002,184(4):1219-24.
    [45]Tovar-Rojo F, Chander M, Setlow B, et al. The products of the spoVA operon are involved in dipicolinic acid uptake into developing spores of Bacillus subtilis. J Bacteriol, 2002,184(2):584-7.
    [46]Foster SJ, Johnstone K. Purification and properties of a germination-specific cortex-lytic enzyme from spores of Bacillus megaterium KM. Biochem J,1987,242(2): 573-9.
    [47]Makino S, Ito N, Inoue T, et al. A spore-lytic enzyme released from Bacillus cereus spores during germination.Microbiology,1994,140(Pt6):1403-10.
    [48]Paidhungat M, Ragkousi K, Setlow P. Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca2+-dipicolinate. J Bacteriol,2001,183: 4886-93.
    [49]Setlow B, Peng L, Loshon CA, et al. Characterization of the germination of Bacillus megaterium spores lacking enzymes that degrade the spore cortex. J Appl Microbiol,2009, 107(1):318-28.
    [50]Paidhungat M, Setlow B, Daniels WB, et al. Mechanisms of induction of germination of Bacillus subtilis spores by high pressure. Appl Environ Microbiol,2002,68(6):3172-5.
    [51]Vepachedu VR, Hirneisen K, Hoover DG, et al. Studies of the release of small molecules during pressure germination of spores of Bacillus subtilis. Lett Appl Microbiol, 2007,45(3):342-8.
    [52]Chistoserdova L, Gomelsky L, Vorholt J A, et al.Analysis of two formaldehyde oxidation pathways in Methylobacillus flagellatus KT, a ribulose monophosphate cycle methylotroph Microbiology. Microbiology,2000,146:233-8.
    [53]Vorholt J. A.Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria.Arch Microbiol,2002,178:239-49.
    [54]Marx C J,Van Dien S J,Lidstrom M E.Flux analysis uncovers key role of functional redundancy in formaldehyde metabolism.PLoS Biol,2005,3:244-53.
    [55]Lee B,Yurimoto H,Sakai Y, et al.Physiological role of the glutathione -dependent formaldehyde dehydrogenase in the methylotrophic yeast Candida boidinii.Microbiology, 2002,148:2697-704.
    [56]Duine J A.Thiols in formaldehyde dissimilation and detoxification.BioFactors,1999, 10:201-6.
    [57]Newton G L,Fahey R C.Mycothiol biochemistry. Arch Microbiol,2002,178:388-94.
    [58]Maden B E H.Tetrahydrofolate and etrahydromethanopterin compared:functionally distinct carriers in C1 metabolism. J Biochem,2000,350:609-29.
    [59]Thauer R K.Biochemistry of methanogenesis:a tribute to Marjory Stephenson. Microbiology,1998,144:2377-406.
    [60]Vorholt J A,Marx C J,Lidstrom M E, et al.Novel Formaldehyde-Activating Enzyme in Methylobacterium extorquens AM 1 Required for Growth on Methanol. J Bacteriol,2000, 182:6645-50.
    [61]Chistoserdova L,Vorholt J A,Thauer R K, et al. C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea. Science,1998,281:99-102.
    [62]Vorholt J A,Chistoserdova L, Lidstrom M E et al. The NADP-dependent methylene tetrahydromethanopterin dehydrogense in Methylobacterium extorquens AM1. J Bacteriol.1998,180:5351-6.
    [63]Goenrich M,Bartoschek S,Hagemeier C H, et al.A Glutathione-dependent Formaldehyde-activating Enzyme (Gfa) from Paracoccus denitrificans Detected and Purified via Two-dimensional Proton Exchange NMR Spectroscopy. J Biol Chem,2002, 277:3069-72.
    [64]Yurimoto H, Hirai R, Matsuno N,et al. Hx1R,a member of the DUF24 protein family, is a DNA-binding protein that acts as a positive regulator of the formaldehyde-inducible hx1AB operon in Bacillus subtilis.Mol Microbiol,2005,57(2):511-9.
    [65]Quayle J R, Ferenci T.Evolutionary aspects of autotrophy.Microbiol Rev,1978,42(2): 251-73.
    [66]Murrell J C,Mcdonald I R.Methylotrophy.In "Encyclopedia of Microbiology", Lederberg,London:Academic Press,2000 Vol.3
    [67]Dijkhuizen L,Levering P R,Vries D.The physiology and biochemistry of aerobic methanol-utilizing gram-negative and gram-positive bacteria. In "Biotechnology Handbooks", eds.New York:Plenum Publishing Co.,1992
    [68]Ferenci T,Strome T,Quayle J R.Purification and properties of 3-hexulose phosphate synthase and phospho-3-hexuloisomerase from Methylococcus capsulatus. J Biochem, 1974,144(3):477-86.
    [69]Sakai Y, Mitsui R, Katayama Y,et al. Organization of the genes involved in the ribulose monophosphate pathway in an obligate methylotrophic bacterium, Methylomonas aminofaciens 77a.FEMS Microbiol Lett,1999,176(1):125-30.
    [70]Yanase H,Ikeyama K,Mitsui R,et al.Cloning and sequence analysis of the gene encoding 3-hexulose-6-phosphate synthase from the methylotrophic bacterium, Methylomonas aminofaciens 77a,and its expression in Escherichia coli. FEMS Microbiol Lett,1996,135:201-5.
    [71]Mitsui R, Sakai Y, Yasueda H,et al.A novel operon encoding formaldehyde fixation: the ribulose monophosphate pathway in the gram-positive facultative methylotrophic bacterium Mycobacterium gastri MB19.J Bacteriol,2000,182(4):944-8.
    [72]Yurimoto H, Hirai R, Yasueda H,et al.The ribulose monophosphate pathway operon encoding formaldehyde fixation in a thermotolerant methylotroph, Bacillus brevis S1.FEMS Microbiol Lett,2002,214(2):189-93.
    [73]Taylor E J,Smith N L,Colby J,et al.The gene encoding the ribulose monophosphate pathway enzyme,3-hexulose-6-phosphate synthase, from Aminomonas aminovorus C2A1 is adjacent to coding sequences that exhibit similarity to histidine biosynthesis enzymes.Antonie Van Leeuwenhoek,2004,86(2):167-72.
    [74]Yasueda H, Kawahara Y, Sugimoto S. Bacillus subtilis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression. J Bacteriol,1999,181(23):7154-60.
    [75]Mitsui R, Kusano Y, Yurimoto H,et al.Formaldehyde fixation contributes to detoxification for growth of a nonmethylotroph, Burkholderia cepacia TM1, on vanillic acidAppl Environ Microbiol,2003,69(10):6128-32.
    [76]Orita I, Yurimoto H, Hirai R,et al. The archaeon Pyrococcus horikoshii possesses a bifunctional enzyme for formaldehyde fixation via the ribulose monophosphate pathway. J Bacteriol,2005,187(11):342-636.
    [77]Goenrich M, Thauer R K, Yurimoto H, et al.Formaldehyde activating enzyme (Fae) and hexulose-6-phosphate synthase (Hps) in Methanosarcina barkeri:a possible function in ribose-5-phosphate biosynthesis. Arch Microbiol,2005,184(1):41-8.
    [78]Hisashi Yasueda,Yoshio Ka Wahara.and Shin-Ichi Sugimoto,Bacillus subtilis yckG and yckF Encode Two Key Enzymes of the Ribulose Monophosphate Pathway Used by Methylotrophs,and yckH Is Required for Their Expression. J Bacteriol,1999:7154-60.
    [79]R. Thurn, W. Kiefer, Structural resonances observed in the Raman spectra of optically levitated liquid droplets[J], Applied Optics,1985,24(10):1515-9.
    [80]P. Knoll, M. Marchl and W. Kiefer, Raman spectroscopy of microparticles in laser light traps[J], Indian Journal of Pure & Applied Physics,1988,26:268-77.
    [81]M. Trunk, J. Popp, M. Lankers, W. Kiefer, Microchemistry:time dependence of an acid-base reaction in a single optically levitated microdroplet[J], Chemical Physics Letters, 1997,264:233-7.
    [82]C. Esen, T. Kaiser, and G. Schweiger, Raman investigation of photopolymerization reactions of single optically levitated microparticles[J], Applied Spectroscopy,1996,50(7): 823-8.
    [83]K. Ajito, Combined near-infrared Raman microprobe and laser trapping system:a application to the analysis of a single organic microdroplet in water[J], Appl Spectroscopy, 1998,52(3):339-42.
    [84]K. Ajito, K. Torimitsu, Near-infrared Raman spectroscopy of single particles[J], Trends in Analytical Chemistry,2001,20(5):255-62.
    [85]C. A. Xie, M.A. Dinno, and Y. Q. Li, Near-infrared Raman spectroscopy of single optically trapped biological cells[J], Opt. Lett.2002,27:249-51.
    [87]Xie C A, Li Y Q. Confocal micro-Raman spectroscopy of single biological cell using optical trapping and shifted excitation difference techniques[J]. Appl. Phys.2003,93:2982.
    [88]谢健.单细胞光镊拉曼光谱在肿瘤诊断中的应用基础研究[D].广西:广西医科大学,2006.
    [89]朱淼.利用拉曼光谱检测肝癌、鼻咽癌细胞及其在端粒酶抑制剂作用后的分子变化[D].广西:广西医科大学,2006.
    [90]Hamden K E, Bryan B A, Ford P W, Xie C A, Li Y Q, Akula S M. J. Virol. Methods[J]. 2005,129(2):145-51.
    [91]Setlow P. Spores of Bacillus subtilis:their resistance to and killing by radiation, heat and chemicals. Journal of Applied Microbiology,2006,101(3):514-25.
    [92]Tennen R, Setlow B, Davis K L, et al. Mechanisms of killing of spores of Bacillus subtilis by iodine glutaraldehyde and nitrous acid. Journal of Applied Microbiology,2000, 89(2):330-8.
    [93]Loshon CA, Genest P C, Setlow B et al.. Formaldehyde kills spores of Bacillus subtilis by DNA damage and small, acid-soluble spore proteins of the a/btype protect spores against this DNA damage. Journal of Applied Microbiology,1999,87:8-14.
    [94]Setlow B, Loshon C A, Genest P C, et al. Mechanisms of killing spores of Bacillus subtilis by acid, alkali and ethanol. Journal of Applied Microbiology,2002,92(2):362-75.
    [95]Young S B, Setlow P. Mechanisms of killing of Bacillus subtilis spores by hypochlorite and chlorine dioxide. Journal of Applied Microbiology,2003,95(1):54-67.
    [96]Paidhungat M, Setlow B, Driks A, et al. Characterization of spores of Bacillus subtilis which lack dipicolinic acid. J Bacteriol,2000,182(19):5505-12.
    [97]Foster S J, Johnstone K. Pulling the trigger:the mechanism of bacterial spore germination. Moiecular Microbiology,1990),4(1),137-41.
    [98]Zhang P F, Kong L B, Setlow P, et al. Characterization of Wet-Heat Inactivation of Single Spores of Bacillus Species by Dual-Trap Raman Spectroscopy and Elastic Light Scattering. Applied and Environmental Microbiology,2010,76(6):1796-805.
    [99]Huang W E, Griffiths R I, Thompson I P, et al. Raman microscopic analysis of single microbial cells. Analytical Chemistry,2004,76(15):4452-8.
    [100]Mahadevan-Jansen A, Richards-Kortum R. Raman spectroscopy for the detection of cancers and precancers. Photochemistry Photobiology,1998,68(1),123-32.
    [101]Xie C A, Mace J, Dinno M A, et al. Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy. American Chemical Society, 2005,77(14):4390-7.
    [102]陶继业,丁长蓉.二氧化氯消毒剂有效氯含量的测定,理化检验—化学分册,1999(35):90.
    [103]Foegeding P M. Bacterial spore resistance to chlorine compounds. Food Technol. 1983,37(11):100-4.
    [104]Bloomfield S E. Resistance of Bacterial Spores to Chemical Agents. In Principles and practice of disinfection, preservation, and sterilization edited by Allan Denver Russell, William Barry Hugo,G. A. J. Ayliffe, London:Blackwell Science Ltd.1999.
    [105]许以明.拉曼光谱及其在结构生物学中的应用.北京化学工业出版社,2005:10-141.
    [106]Sykes G. The sporicidal properties of chemical disinfectants. J Appl Bacteriol,1970, 33:147-56.
    [107]Mcdonnell G, Russellad A D. Antiseptics and Disinfectants:Activity, Action, and Resistance.Clinical Microbiogy Reviews,1999,1:147-79.
    [108]Favero M S, Bond W W. Chemical disinfection of medical and surgical materials. In: Block SS, ed. Disinfection, sterilization, and preservation. Philadelphia:Lea & Febiger, 1991:617-41.
    [109]Notingher I. Raman Spectroscopy Cell-based Biosensors. Sensors,2007,7:1343-58.
    [110]Setlow B, McGinnis K A, Ragkousi K et al. Effects of major spore-specific DNA binding proteins on Bacillus subtilis sporulation and spore properties. J.Bacteriol,2000, 182:6906-12.
    [111]Setlow, P. Mechanisms for the prevention of damage to the DNA in spores of Bacillus species. Annual Review of Microbiology,1995,49:29±54.
    [112]Daniel Paredes-Sabja,Nahid Sarker, Barbara Setlow, Peter Setlow, and Mahfuzur R. Sarker.Roles of DacB and Spm Proteins in Clostridium perfringens Spore Resistance to Moist Heat, Chemicals, and UV Radiation. Appl. Environ. Microbiol,2008,6:3730-8.
    [113]Belliveau, B. H., T. C. Beaman, S. Pankratz, and P. Gerhardt. Heat killing of bacterial spores analyzed by differential scanning calorimetry. J.Bacteriol,1992,174:4463-74.
    [114]Coleman, W. H., D. Chen, Y.-Q. Li, A. E. Cowan, and P. Setlow. How moist heat kills spores of Bacillus subtilis. J Bacteriol,2007,189:8458-66.
    [115]Warth, A. D. Heat stability of Bacillus enzymes within spores and in extracts. J Bacteriol,1980,143:27-34.
    [116]Setlow, B., and P. Setlow.. Heat killing of Bacillus subtilis spores in water is not due to oxidative damage. Appl Environ Microbiol,1998,64:4109-12.
    [117]S. Stockel, W. Schumacher, S. Meisel, M. Elschner, P. Rosch, and J. Popp.Raman Spectroscopy-Compatible Inactivation Method for Pathogenic Endospores.Appl Environ Microbiol,2010,76(9):2895-907.
    [118]Magge, A., A. C. Granger, P. G. Wahome, B. Setlow, V. R. Vepachedu, C. A.Loshon, L. Peng, D. Chen, Y.-Q. Li, and P. Setlow. Role of dipicolinic acid in the germination, stability, and viability of spores of Bacillus subtilis. J Bacteriol,2008,190:4798-807.
    [119]Kitagawa T. and S. Hirota.. Raman spectroscopy of proteins, In J. M. Chalmers and P. R. Griffiths (ed.), Handbook of vibrational spectroscopy.2002,5:3426-46.
    [120]Setlow B, Atluri S, Kitchel R, et al. Role of Dipicolinic Acid in Resistance and Stability of Spores of Bacillus subtilis with or without DNA-Protective/β-Type Small Acid-Soluble Proteins. J Bacteriol,2006,188(11):3740-7.
    [121]Gerhardt, P. and Marquis, R.E. Spore thermoresistance mechanisms. In Regulation of Prokaryotic Development ed. Smith,I., Slepecky.American Society for Microbiology,1989, 68-74.
    [122]Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H.J. and Setlow, P..Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Molecular Biology and Microbiology Reviews,2000,64:548-72.
    [123]Genest, P.C., Setlow, B., Melly, E. and Setlow, P.. Killing of spores of Bacillus subtilis by peroxynitrite appears to be caused by membrane damage. Microbiology,2002, 148:307-14.
    [124]Setlow, P., and E. A. Johnson. Spores and their significance,In M. P. Doyle, L. R. Beuchat, and T. J. Montville (ed.), Food microbiology: fundamentals, and frontiers,3rd ed. ASM Press,2007,35-67
    [125]Peng, L., D. Chen, P. Setlow, and Y. Q. Li. Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics. Anal. Chem.,2009,81:4035-42.
    [126]Vepachedu, V. R., and P. Setlow. Role of SpoVA proteins in the release of dipicolinic acid during germination of Bacillus subtilis spores triggered by dodecylamine or lysozyme. J. Bacteriol.,2007,189:1565-72.
    [127]Kunst,F., et al. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature,1997,390:249-56.
    [128]Daniel Paredes-Sabja, Barbara Setlow, Peter Setlow, and Mahfuzur R. Sarker, Characterization of Clostridium perfringens Spores That Lack SpoVA Proteins and Dipicolinic Acid.J. Bacteriol.,2008,6:4648-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700