拉曼光镊—微流控芯片自动化系统的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光镊子拉曼光谱技术,是将光学囚禁技术与显微拉曼光谱技术结合并应用于悬浮细胞研究的生物光子技术,用同一束光来实现囚禁单个悬浮细胞并激发细胞分子的拉曼光谱,是研究生物体组织分子结构的新工具,也是当今生物领域中单细胞分子水平研究的热门工具。
     集成和联用是微流控芯片实验室的特点,检测是微流控芯片实验室仪器的重要组成部分,同时是微流控芯片得到快速发展的一个关键技术。作为一种全新的领域,它结合化学合成、生物分析、光学和信息学带来了重大的影响,与微流控芯片配套的高灵敏度微型检测系统成为了当前研制的热点。目前,已有研究小组成功联合了微流控芯片技术与激光光镊拉曼技术,并能成功地获得较好的信噪比。然而,微流控芯片-拉曼光镊技术在集成化之后的自动化,更是一个振奋人心的话题。
     本文是在现有的激光镊子拉曼光谱系统(LTRS)的基础上,探索以LTRS系统作为微流控芯片的高灵敏度检测方法,将微流控芯片与LTRS联用和集成化。发展成一套拉曼光镊-微流控芯片生物传感器自动分析系统,为在分子和细胞的水平上,进行单个细胞生理生化研究、医学诊断、药理实验、药物高通量筛选提供快速、简便、准确、非损伤的微全分析系统(μ-TAS),达到类似流式细胞仪自动检测细胞成分的作用。
     本文内容一共六章。第一章引言,分别简单介绍了拉曼光谱、激光镊子和拉曼光镊技术以及微流控芯片技术的历史背景、原理、在生物学领域中的应用以及研究现状。第二章应用拉曼光镊对机体发炎时的白细胞进行研究,结果显示正常状态和发炎状态下的白细胞拉曼光谱有显著的区别,通过光谱指认表明,当机体发炎时,白细胞中的蛋白质氨基酸含量基本没有变化,但是蛋白质结构发生明显改变;核酸的碱基含量增加,DNA双螺旋结构发生改变。用PCA主成分对单个白细胞的拉曼光谱进行分析,发现PCA可以完全区分出正常状态和发炎状态的白细胞。
     第三章应用激光镊子拉曼光谱技术比较分析阴道毛滴虫(TV)和口腔毛滴虫(TT)的物质构成成分,寻找具有分类学鉴别价值的特征拉曼峰。结果在937 cm-1、1002 cm-1和1446 cm-1谱峰的强度和谱型上有差异,根据1002 cm-1峰的信号强度,并结合937 cm-1和1002 cm-1峰强度比值(I937/I1002)以及1002 cm-1和1446 cm-1峰强度比值(I1002/I1446)可以作为区分阴道毛滴虫和口腔毛滴虫的量化指标。以上的研究均表明:激光镊子拉曼光谱可以成为生物学中单个细胞研究的有效手段。
     第四章微流控芯片联合拉曼光镊技术自动化平台的研究。微流控芯片系统单元技术的研究:选择高聚合物水晶板作为芯片基底材料,毛细管选用美国Polymicro Technologies公司的方形石英玻璃毛细管,芯片的制作依照美国东卡罗来纳大学物理系生物物理实验室研制的芯片,采用多层叠加耦合的方法来设计和制作的。微流控芯片联合拉曼光镊自动化控制系统单元技术的研究:设计一个电磁阀来控制激光的开关;采用电控扫描对镜来实现光镊的扫描,用函数信号发生器来控制电控扫描对镜,从而控制光镊扫描的振幅和频率;光镊俘获细胞的效率通过改变激光功率和液体的流速和液体密度来控制;采用图像识别的方法来判断光镊俘获细胞;激光开关和扫描开关都是通过计算机输出高低电平来控制。自动化控制系统的研究:采用visual basic和visual c++软件编辑程序来实现自动化,控制流程:样品流动---打开激光---光镊扫描---空白检测---确定阈值---俘获检测---确认俘获---收集光谱----完成光谱收集---关闭激光---释放细胞---打开激光。
     第五章微流控芯片联合拉曼光镊生物传感器自动化系统在单细胞水平上的应用研究。我们分别对正常和β地贫红细胞进行拉曼光谱测量,结果在积分时间为3s的条件下,一小时内获得了500个拉曼光谱。经过数据处理,发现正常和β地贫红细胞的平均拉曼光谱之间存在差异,主要在特征峰1004,1130,1450,1545,1604和1618 cm-1处,这些峰值都归属于细胞中的蛋白质成分。分别将这些特征峰的正态分布图画出并进行统计分析,从正态分布图上看出β地贫单个红细胞的蛋白质成分分布比较分散,最大值比正常的高,最小值也比正常的低,并且标准方差值比正常红细胞的大,从此可以说明β地贫患者的红细胞内部物质均匀性比正常红细胞的差,从特征峰的统计分析可以看出β地贫红细胞的血红蛋白分布比正常红细胞的广,平均强度差在6%以内。为了更好的确定单个细胞间的关系,我们任意抽两组正常和地贫细胞,每组200个光谱做主成分分析,结果灵敏度达93.5%,特异度达99.5%,使用主成分分析的方法能够将正常红细胞与β地贫红细胞很好的区分开,并且从主成分分析的载荷图可以更明显的看到它们的变化情况。在200个细胞中抽取20个细胞作为测试数据,用另外180个细胞建立基失,结果这20个细胞都落入了一定的区域。用同样的方法将几组数据同时处理,发现同一类细胞都会聚集在一区域,此装置起到了类似流式细胞仪的作用。通过以上各种严密的数据处理,都能得到一致的实验结果,更加显示出了微流控芯片-拉曼光镊自动化系统联合的优势。
     第六章结论与展望,总结了本文的研究工作,指出了本文研究的意义和不足之处,对以后的工作进行了展望。
     通过以上的研究表明:拉曼光镊系统以及微流控芯片联合拉曼光镊自动化系统可以在生物学的研究中发挥广泛和重要的作用,为医学诊断提供可靠,便捷的研究手段。
Laser tweezers Raman spectroscopy(LTRS) is a biological photonic technology that the optical trap technique combined with Raman spectroscopy and applied to study suspension cell. With a beam of light to achieve prison single suspension cell then stimulated the Raman spectra, LTRS is a new tool to study the organization of object molecular structure, also a popular tool in the biological field of study single-cell molecular level at present.
     Integrated and combined are the characteristics of microfluidic laboratory on chip. Detection is an important part of microfluidic laboratory on chip, at the same time, it is a key technologies of the microfluidic chip’s rapid development. As a new field, microfluidic chip combines with chemical synthesis, biological analysis, optical and information science, which has brought a major impact. Microfluidic chip combining high sensitivity micro-detection system is develop into the current hot spots. At present, some teams have successfully combined microfluidic chip technology with laser tweezers Raman spectroscopy, and get a better signal to noise ratio. However, automation after the integrated of microfluidic chip and Raman tweezers is an exciting topic.
     This thesis base on the existing system of laser tweezers Raman spectroscopy (LTRS), explorat to LTRS system as microfluidic chip’s high-sensitivity detection methods, combine microfluidic chip with the LTRS then integration. microfluidic chip - Raman Tweezers Automatic analysis biosensor system for molecular and cellular level, to provide fast, simple, accurate, and non-invasive micro-total analysis system (μ-TAS) for studying single cell’s physiology and biochemistry, medical diagnosis, pharmacology, drug screening high throughput, similar to the role of flow cytometry to automatically detect cell components.
     In this thesis have six chapters. Chapter introduction, a brief introduction historical background, theory, application areas in biology and Research of Raman spectra, respectively, laser tweezers, LTRS and microfluidic chip.
     Chapter II Application of Raman optical tweezers to study white blood cells during inflammation. The results show that normal and inflammatory white blood cells’Raman spectra have significant differences, identified by spectra show that in the state of inflammation, protein amino acid content in leukocytes unchanged, but significant changes in protein structure; bases of nucleic acid are increase, DNA double-helix structure has change. The method of PCA principal component can completely distinguish the normal and inflammatory white blood cells.
     Chapter III Application STRS to analysis the material composition of Trichomonas vaginalis (TV) and Trichomonas tenax (TT), to find characteristic Raman peaks of taxonomic identification. Results show that they have different peak intensity and spectral type in 937 cm-1, 1002 cm-1 and 1446 cm-1. According to 1002 cm-1 peak of the signal strength, and combined with 937 cm-1 and 1002 cm-1 peak intensity ratio (I937/I1002) ,1002 cm-1, 1446 cm-1 peak intensity ratio (I1002/I1446) can serve as a quantitative indicators to distinction Trichomonas vaginalis and Trichomonas tenax. The above studys show that: laser tweezers Raman spectroscopy can be an effective means of single-cell research in biology.
     ChapterⅤAutomation Platform of microfluidic chip combine with LTRS. The study of Microfluidic chip system unit: includ the choice of chip substrate material, capillary and the method of making chip. Research of Microfluidic chip-LTRS automatic system unit: Design a solenoid valve controlling laser switches, use a electronic control scan mirror to achieve optical tweezers scanning, function signal generator control optical tweezers’amplitude and frequency, the efficiency of optical tweezers trapping cells by changing the laser power and liquid flow rate and fluid density, image recognition method use to judge whether optical tweezers has trap cell, laser and scanning switches are switches and output through the computer to control the high and low. Automation Control System: Using visual basic and visual c + + software editing program to achieve automate. Control processes: Sample flow --- Laser on --- optical tweezers scan --- blank test --- determine threshold --- capture detector --- confirm capture --- collect spectra ---- complete spectrum collection --- laser off --- elease cell --- Laser on.
     ChapterⅥthe application of microfluidic chip combine LTRS biosensor automation system in the single cell level. We measuremented the Raman spectroscopy of normal andβ-thalassemia red blood cells, the result show that in the condition of 3s integration time, 500 cells can be detected within one hour. Base on datas processing, found that the average Raman spectra between normal andβ-thalassemia red blood cells are different, characteristic peaks are 1004,1130,1450,1545,1604 and 1618 cm-1, these peaks are Attributable to protein ingredients. Each of these characteristic peaks of the normal picture out and carry out statistical analysis, the normal distribution chart shows thatβthalassemia single red blood cell’s protein content distribution is symmetrical, the maximum ratio higher, the minimum is lower and the standard deviation larger than normal red blood cells. This shows that the material withinβ-thalassemia red blood cells is uniformity than normal red blood cells. Characteristic peaks of the statistical analysis show thatβ-thalassemia red blood cell’s hemoglobin distribution wider than normal red blood cells, the average intensity difference of less than 6%. In order to determine the relationship of the individual cells better, we arbitrary pumping two groups of normal and thalassemia cells, each of 200 cells the shots component analysis, sensitivity is 93.5%, specificity is 99.5%, using the principal component analysis method can well distinguished normal andβ-thalassemia red blood cells, and from the load diagram of the principal component analysis it is obvious to see the changes. Collected 20 cells from 200 cells as test datas, another 180 cells to develop base failure, then the 20 cells have fallen into a certain area. Using the same method to several sets of data simultaneously and found that the same type of cells are gathered in one area, this unit has played a similar role of flow cytometry. Base on all these stringent data processing, can get the same results, it is better show the advantages of microfluidic chip - LTRS automated system.
     Chapter VI Conclusion and prospect. Summarizes this study, point out the significance and lacking, look into the future of this work.
     The above studies suggest that: LTRS and LTRS-microfluidic chip automation systems can play an important role in biology research, provide a reliable and convenient means to medical diagnosis research.
引文
[1]陆维敏,陈芳.谱学基础与结构分析[M].北京:高等教育出版社,2005:33.
    [2]陈培榕,李景虹,邓勃.现代仪器分析实验与技术[M]. 2版.北京:清华大学出版社,2006:322.
    [3]许以名.拉曼光谱及其在结构生物学中的应用[M].北京:化学工业出版社,2005:4.
    [4] Ashkin A. Phys. Rev. Lett[J]. 1970, 24(4): 156-159.
    [5] Ashkin A, Dziedzic J M. Appl. Phys. Lett[J]. 1971, 19(8): 283-285.
    [6] Thurn R, Kiefer W. Appl. Spectrosc[J]. 1984, 38(1): 78-83.
    [7] Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S. Opt. Lett[J]. 1986, 11(5): 288-290.
    [8] Ashkin A, Dziedzic J M, Yamane T. Nature[J]. 1987, 330(6150): 769-771.
    [9]李银妹楼立人.生命科学研究中的光镊技术[J].生命科学仪器,2004,2(4):3-9.
    [10] R.M.Cothren, R.R.Richards-Kortum, M.V Sivak, et al. Gastrointestinal tissue Diagnosis by Laser Induced Fluorescene Spectroscopy at Endoscopy[J]. Gastrointestinal Endoscopy. 1990,36:105-111.
    [11] Ettori Dominique, et al. Clinical laser-induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength[J]. Proceedings of SPIE-The International Society for Optical Engineering. 1995,2627: 25-32.
    [12] Xie C A, Dinno M A, Li Y Q .Near-infrared Raman spectroscopy of single optically trapped biological cells [J]. Opt. Lett. 2002, 27: 249.
    [13] Xie C A, Li Y Q. Confocal micro-Raman spectroscopy of single biological cell using optical trapping and shifted excitation difference techniques[J]. Appl. Phys. 2003, 93: 2982.
    [14]谢健.单细胞光镊拉曼光谱在肿瘤诊断中的应用基础研究[D].广西:广西医科大学,2006.
    [15]朱淼.利用拉曼光谱检测肝癌、鼻咽癌细胞及其在端粒酶抑制剂作用后的分子变化[D].广西:广西医科大学,2006.
    [16] Hamden K E, Bryan B A, Ford P W, Xie C A, Li Y Q, Akula S M. J. Virol. Methods[J]. 2005, 129(2): 145-151.
    [17] C.Xie, M.A. Dinno, Y.Li. Near-infrared Raman spectroscopy of single optically trapped biological cells [J]. Optics Letters.2002,27:249-251.
    [18] C.Xie, Y.Li. Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shift excitation difference techniques[J]. Journal of Applied Physics. 2003,93(5):2982-2986.
    [19] L.D.Barron, L.Hecht, A.F.Bell. G.Wilson. Recent developments in Raman optical activity of biopolymers[J]. Applied Spectroscopy. 1996,50(5):619-629.
    [20] C.Xie, Y.Li. Raman spectra and optical trapping of highly refractive and nontransparent particles[J]. Applied Physics Letters.2002,81(6):951-953.
    [21] De Chen, Shu-shi Huang, and Yong-qing Li. Real-Time Detection of Kinetic Germination and Heterogeneity of Single Bacillus Spores by Laser Tweezers Raman Spectroscopy[J]. Anal. Chem. 2006, 78:6936-6941.
    [22] Shu-shi Huang, De Chen, Yong-qing Li. Levels of Ca2+ Dipicolinic Acid in Individual Bacillus Spores Determined Using Micro?uidic Raman Tweezers[J]. Journal of Bacterio-logy. 2007,8: 4681–4687.
    [23] J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang,Y.Q.Li。Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy[J]. Journal of Raman spectroscopy. 2005.
    [24] Changan Xie and Yong-qing Li. Study of dynamical process of heat denaturation in optically trapped single[J]. Journal of applied physics[J]. 2003, 94.
    [25] De Chen, Shu-shi Huang, Yong-qing Li . Real-Time Detection of Kinetic Germination and Heterogeneity of Single Bacillus Spores by Laser Tweezers Raman Spectroscopy[J]. Anal. Chem. 2006, 78: 6936-6941.
    [26] Changan Xie, De Chen, and Yong-qing Li. Raman sorting and identification of single living micro-organisms with optical tweezers[J]. Optics Letters.ol. 2005,30:1800-1802.
    [27]李晓宇,侯森,冯喜增.微流控技术在细胞生物学中的应用[J].生命科学,2008,20(3):397-401
    [28] Manz A, Harrison D J, Verpoorte E M J, et al. An international journal devoted to research and development of chemical transducers[J]. J Chromatogr, 1992,593(3): 253-258.
    [29]张放,邵华.微流控芯片在生物分析中的应用研究进展[J].山东省微量元素科学研究会第三届学术研讨会论文汇编-新药研发与分析测试. 2007:144-146.
    [30] Woolley A T, Mathies R A. Ultra-high-speed DNA-sequencing using capillary electrophoresis chips[J]. Anal Chem. 1995, 67(20):3676.
    [31] Woolley A T, et al . Anal Chem, 1998, 70: 684 - 688.
    [32] Bums M.A., Johnson B.N., Bralllllasandra S.N., Handique K., Webster J.R., Krishnan M., Sarnmarco T.S., Man P.E. Jones D., Heldsingef D..Mastrangelo C.H., Burke D.T.. Science. 1998:282-484.
    [33] Shi Y.N., SimPson P.C., Seherer J.R., Wexler D., Skibola C., Smith M.T., Mathies R.A.. Anal.Chem.1999,71:5354.
    [34] Anderson R C,su X,Bogdan GJ,et a1.A miniature integrated device for automated muhistep genetic assays[J].Nucleic Acids Res,2000,15:6 0.
    [35] Enrich CA, Tian HJ, Mathies RA. Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh throughput genetic analysis[J]. Anal Chem. 2002, 74(19):5076-83.
    [36] Thorsen T, Maerkl SJ, Quake SR. Microfluidic large-scale integration[J]. Science. 2002, 298(5593):580-84.
    [37] KoutnyL.,SefullalzingD.,Salas-SolanoS.0.,EI-Difrawy S.,AdourianA., Buonoeore S.,Abbey K.,McEwan P.,Matsudaira P.,Ehrlieh D. Eight hundred-base sequencing in a mierofabrieated eleetroPhoretie deviee[J]. Anal.Chem.. 2000,72(14):3388-3391.
    [38] EffenhauserC.S. , Manz A. , Widmer H.M. Glass chips for high-speed capillary electrophoresis separatlons with submicrometer plate heights[J]. Anal.Chem.. 1993,65(19):2637-2642.
    [39] Fang Q.,Xu GM.,Fang Z.L .A high-throughput continuous sample introduetion interface for microfluidic chip-based capillary electrophoresis systems[J]. Anal.Chem.. 2002 ,74:1223-1231.
    [40] Deng Y,Henion J.,Li J.,Thibault P.,Wang C.,Harrison D. J. Chip-based capillary electrophoresis/mass spectrometry determination of carnitines in human urine[J]. Anal.Chem. 2001,73(3):639-646.
    [41] Kameoka J.,Craighead H.G,Zhang H.,Henion J. A Polymeric microfluidic chip for CE/MS determination of small molecules [J]. Anal.Chem..2001,73(9):1935-1941.
    [42] Jiang G,Attlya S.,oevirk G.,Lee W. E.,Harrlson D. J.. Red diode laser induced fluorescence detection with a confocal mieroscope on a microchip for capillary electrophoresis [J]. Biosens Bioeleetron..2000,14:861-867.
    [43]高健,殷学锋,方肇伦,夏方诊.微流控芯片单细胞进样和溶膜[J].高等学校化学学报.2003,24(9):552-554.
    [44] MeClain M .A.,Culbertson C. T.,Jacobson S. C.,Allbritton N. L.,Sims C.E.,Remscy J. M.. Microfluidic devices for the high-throughput chemical analysis of cells[J]. Anal.Chem..2003,75:5646-5655.
    [45] Linder V,Verpoorte E.,Thonnann W.,de Rooi N.E,Sigrist Hans.Surface biopassivation of replicated Poly (dirnethylsiloxane) microfluidic channels and application to heterogeneous immunoreaction with on-chip fluorescence detection [J]. Anal.Chem..2001,73(17):4181-4189.
    [46]邵华,冯斌,张志虎,等.微流控芯片技术的研究进展[J].毒理学杂志,2005,19(4):331-333.
    [47]张放,邵华.微流控芯片在生物分析中的应用研究进展[A].山东省微量元素科学研究会第三届学术研讨会论文汇编[C].中国学术期刊电子出版社:2007,143-147.
    [48]薛巍,姜雯.微流控芯片检测技术进展[J].化学分析计量,2007,16(3):77-79.
    [49]富景林.微流控芯片高灵敏度激光诱导荧光检测系统的研究及其在集成生化系统中的应用[D].江苏:浙江大学,2006.
    [50]刘箐.基于微流控芯片的分析检测系统研究[D].北京:中国科学院研究生院,2007.
    [51]王慧香.基于微流控芯片的免疫传感器研究[D].上海:复旦大学,2008.
    [52]汪堃仁,薛绍白,柳惠图.生物细胞学[M].2版.北京:师范大学出版社,2005:291.
    [53]徐兴祥,钱桂生,朱元珏.炎症过程中白细胞募集的分子机制[J].国外医学呼吸系统分册,2001,21(1):13-15.
    [54]赵萌萌,王卫卫。He-Ne激光对钝顶螺旋藻的诱变效应[J].光子学报,2004,34(3):400-404.
    [55]韩榕,王勋陵,岳明. He-Ne激光对小麦幼苗增强UV-B辐射损伤修复的影响[J].光子学报, 2001, 30(10):1182-1187.
    [56] PETRY R, SCHMIT M, POPP J. Raman Spectroscopy-a Prospective Tool in the Life Science[J]. Chemphyschem, 2003, 4 ( 1 ):14-30.
    [57] PUPPELS G J, GARRITSEN H S P, SEGERS-NOLTEN G M J, et al. Raman microspectroscopic approach to the study of human granulocytes[J]. Biophys. J. c Biophysical Society, 1991, 60: 1046-1056.
    [58] Xie C A, Li Y Q, Tang W, et al. Study of dynamical process of heat denaturation in optically trapped single micro organisms by near-infrared Raman spectroscopy[J]. Appl Physics,2003,94: 6138.
    [59]姚辉璐,王桂文,何碧娟,等.单个红细胞的拉曼光谱研究[J].济南大学学报,2005,19(4):328-330.
    [60]林健,郑丽红,张荣标,等.大鼠血常规正常参考值范围及评价方法的探讨[J].海峡预防医学杂志,2007,13(4):57-58.
    [61]黄增峰,陈德昌,缪心朗,等.人参皂苷对烫伤脓毒症大鼠CD45~+和白细胞介素-2水平影响的研究[J].中华中医药学刊,2008,6.
    [62]周洁平,刘欣茹,王海滨,等.卡巴胆碱对烫伤休克大鼠脏器血流量的影响[J].创伤外科杂志,2008,10(1):64-66.
    [63]顾伟,焦建明,杜茜茹,等.大鼠失血性休克并全身炎症反应综合征模型制备[J].大理学院学报,2007,6(4):6-8.
    [64]宇传华.spss与统计分析[M].北京:电子工业出版社,2007:491.
    [65]徐敏,尹跃平,余艳华,等.男性毛滴虫性尿道炎215例致病情况调查[J].中华皮肤科杂志, 2004,37(10):603.
    [66]P. C. A. M. Buijtels, H. F. M. Willemse-Erix, P. L. C. Petit, et al. JOURNAL OF CLINICAL MICROBIOLOGY, 2008, Vol. 46, No. 3:961.
    [67]Maquelin, K., L. Dijkshoorn, T. J. van der Reijden, et al. J. Microbiol. Methods, 2006, 64:126.
    [68]Xie C A, J. Mace, M. A. Dinno, Y. et al. Analytical Chemistry, 2005, 77:4390.
    [69] Chen D, Huang S S, Li Y Q. Analytical Chemistry, 2006, 78:6936.
    [70]Bellanger A P, Cabaret O, Costa J M,et al. J Clin Microbiol, 2008, 46:3159.
    [71]陈秀丽,王桂文,刘军贤,等.基于拉曼光谱的地贫红细胞种类识别方法的研究[J].分析测试学报, 2009, 28(4):403.
    [72]王桂文,姚辉璐,何碧娟,等.单个血小板的拉曼光谱分析[J] .光谱学与光谱分析, 2007, 27(7):1347.
    [73]姚辉璐,朱淼,王桂文,等.单个鼻咽癌细胞的拉曼光谱分析的研究[J].光谱学与光谱分析, 2007,27(9):1761.
    [74]许以明.拉曼光谱及其在结构生物学中的应用[M] .北京:化学工业出版社,2005.
    [75]袁丽杰,高兴政.中国大陆不同地域阴道毛滴虫品系的研究[J].中国寄生虫学与寄生虫病杂志, 2003, 21(2):102.
    [76]王桂文,姚辉璐,何碧娟,黎永青.单个血小板的拉曼光谱分析[J].光谱学与光谱分析. 2007,27:1347-1350.
    [77]王桂文,姚辉璐,彭立新,何碧娟,黎永青.拉曼镊子分析单个苏云金芽孢杆菌伴孢晶体蛋白.分析化学. 2007, 35:1351-1354.
    [78]姚辉璐,朱淼,王桂文,彭立新,何碧娟,何敏,黎永青.单个鼻咽癌细胞的拉曼光谱分析的研究.光谱学与光谱分析. 2007, 27:1761-1764.
    [79]姚辉璐,王桂文,何碧娟,黎永青.单个红细胞的拉曼光谱研究.济南大学学报. 2005,19 :326-328.
    [80] Chan J W, Motton D, Rutledge J C, Keim N L, Huser T. Anal. Chem[J], 2005, 77(17): 5870-5876.
    [81] Creely C M, Singh G P, Petrov D. Opt. Commun[J], 2005, 245(1-6): 465-470.
    [82]黄超,王强,姚辉璐,王桂文,黎永青.分析化学[J], 2007, 35(10): 1410-1414.
    [83] Jess P R T, Garcés-Chávez V, Smith D, Mazilu D, Paterson L, Riches A, Herrington C S, Sibbett W, Dholakia K. Opt. Express[J], 2006, 14(12): 5779-5791.
    [84] Xunli Zhang , Huabing Yin , Jon M. Cooper ,Stephen J. Haswell. Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques[J]. AnalBioanal Chem. 2008, 390:833-840.
    [85] Adrian Y. Lau, Luke P. Leeb, James W. Chan. An integrated opto?uidic platform for Raman-activated cell sorting[J]. 2008:1116-1120.
    [86]刘箐.基于微流控芯片的分析检测系统研究[D].北京:中国科学院研究所院,2007.
    [87] Z.H. Fan, D.J. Harrison. Anal. Chem[J]. 1994, 66: 177-184.
    [88] C. Li, K.H. Lee. Anal. Biochem[J].2004, 333: 381-388.
    [89] M.A. Roberts, J.S. Rossier, P. Bercier, H. Girault. Anal.Chem[J]. 1997, 69: 2035-2042.
    [90] S. Hu, X. Ren, M. Bachman, C. Sims, G. Li, N. Allbritton. Electrophoresis[J]. 2003, 24, 3679-3688.
    [91] He P, Watts P, Marken F, Haswell SJ. Electrochem Commun. 2005,7:918–924.
    [92] Kantak AS, Gale BK, Lvov Y, Jone SA. Biomed Microdev. 2003,5:207–215.
    [93] Ma N, Koelling KW, Chalmers JJ (2002) Biotech Bioeng 80:428–437
    [94].Xin Hua(辛华). Modern Cell Biology Techniques (现代细胞生物学技术).Beijing(北京):Science Press(科学出版社), 2009, 294.
    [95] Fang Q, Xu G M, Fang Z L . Anal.Chem.. 2002,74:1223~1231.
    [96] Meclain M A, Culbertson C T, Jacobson S C, Allbritton N L, Sims C E, Remscy J M. Anal.Chem..2003,75:5646~5655.
    [97].Kartalov E P, Zhong J F, Scherer A, Quake S R, Taylor C R, Anderson W F. Biotechniques.2006, 40(1):85~90.
    [98]郭峰,钱宝华,张乐之.现代红细胞免疫学[M].上海:第二军医大学出版社. 2002.
    [99]伍曼仪,黄绍良.现代小儿血液病学[M].福州:福建科学技术出版社.2002.
    [100] Puppels G J, Garritsen H S P, Segers-Nolten G M J. J. c Biophysical Society, 1991, 60: 1046~1056.
    [101]陆小婵.临床检验杂志.1999, 17(5):310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700