铜纳米粒子的制备及表面等离子共振特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对于体材料,纳米尺寸的金属粒子(如Au、Ag、Cu等)具有独特的光学、电学、磁学、力学和催化特性,在许多领域有着广阔的应用前景,如癌症治疗、生物传感、纳米光学器件、表面增强荧光光谱和表面增强拉曼散射等方面。在金属纳米粒子众多特性中,表面等离子共振(SPR)特性是研究的热点之一。玻璃中的金属纳米粒子由于其表面等离子共振,在特征峰附近会出现明显的光学非线性现象。影响表面等离子共振的因素包括纳米粒子的尺寸、形状、介电性质以及周围的介质环境。其中,纳米粒子的形貌是影响这些特性的主要因素之一,因而制备不同形貌的金属纳米粒子越来越受到人们的广泛关注
     本文采用水热法和离子交换结合热处理法制备不同形貌的Cu纳米粒子。通过扫描电子显微镜(SEM)、X射线衍射分析仪(XRD)、紫外-可见(UV-Vis)分光光度计和荧光分光光谱仪对Cu纳米粒子的表面形貌、晶体结构及光学性质进行了表征和研究。
     SEM结果表明所制备的Cu纳米粒子粒径分布范围窄,单分散性良好;XRD结果表明,以水热法制备的Cu纳米粒子结晶程度较好,出现了对应于Cu面心立方(fcc)晶系的(111)、(200)和(220)晶面的衍射峰,而离子交换结合热处理法制备的Cu纳米粒子可能由于部分被氧化,只出现强度较弱的(111)晶面择优取向峰;荧光光谱仪分析表明,当激发光波长λex为270 nm时,其发射光λem分别为370 nm和500 nm。当激发光波长λex为560 nm时,其发射光λem为800 nm;UV-Vis吸收光谱表明,Cu纳米粒子的表面等离子体共振峰随离子交换时间的延长以及退火温度的升高而红移。
Compared to the bulk elements, nano-sized metal nanoparticles exhibit unique optical, electrical, magnetic, mechanical and catalytic properties. Based on their unique properties, metal nanoparticles have been widely applied in the fields of cancer therapeutics, biological sensors, nanoscale optical devices, surface-enhanced fluorescence and surface-enhanced raman spectroscopies. The surface plasmon resonance (SPR) is one of the most concerned research focus among all these properties. The optical nonlinear phenomena could be observed obviously around the absorption peak, due to the surface plasmon resonance. The SPR is very sensitive to the size, shape, dielectric properties of the nanoparticles and dielectric environment. Synthesizing metal nanoparticles with different morphologies has received more attention, because the morphology of nanoparticles is one of the main factors affecting the features.
     Copper nanoparticles embedded in BK7 glasses have been prepared with hydrothermal method and ion-exchange method following by reducing in H2, respectively. Their surface morphologies, crystal structures, and optical properties have been characterized and investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Vis absorption and fluorescence (FL) spectrophotometers.
     SEM images showed that the prepared copper nanoparticles were uniform in size distribution and had a good monodispersity. XRD results revealed that the Cu nanoparticles prepared by hydrothermal method were found to be good crystalline. The peaks showed in the picture corresponded to the formation of Cu (111), (200) and (220) nanocrystals. However, those prepared by ion-exchange method might be oxidized partially and displayed only a weak preferential (111) orientation. It was found by the fluorescence spectrophotometers that the copper ions displayed two emission band at 370 nm and 500 nm for the excitation at 270 nm. Meanwhile, the luminescence at 800 nm attributed to the excitation at 560 nm. UV-Vis absorption spectra indicated that the SPR peaks showed a red shift with increase of the ion-exchanged time and the reducing temperature.
引文
[1]徐国财.纳米科技导论.高等教育出版社,2005,1:14~17
    [2]李玲,向航.功能材料与纳米技术.化学工业出版社,2002,1:3~5
    [3]刘吉平,郝向阳.纳米科学与技术.科学出版社,2002,1:5~8
    [4]Kubo R. Electronic Properties of Metallic Fine Particles. Ⅰ. J. Phys. Soc. Jpn,1962,17(6): 975~986
    [5]Kawabata A, Kubo R. Electronic Properties of Metallic Fine Particles. Ⅱ. Plasma Resonance Absorption. J. Phys. Soc. Jpn.1966,21(9):1765~1772
    [6]Brus L E. Electronic wave functions in semiconductor clusters:experiment and theory. J. Phys. Chem.1986,90(12):2555~2560
    [7]Steigerwald M L, Brus L E. Semiconductor crystallites:a class of large molecules. Acc. Chem. Res.1990,23(6):183~188
    [8]Chatterjee A, Chakravorty D. Electrical conductivity of sol-gel derived metal nanoparticles. J. Mater. Sci.1992,27(15):4115~4119
    [9]梁国宪,王尔德,王晓林.高能球磨制备非晶态合金研究的进展.材料科学与工程,1994,12(1),47~52
    [10]Saraie J, Kobayashi M, Yoshishisa F, Matsunami H. Thin Solid Films,1981,80(1~3): 169~176
    [11]Gleiter H. On the structure of grain boundaries in metals. Mater. Sci. Eng.1984,52(2), 91~131
    [12]Dimesso L, Heider L, Hahn H. Synthesis of nanocrystalline Mn-oxides by gas condensation. Solid State Ionics,1999,123(1~4):39~46
    [13]Goossens A, Besling W F A, Schoonman J. Laser CVD of silicon nanoclusters and in-situ process chataracterization. J. Phys. IV,1999,9(8):519
    [14]Kamlag Y, Goossens A, Colbeck I, Schoonman J. Formation of Nano SiC Particles by Laser-Assisted CVD. Chem. Vap. Deposition,2003,9(3):125~129
    [15]Sen D, Deb P, Mazumder S, Basumallick A. Microstructural investigations of ferrite nanoparticles prepared by non-aqueous precipitation route. Mater. Res. Bull.2000,35(8): 1243~1250
    [16]Adsehiri T, Hakuta Y, Sue K, Arai K. Hydrothermal Synthesis of Metal Oxide Nanoparticles at Supercritical Conditions. J. Nanopart. Res.2001,3(2~3):227~235
    [17]张纪光,马林,徐燕.溶胶-凝胶法制备超细氧化镧粉体及其表征.复旦学报(自然科学 版),1999,38(1):24~28
    [18]丁子上,翁文剑.溶胶-凝胶技术制备材料的进展.硅酸盐学报,1993,21(5):443~448
    [19]褚道葆.电合成法制备纳米材料及纳米材料电极上的电催化合成.精细化工,2000,17(S1):10~129
    [20]Tang Z L, Zhang J Y, Cheng Z, Zhang Z T. Synthesis of nanosized rutile TiO2 powder at low temperature. Mater. Chem. Phys,2002,77(2):314-317
    [21]Takeda Y, Plaksin O A, Lu J, Kishimoto N. Optical switching performance of metal nanoparticles fabricated by negative ion implantation. Nucl. Instr. and Meth. in Phys. Res. B, 2006,242(1~2):194~197
    [22]West B R, Madasamy P, Peyghambarian N, Honkanen S. Modeling of ion-exchanged glass waveguide structures. Journal of Non-Crystalline Solids,2004,347(1~3):18~26
    [23]Ila D, Williams E K, Zimmerman R L, Poke D B, Hensley D K. Radiation induced Nucleation of nanoparticles in silica. Nucl. Instr. and Meth. in Phys. Res. B,2000,166-167: 845~850
    [24]Miotello A, bonelli M, Marchi G De, Mattei G, Mazzoldi P, Sada C, Gonella F. Formation of silver nanoclusters by excimer-laser interaction in silver-exchanged soda-lime glass. Appl. Phys. Lett.,2001,79(15):2456~2458
    [25]Stepanov A L, Hole D E, Townsend P D. Copper ion implantation and laser annealing of silica. Nucl. Instr. and Meth. in Phys. Res. B,2002,191(1~4):468~472
    [26]Pivin J C, Roger G, Garcia M A, Singh F, Avasthi D K. Nucleation and growth of Ag clusters in silicate glasses under ion irradiation. Nucl. Instr. and Meth. in Phys. Res. B,2004, 215(3~4):373~384
    [27]Korkishko Y N, Fedorov V A, Feoktistova O Y, Morozova T V. Effect of SiO2 cladding on properties of annealed proton-exchanged LiNbO3 waveguides. J. Appl. Phys.,2000,87(9): 4404~4409
    [28]Acapito F D, Mobilio S, Battaglin G, Cattaruzza E, Gonella F, Caccavale F, Mazzoldi P, Regnard J R. Valence state and local atomic structure of copper in Cu-implanted silica glass. J. Appl. Phys.,2000,87(4):1819~1824
    [29]Pivin J C, Garcia M A, Hofmeister H, Martucci A, Vassileva M S, Nikolaeva M, Kaitasov O, Llopis J. Optical properties of silver clusters formed by ion irradiation. Eur. Phys. J. D,2002, 20(2):251~260
    [30]Umeda N, Kishimoto N, Takeda Y, Lee C G, Gritsyna V T. Thermal stability of nanoparticles in silica glass implanted with high-flux Cu- ions. Nucl. Instr. and Meth. in phys. Res. B, 2000,166~167:864~870
    [31]Tsuji H, Kurita K, Gotoh Y, Kishimoto N, Ishikawa J. Optical absorption properties of Cu and Ag double negative-ion implanted silica glass. Nucl. Instr. and Meth. in Phys. Res. B, 2002(3~4),195:315~319
    [32]Sheng J, Kadono K, Yazawa T. Photo-irradiation induced recyclable coloration for soda-lime silicate glass. Phys. and Chem. Glasses,2004,45(1):27~31
    [33]Sheng J, Kadono K, Yazawa T. Nnosized gold clusters formation in selected areas of soda-lime silicate glass. J. Non-Cryst. Solids,2003(3),324:295~299
    [34]曲士良,赵崇军,高亚臣,宋瑛林,刘树田,邱建荣,朱从善.飞秒激光所致金纳米颗粒析出的玻璃非线性吸收.物理学报,2005,54(1):139~143
    [35]Liu W, Chen H, Zheng Y K, Liang K M. Phase separation of CaO-B2O3-P2O5 glasses induced by polarization in an electric field. J. Mater. Sci.,2004,35(6):1507~1510
    [36]Shyu J J, Chen Y H. Effect of electric field on the crystallization of lead titanate in glass. Mat. Sci.,2004,39(1):159~163
    [37]Lim J W, Mimura K, Miyake K, Yamashita M, Isshikei M. Preparation of high-purity Cu film by non-mass separated ion beam deposition. Nucl. Instr. and Meth. in Phys. Res. B, 2003,206:371~376
    [38]Dhas N A, Raj C P, Gedanken A, Synthesis, characterization and properties of metallic copper nanoparticles. Chem. Mater.1998,10(5):1446~1452
    [39]Li Q, Wang C R. Cu nanostructures formed via redox reaction of Zn nanowire and Cu2+ containing solution. Chem. Phys. Lett.,2003,375(5~6):525~531
    [40]Manikandan D, Mohan S, Magudapathy P, Nair K G M. Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass:an optical absorption study. Physica B:Condensed Matter,2003,325(1~4):86~91
    [41]Gonella F. Metal Nanocluster Composite Silicate Glasses. Rev. Adv. Mater. Sci.,2007,15(2): 134~143
    [42]Yeshchenko O A, Dmitruk I M, Dmytruk A M, Alexeenko A A. Influence of annealing conditions on size and optical properties of copper nanoparticles embedded in silica matrix. Mater. Sci. Eng., B,2007,137(1):247~254
    [43]Wang G L, Liang K M, Liu W, Hu A M, Xue S N, Wang G. An experimental and theoretical investigation on the nucleation mechanism of copper-containing glass in an electric field. Appl. Phys. A,2005,81(2):413~417
    [44]Matsubara K, Kawata S, Minami S. Optical chemical sensor based on surface plasmon measurement. Appl. Opt.,1988,27(6):1160~1163
    [45]Kretschmann E. The Determination of the Optical Constants of Metals by Excitation of Surface Plasmons. Z. Phys.,1971,241(4):313~324
    [46]Kreibig U, Vollmer M. Optical Properties of Metal Clusters. Berlin:Springer,1995,300
    [47]Kelly K L, Coronado E, Zhao L L and Schatz G C. The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B, 2003,107(3):668~677
    [48]Xia Y N, Halas N J. Shape-controlled synthesis and surface plasmbnic properties of metallic nanostructures. MRS Bulletin,2005,30(5):338~344
    [49]Rosi N'L, Mirkin C A. Nanostructures in Biodiagnostics. Chem. Rev.,2005,105(4), 1547~1562
    [1]Haes A J, Van Duyne R P. A Nanoscale Optical Biosensor:Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. J. Am. Chem. Soc.,2002,124(35):10596~10604
    [2]满石清,肖桂娜.帽状铜纳米粒子的制备及表面增强拉曼散射活性研究.无机化学学报,2009,25(7):1279~1283
    [3]王连英,纪小会,张听彤,白玉白,李铁津,支壮志,孔祥贵,刘益春.银纳米粒子在云母表面的二维组装及其表面增强拉曼效应.高等学校化学学报,2002,23(11):2169~2171
    [4]Komarneni S, Roy R, Li Q H. Microwaver-hydrothermal Synthesis of Ceramic Powders. Ma. Res. Bull.,1992,27(12):1393~1405
    [5]李亚栋,贺蕴普,钱逸泰.银纳米粒子的制备及其表面特性研究.化学物理学报,1999,12(4):465~467
    [6]Arnold G W, Marchi G D, Gonella F, Mazzoldi P, Quaranta A, Battaglin G, Catalano M, Garrido F, Haglund R F Jr. Formation of Nonlinear Optical Waveguides by Using Ion-exchange and Implantation Techniques. Nucl. Instr. and Meth. In Phys. Res. B,1996, 116(1~4):507~510
    [7]Manikandan D, Mohan S, Magudapathy P, Nair K G M. Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass:an optical absorption study. Physica B:Condensed Matter,2003,325(1~4):86~91
    [1]Gonella F. Metal Nanocluster Composite Silicate Glasses. Rev. Adv. Mater. Sci.,2007,15(2): 134~143
    [2]Takeda Y, Zhao J P, Lee C G, Gritsyna V T, Kishimoto N. Nonlinear optical properties of Cu nanoparticles embedded in insulators by high-current Cu- implantation. Nucl. Instr. and Meth. In Phys. Res. B,2000,166~167(2):877~881
    [3]杨修春,许静仙,李志会,刘维学,贺博,韦世强,徐政.铜纳米粒子在硅酸盐玻璃中的形成及其局部结构.硅酸盐学报,2008,36(7):990~999
    [4]Eaton D F. Nonlinear Optical Materials. Science,1991,253(5017):281~287
    [5]Cotter D, Manning R J, Blow K J, Ellis A D, Kelly A E, Nesset D, Phillips I D, Poustie A J, Rogers D C. Nonlinear Optics for High-Speed Digital Information Processing. Science, 1999,286(5444):1523~1528
    [6]满石清,肖桂娜.帽状铜纳米粒子的制备及表面增强拉曼散射活性研究.无机化学学报,2009,25(7):1279~1283
    [7]Prodan E, Radloff C, Halas N J, Nordlander P. A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science,2003,302(5644):419~422
    [8]Mulvaney P. Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir,1996, 12(3):788~800
    [9]Roque J, Poolton N R J, Molera J, Smith A D, Pantos E, Vendrell-Saz M. X-ray absorption and luminescence properties of metallic copper nanoparticles embedded in a glass matrix. Phys. Stat. Sol. (b),2006,243(6):1337~1346
    [10]Arnold G W, Marchi G De, Gonella F, Mazzoldi P, Quaranta A, Battaglin G, Catalano M, Garrido F, Haglund R F J. Formation of nonlinear optical waveguides by using ion-exchange and implantation techniques. Nucl. Instr. and Meth. In Phys. Res. B,1996,116(1~4): 507~510
    [11]Manikandan D, Mohan S, Magudapathy P, Nair K G M. Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass:an optical absorption study. Physica B:Condensed Matter,2003,325(1~4):86~91
    [12]Charnay C, Lee A, Man S Q, Moran C E, Radloff C, Bradley R K, Halas N J. Reduced Symmetry Metallodielectric Nanoparticles:Chemical Synthesis and Plasmonic Properities. J. Phys. Chem. B,2003,107(30):7327~7333
    [13]Chakraborty P J. Metal nanoclusters in glasses as non-linear photonic materials. Mater. Sci., 1998,33(9):2235~2249
    [14]Yeshchenko 0 A, Dmitruk I M, Dmytruk A M, Alexeenko A A. Influence of annealing conditions on size and optical properties of copper nanoparticles embedded in silica matrix. Mater. Sci. Eng., B,2007,137(1):247~254
    [15]Kreibig U. Electronic properties of small silver particles:the optical constants and their temperature dependence. J. Phys. F:Metal Phys.,1974,4(7):999~1014
    [16]杜天伦,杨修春,黄文旵.离子交换法制备金属纳米颗粒-玻璃复合材料的研究进展.材料导报,2006,20(6):52~55
    [17]Jiang C Z, Fan X J. In-situ TEM observation of silver nanocrystals in an Ag-implanted SiO2 film. Surf. Coat. Int.,2000,131(1~3):330~333
    [18]Johnson P B, Christy R W. Optical Constants of Noble Metals. Phys. Rev. B,1972,6(12): 4370~4379
    [19]Drexhage K H. Interaction of light with monomolecular dye lasers. Progress in Optics, Edited by E Wolfe. North-Holland:Amsterdam,1974,161~232
    [20]Borsella E, Vecchio A Dal, Garacia M A, Sada C, Gonella F, Polloni R, Quaranta A, Wilderen L J G W van. Copper doping of silicate glasses by the ion-exchange technique:A photoluminescence spectroscopy study. J. Appl. Phys.,2002,91(1):90~98
    [21]Zhang X D, Liu C L, Guo M L, Li W X, Yin L J, Lv Y Y, Wang Z, Wu P, Liu T Y, Li M K, Yuan B. Structural and optical properties of Cu nanoparticles embedded in Si3N4/Si by ion implantation. Optical Marerials,2008,30(9):1382~1386
    [22]Srinivasa Rao L, Srinivasa Reddy M, Krishna Rao D, Veeraiah N. Influence of redox behavior of copper ions on dielectric and spectroscopic properties of Li2O-MoO3-B2O3:CuO glass system. Solid State Sci.,2008,11(2):578~587
    [23]Ghijsen J, Tjeng L H, Elp J van, Eskes H, Westerink J, Sawatzky A. Electronic structure of Cu2O and CuO. Phys. Rev. B,1988,38(16):11322~11330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700