表面等离子体对纳米结构ZnO膜光致发光性能的调制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是直接带隙宽禁带化合物半导体材料,其禁带宽度为3.37 eV,在室温下拥有60 meV的激子束缚能,具有高的热稳定性和卓越的光学性质,因此,ZnO成为继GaN之后研究的一个新热点。尽管ZnO薄膜的研究在实验和理论方面都取得了可喜的进展,但是表面等离子体对ZnO薄膜发光的调制机制有待于进一步的研究。
     在本论文中,用化学气相沉积法在蓝宝石衬底上生长纳米结构ZnO薄膜,在纳米结构ZnO薄膜表面上利用真空直流溅射仪蒸镀Au纳米颗粒。ZnO薄膜晶体结构用X-射线衍射仪(XRD)表征,结果表明制备的ZnO为纤锌矿六角形结构,和沿c轴择向生长特性。
     样品的表面形貌和表面粗糙度分别用扫描电子显微镜(SEM)和原子力显微镜(AFM)测定,SEM测定样品的表面形貌,AFM测试确定样品的表面粗糙度。
     通过对ZnO薄膜的光致发光(PL)谱的荧光光谱仪测试,发现多数未蒸镀Au的ZnO薄膜PL谱由两个发射峰组成,一个是波长约380 nm的近带边发射,另一个是约500 nm深能级发射。通常,与可见光发射强度相比,紫外发射的强度相对较弱。而蒸镀Au后的ZnO薄膜PL谱也由紫外发射带和可见光发射带组成,但是,它们的发光强度发生了很大变化。在不同温度下制备的ZnO样品蒸镀Au以后的紫外发射强度和未蒸镀Au的相比,紫外发射强度的增强倍数不同。同时,蒸镀Au前后ZnO薄膜的PL谱中的可见光发射得到不同程度的抑制。关于ZnO薄膜的光致发光的显著的改变,物理机制是入射光的电场和Au纳米颗粒表面的电子耦合,在Au和ZnO的界面处产生了表面等离子体,Au纳米颗粒附近的电场可强烈增强,所以,激发源强度的剧增造成激发过程中激发速率的提高。对于缺陷发光的抑制,可以认为借助金纳米颗粒,缺陷态上的电子被转移到导带上,电荷的转移引起导带电子密度的增加,最终造成紫外发射的增强,使缺陷态电子密度的下降导致可见光发射的抑制。
     表面蒸镀Au纳米颗粒的ZnO膜的吸收谱用紫外-可见-近红外分光光度计(UV-VIS-NIR spectrophotometer)测试,实验结果显示在可见光区~500 nm处出现强的吸收峰,此吸收峰由Au纳米颗粒的表面等离子体共振吸收所致。用拉曼光谱仪测试了ZnO的拉曼散射,确定分子的振动模式。
Zinc oxide (ZnO) is a compound semiconductor with direct and wide band gap. It has a band gap of 3.37 eV and an exciton binding energy of 60 meV at room temperature, high thermal stability and excellent optical properties. At present, ZnO has become a new hot spot followed GaN. Although the study of ZnO has been made great processes both in the experimental and theoretical aspects, it is necessary to further study the origin of green emission, the improvement of quality of growth of ZnO, and the mechanism of surface plasmon mediated the luminescence of ZnO,
     In this thesis, the pure ZnO thin films with different nanostructures deposited on the sapphire substrates were prepared by a chemical vapor deposition method. A vacuum DC sputtering system was used to deposit Au nanaoparticles on the surface of ZnO nanostructured films. The crystalline structure of ZnO was characterized by X-ray diffractometer (XRD). The results show that all as-prepared ZnO thin films are wurtzite hexagonal structure, and have the strongest peak of ZnO (002). It indicated that the as-grown ZnO films have the perfected orientation growth along c axis.
     The surface morphologies and roughness of samples were measured by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. The results showed that the surfaces of samples were not smooth by SEM. The roughness of samples was different by AFM ananlysis results.
     The photoluminescence (PL) spectra of ZnO thin films were measured by fluorescence spectrometer. The PL spectra of uncoated ZnO thin films consist of two emission peaks. One is the near band edge emission at around 380 nm, and another is deep level emission due to defects. Moreover, the intensity of UV emission is relatively weaker compared with that of visible emission. The PL spectra of Au-coated ZnO thin films prepared at different temperatures also consist of UV emission band and visible emission band. However, the UV emission intensities of Au-coated samples are enhanced compared with that of un-coated samples. The visible emission intensities of samples were suppressed to some constants. In the case of significant changes in PL of ZnO films, we proposed the following physical mechanism. The electric field of the incident light coupled with Au nanoparticle surface electrons, the surface plasmons were created at the interface between ZnO nanosturcutrues and Au nanoparticles. After light illuminated, the electric field near Au nanoparticles was strongly enhanced. Therefore, the dramatic increase of intensity of excitation source resulted in the improvenment of excitation rate in the excitation process. The electrons located at defect states transferred to conduction band by Au nanoparticles. The charge transfer caused the increase in electron density in conduction band. Finally, UV emission from ZnO was enhanced. Meanwhile the decrease in electron density in defect level resulted in the suppression of the visible emission.
     The absorption spectra of Au-coated ZnO films were measured by UV-VIS-NIR spectrophotometer. The experimental results showed that a strong absorption peak at ~ 500 nm occurred in visible region. This absorption peak resulted from the surface plasmon resonance of Au nanopariticles. To investigate the vibration modes of ZnO, Raman scattering spectroscopy was used.
引文
[1] Deng H., Russell J. J., Lamb R. N. et al., Microstructure control of ZnO thin films prepared by single source chemical vapor deposition [J], Thin Solid Films, 2004, 458, 43.
    [2] Jayadev Dayan N., Sainkar S. R., Karekar R. N., and Aiyer R. C., Formulation and characterization of ZnO:Sb thick-film gas sensors [J], Thin Solid Films, 1998, 325, 254-258.
    [3] Bagnall D. M., Chen Y. F, Zhu Z. et al., Optically pumped lasing of ZnO at room temperature [J], Appl. Phys. Lett., 1997, 70, 2230.
    [4] Yu P., Tang Z. K., Wong G. K. L., et al., 23nd Int. Conf. on the Physics of Semiconductor , Singapore: World Scientific, 1996, 1453-1456.
    [5]徐叙瑢,苏勉曾,发光学与发光材料[M],化学工业出版社,2004.
    [6]黄昆,谢希德,半导体物理学[M],北京:科学出版社,1958.
    [7] Moss T. S., Burrell G. T, Euis B., Semicondutor Opto-electromics [M], London: Butterworths, 1973.
    [8] Gooch C. H., Injection Electroluminescence Devices [M]. London:Wiley, 1973.
    [9] Pankove J. I., Electroluminescence [M], New York: Springer, 1977.
    [10]刘恩科,朱秉升,罗晋生等,半导体物理学[M],北京:电子工业出版社,2006.
    [11]王富耻,材料现代分析测试方法[M],北京理工大学出版社,2006, 259.
    [12]许根慧,姜恩永,盛京等,等离子体技术和应用[M],北京:化学工业出版社,2006.
    [13] Ozgur U, Alivov Y. I., Liu C., Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J and Morkoc H, A comprehensive review of ZnO materials and devices [J], J. Appl. Phys., 2005, 98, 041301.
    [14] Wang Zhong Lin, Zinc oxide nanostructures: growth, properties and applications [J],J. Phys.: Conden. Mater., 2004, 16, 829-858.
    [15] Dulub O., Boatner L. A. and Diebold U., STM study of the geometric andelectronic structure of ZnO (0001)-Zn, (000 1? )-O, (101?0), and (11 2? 0) surfaces [J], Surf. Sci., 2002, 519, 201.
    [16] Meyer B. and Marx D., Density-functional study of the structure and stability of ZnO surfaces [J], Phys. Rev. B, 2003, 67, 035403.
    [17]钟迪生,真空镀膜—光学材料的选择与应用[M],辽宁大学出版社,2001,274.
    [18] You J. B., Zhang X. W., Fan Y. M., Qu S. and Chen N. F., Surface plasmon enhanced ultraviolate emission from ZnO films deposited on Ag/Si (001) by magnetron sputtering [J], Appl. Phys. Lett., 2007, 91, 231907.
    [19] Wang P., Chen N. F., Yin Z. G., Dai R. X., and Bai Y. M., P-doped p-type ZnO films deposited on Si substrate by radio-frequency magnetron sputtering [J], Appl. Phys. Lett., 2006, 89, 202102.
    [20] ?zgürü., Alivov Ya. I., Liu C., Teke A., Reshchikov M. A., Do?an S., Avrutin V., Cho S. J., and Morko? H.,A comprehensive review of ZnO materials and devices [J], J. Appl. Phys., 2005, 98, 041301.
    [21] Fung S., Xu X. L., Zhao Y. W., et al., Gallium/aluminum interdiffusion between n-GaN and sapphire [J], J. Appl. Phys., 1998, 84(4): 2335-2359.
    [22] Mridha S. and Basak D., Aluminium doped ZnO films: electrical, optical and photoresponse studies [J], J. Phys. D: Appl. Phys., 2007,40, 6902.
    [23] Ben Ayadi Z., Mir L. El, Djessas K. and Alaya S.,Electrical and optical properties of aluminum-doped zinc oxide sputtered from an aerogel nanopowder targe [J], Nanotechnology, 2007, 18, 445702.
    [24] Seiichi Kishimoto,Kunihiko Hayashi,Hirofumi Hamaguchi,Hisashi Makino,Takahiro Yamada,Aki Miyake,Tetsuya Yamamoto,Photoconductivity of Ga doped polycrystalline ZnO films grown by reactive plasma deposition [J], Physica Status Solid (b), 2007, 244, 1483-1489.
    [25] Herng T. S., Lau S. P., Yu S. F., Yang H. Y., Teng K. S. and Chen J. S., Enhancement of ferromagnetism and stability in Cu-doped ZnO by N2O annealing [J], J. Phys.: Condens. Matter, 2007, 19, 35621.
    [26] Ruan Shiping, Color picture element tube for large-screen display [J], Proc SPIE , 1996, 2892:262.
    [27] Yi L., Hou Y., Zhao H., et al, The photo- and electro-luminescence properties of ZnO:Zn thin film [J], Displays, 2000, 21:147.
    [28] Zheng Kaibo, Shen Haoting, Li Jinglei, Sun Daling, Chen Guorong Chen, Hou Kai, Li Chi, Lei Wei, The fabrication and properties of field emission display based on ZnO tetrapod-liked nanostructure [J], Vaccum, 2009,83,261-264.
    [29] Zhong J., Kitai A. H., and Mascher P., The Influence of Processing Conditions on Point Defects and Luminescence Centers in ZnO [J], J. Electrochem. Soc., 1993, 140, 3644.
    [30] Schirmer O. F. and Zwingel D., The yellow luminescence of zinc oxide [J], Solid State Commun., 1970, 8, 1559.
    [31] He Guannan, Huang Bo, Wu Suntao, Li Jing, and Wu Qi-Hui, Structure morphologies and luminescence properties of ZnO nanomaterials synthesized by an acidic solution process [J], J. Phys. D: Appl. Phys, 2009, 42, 215401.
    [32] Umar A., Karunagaran B., Suh E. K. and Hahn Y. B., Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation [J], Nanotechnology, 2006, 17, 4072.
    [33] Ahsanulhaq Q., Umar A. and Hahn Y. B., Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties [J], Nanotechnology, 2007, 18, 115603.
    [34] Zhang Y., Lin B., Fu Z., Liu C. and Han W., Strong ultraviolet emission and rectifying behavior of nanocrystalline ZnO films [J], Opt. Mater, 2006, 28, 1192.
    [35] Tang Z. K., Wang G. K.L., Yu P., et al, Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films [J], Appl Phys Lett, 1998, 72:3270.
    [36] Jin B. J, Im S., Lee S.Y., Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition [J],Thin Solid Films, 2000, 366:107.
    [37] Kim K. K, Song J. H., Jung H. J. et. al, The grain size effects on the photoluminescence of ZnO/α-Al2O3 grown by radio-frequency magnetronsputtering [J],J Appl Phys, 2000, 87:3573.
    [38] Shi C. S., Fu Z. F., Guo C. X. et. al., Electron Spectrosc Relat Phenom [J], 1999, 629:101.
    [39] Fu Z, Lin B, Liao G and Wu Z, The effect of Zn buffer layer on growth and luminescence of ZnO films deposited on Si substrates [J], J. Cryst. Growth, 1998, 193, 316.
    [40] Li D., Leung Y. H., Djuri?i? A. B., Liu Z. T., Xie M. H., Shi S. L., and Xu S. J.,Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods [J], Applied Physics Letter, 2004, 85, 1601-1603.
    [41] Shi C., Fu Z., Guo C., Ye X., Wei Y., Deng J, Shi J and Zhang G, UV luminescence and spectral properties of ZnO films deposited on Si substrates [J], Journal of Electron spectroscopy and Related Phenomena, 1999, 101–103, 629.
    [42] Dai L., Chen X. L., Wang W. J., Zhou T. and Hu B. Q., Growth and luminescence characterization of large-scale zinc oxide nanowires [J], J. Phys. Condens. Matter, 2003, 15, 2221.
    [43] Studenikin S. A., Golego Nickolay, and Cociverb Michael, Fabrication of gree and and orange photoluminescent ,undoped ZnO thin films using spray pyrolysis [J], 1998, 84, 2287-2293.
    [44] Liu X., Wu X., Cao H., Chang R. P. H., Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition [J], J. Appl. Phys., 2004, 95, 3141.
    [45] Djurisic. A. B.,Leung Y. H. L,Tam K. H.,Hsu Y. F.,Ding L.,Ge W. K.,Zhong Y. C.,Wong K. S.,Chan W. K. Chan,Tam H. L.,Cheah K. W.,Kwok W. M.,and Phillips D. L.,Defect emissions in ZnO nanostructures [J], Nanotechnology, 2007, 18, 095702.
    [46]井立强,袁福龙,侯海鸽,辛柏福,蔡伟民,付宏刚, ZnO纳米粒子的表面氧空位与其光致发光和光催化性能的关系[J],中国科学B化学, 2004, 34 (4):
    [47] Zhang L. D., Mou C. M., Luminescence in nanostructured materials [J], Nanostructured Mater, 1995, 6: 831~834.
    [48] Zhang W F, Zhang M S, Yin Z, et al. Photoluminescence in ana-tase titanium dioxide nanocrystals [J], Appl Phys B, 2000, 70: 261~265.
    [49]井立强,孙晓君,蔡伟民,李晓倩,付宏刚,侯海鸽,范乃英,掺Ce的TiO2纳米粒子的光致发光及其光催化活性[J],化学学报, 2003, 61(8): 1451~1457.
    [50] Wu X. L., Siu G.. G.., Fu C. L. and Ong H. C. Ong, Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films [J], Appl. Phys. Lett., 2001, 78, 2285.
    [51] Ohashi N., Nakata T., Sekiguchi T., Hosono H., Mizuguchi M., Tsu-rumi T., J. Tanaka, and H. Haneda, Yellow emission from zinc oxide giving an electron spin resonance signal at g =1.96 [J], Jpn. J. Appl. Phys., 1999, Part 2 38, L113.
    [52] Vanheusden K., Seager C. H., Warren W. L., Tallent D. R., and Voigt J. A., Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J], Appl. Phys. Lett., 1996, 68, 405.
    [53] Bagnall D. M., Chen Y. F., Zhu Z. et al, Optically pumped lasing of ZnO at room temperature [J], Appl. Phys. Lett., 1997, 70, 2230.
    [54] Lei D. Y., Li J. and Ong H. C., Tunable surface plasmon mediated emission from semiconductors by using metal alloys [J], Appl. Phys. Lett.,2007, 91, 021112.
    [55] Cheng Peihong, Li Dongsheng, Yuan Zhizhong,Chen Peiliang, and Yang Deren,Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film [J], Appl. Phys. Lett., 2008, 92, 041119.
    [56] Lin Jian Ming , Lin Hsia Yu , Cheng Chung Liang and Chen Yang Fang,Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles [J], Nanotechnology, 2006, 17, 4391–4394.
    [57] Lai C. W. Lai, An J., and Ong H. C., Surface-plasmon-mediated emission from metal-capped ZnO thin films [J], Appl. Phys. Lett., 2005, 86, 251105.
    [58] You J. B., Zhang X.W. , Fan Y. M., Yin Z. G., Cai P. F. and Chen N. F.,Effects of the morphology of ZnO/Ag interface on the surface-plasmon-enhanced emission ofZnO films [J], J. Phys. D: Appl. Phys., 2008, 41, 205101.
    [59] Li J. and Ong H. C.,Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films [J], Appl. Phys. Lett., 2008, 92, 121107.
    [60] Look D. C.,Claflin B., P-type doping and devices based on ZnO [J], physica status solidi (b), 2004, 241, 624-630.
    [61] Jin B. J., Bae S. H., Lee S. Y., Im S., Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition [J],materials Science and Engineering B, 2000, 71, 301-305.
    [62] Li D., Leung Y. H., Djurisic A. B., Liu Z. T., Xie M. H., Shi S. L. , Xu S. J., Chan W. K., Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods [J], Applied Physics Letters, 2004, 85, 1601-1603.
    [63] Bhasdar R., Lakshmanan A. R., Sundarrajan M., Ravishankar T., Jose M. T. , Lakshminarayan N., Mechanism of green luminescence in ZnO [J], Applied Physics, 2009, 47, 772-774.
    [1]张建中,杨传铮,晶体的X射线衍射基础[M],南京大学出版社,1992.
    [2]吴自勤,王兵,薄膜生长[M],北京:科学出版社,2001.
    [3]王富耻,材料现代分析测试方法[M],北京理工大学出版社,2007.
    [4]王琛,白春礼,表面科学中的电子隧道效应,华中师范大学出版社,1998.
    [5] www.spm.com.cn原子力显微镜/扫描隧道显微镜/探针
    [6]白春礼等,物理[J],1997,26, 402.
    [1] C. Klingshirn, ZnO: From basics towards applications [J], Phys. Stat. Sol. B, 2007, 244, 3027-3073.
    [2] X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, Ultraviolet photonic crystal laser [J], 2004, Appl. Phys. Lett., 85, 3657.
    [3] Y. Zhang, W. Zhang, and C. Peng, Strong ultraviolet luminescence of ZnO thin films with nanowall- network structures, Opt. Express [J], 2008, 16, 10696-10700.
    [4] H. Y. Lin, Y. Y. Chou, C. L. Cheng, and Y. F. Chen, Giant enhancement of band edge emission based on ZnO/TiO2 nanocomposites [J], Opt. Express, 2007, 15, 13832-13837.
    [5] C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates [J], Appl. Phys. Lett.,2005, 86, 183103.
    [6] N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO [J], Appl. Phys. Lett., 2002, 80, 2869.
    [7] T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van. Duyne, Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles [J], J. Phys. Chem. B, 2000,104, 10549-10556.
    [8] C. L. Haynes, and R. P. Van. Duyne, Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy [J], J. Phys. Chem. B, 2003, 107, 7426-7433.
    [9] W. H. Ni, J. An, C. W. Lai, and H. C. Ong, and J. B. Xu, Emission enhancement from metallodielectric-capped ZnO films [J], J. Appl. Phys., 2006, 100, 26103.
    [10] J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles [J], Nanotechnology, 2006, 17, 4391-4394.
    [11] J. B. You, X. W. Zhang, Y. M. Fan, S. Qu, and N. F. Chen, Surface plasmon enhanced ultraviolet emission from ZnO films deposited on Ag/Si(001) bymagnetron sputtering [J], Appl. Phys. Lett., 2007, 91, 231907.
    [12] A. P. Abiyasa, S. F. Yu, S. P. Lau, Eunice S. P. Leong, and H. Y. Yang, Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance [J], Appl. Phys. Lett., 2007, 90, 231106.
    [13] T. Chen, G. Z. Xing, Z. Zhang, H. Y. Chen, and T. Wu, Tailoring the photoluminescence of ZnO nanowires using Au nanoparticles [J], Nanotechnology, 2008, 19, 435711.
    [14] P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film [J], Appl. Phys. Lett.,2008, 92, 041119.
    [15] M.-K. Lee, T. G. Kim, W. Kim, and Y.-M. Sung, Surface Plasmon Resonance (SPR) Electron and Energy Transfer in Noble Metal Zinc Oxide Composite Nanocrystals [J], J. Phys. Chem. C,2008, 112, 10079-10082.
    [16] Mohapatra, R. Singhal, and D. K. Avasthi, D. C. Agarwal, S. B. Ogale, Au-ZnO: A tunable localized surface plasmonic nanocomposite [J], Appl. Phys. Lett.,2008, 92, 043107.
    [17] M.Liu, X.Q.Wei, Z.G.Zhang, G.Sun, C.S.Chen, C.S.Xue, H.Z.Zhuang, B.Y.Man, Effect of temperature on pulsed laser deposition of ZnO films [J], Applied Surface Science, 2006, 252, 4321–4326.
    [18] S.H.Bae, A.Y.Lee, B.J.Jin, S.Im, Pulsed laser deposition of ZnO thin films for applications of light [J], Appl. Surf. Sci., 2000, 154-155, 458-461.
    [19] D M Bagnall, Y F Chen, et al. Optically pumped lasing of ZnO at room temperature [J], Appl. Phys. Lett., 1997, 70(17), 2230-2232.
    [20] Z K Tang, G K L Wong, et al. Room temperature ultraviolate laser emission from self-assembled ZnO microcrystallite thin films [J], Appl. Phys. Lett., 1998, 72, 3270-3272.
    [21] P Yu, Z K Tang, G K L Wong, et al., Room temperature gain spectra and lasing inmicrocrystalline ZnO films [J], J. Cryst. Gowth., 1998, 184/185, 601-604.
    [22] J. C. Manifacier, J. Gasiot, J. P. Fillard, A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film [J], J. Phys., 1976, E9:1002-1004.
    [23] Look D C, Reynolds D C, et al., Point defect characterization of GaN and ZnO [J], Materials Science and Engineering B, 1999, 66, 30.
    [24] Vanheusden K, Seager C H, et al., Correlation between phtoluminescence and oxygen vacancies in ZnO phosphors [J], Appl. Phys. Lett., 1996, 68(3) ,403-405.
    [25] Xu X L, Xu J, Xu C M, et al., Cathoduminescence of ZnO films on silicons [J], Chin J. Lumin(发光学报), 2003, 24 (2), 171-176 (in Chinese).
    [26] Mei Z X, Zhang X Q, YiL X, et al., Preparation and phtoluminescence properties of ZnO thin films [J], Chin J. Lumin(发光学报), 2002, 23 (4), 389-392 (in Chinese).
    [27] Spanhel L, Anderson M. A, Semiconducter clusters in the so-gel process: Quantized aggregation, gilation, and crystal growth in cincentraed ZnO colloids [J], J. Am. Chem. Soc., 1991, 113, 2826-2833.
    [28] Bagnall D M, Chen Y F, et al., Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasmon-assited MBE [J], J.Cryst. growth, 1998, 184/185, 105.
    [29] Bixia Lin and Zhuxi Fu, Green luminescent center in undoped zinc oxide films deposited on silicon substrate [J] , Applied Physics Letters., 2001, 79, 943-945.
    [30] K.Vanheusden, C.H.Seager, W.L.Warren, D.R.Tallant, and J.A.Voigt, Correlation between phtoluminescence in ZnO phosphors [J], Appl. Phys. Lett., 1996, 68(3), 403-405.
    [31] K.Vanheusden, W. L.Warren, C.H.Seager, D.R.Tallent, J.A.Voit, and B. E.Gnade, Mechanisms behind green luminescenec in ZnO phosphor powders [J], J. Appl. Phys., 1996, 79, 7983-7990.
    [32] N.Y.Garces, L.Wang, L.Bai, N.C.Giles, L.E.Halliburton, and G.Cantwell, Role of copper in the green luminescence of ZnO Crystals [J], Appl. Phys. Lett., 2002, 81(4),622-624.
    [33] R.Dingle, Luminescent Transitions Associated With Divalent Copper Impurities and the Green Emission from Semiconducting Zinc Oxide [J], Phys.Rev.Lett., 1969, 23, 579-581.
    [34] D.C. Reynolds, D.C.Look, B. Jogai, and H.Morko?, Similarities in the bandedge and deep-centre photoluminescence mechanisms of ZnO and GaN [J], Solid State Commun., 1997, 101, 643-646.
    [35] S. A. Studenikin and M. Cocivera, Time-resolved luminescence and photoconductivity of polycrystalline ZnO films [J], J. Appl. Phys., 2002, 91, 5060.
    [36] D.C.Reynolds, D.C.Look, and B.Jogai, Fine structure on the green band [J], J. Appl. Phys., 2001, 89, 6189.
    [37] Yoshiyuki Harada and Satoshi Hashimoto, Enhancement of band-edge phtoluminescence of bulk ZnO single crystal scoated with alkali halide [J], Phys. Rev. B, 2003, 68, 045421 1-045421 2.
    [38] L.E.Greene, M.Law, J.Goldberger, F.Kim, J.C.Johnson,Y. Zhang, R.J.Saykally, and P. Yang, Angew.Chem., Int.Ed., 2003, 42, 3031.
    [39] X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films [J], Appl. Phys. Lett., 2001, 78, 2285.
    [40] N.Ohashi, T.Nakata, T.Sekiguchi, H.Hosono, M.Mizuguchi, T.Tsu-rumi, J. Tanaka, and H.Haneda, Yellow emission from zinc oxide giving an electron spin resonance signal at g=1.96 [J], Jpn. J. Appl. Phys., 1999, 38, L113-L115.
    [41] C. Chandrinou, N. Boukos, C. Stogios, and A. Travlos, PL study of oxygen defect formation in ZnO nanorods [J], Microelectron J., 2009, 40, 296-298.
    [42] Y. W. Heo, D. P. Nortona, and S. J. Pearton, Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy [J], J. Appl. Phys., 2005, 98, 073502.
    [43] T. Chen, G. Z. Xing, Z. Zhang, H.Y. Chen and T. Wu., Tailaring the photoluminescence of ZnO nanowires using Au nanoparticles [J], Nanotech., 2008,19 435711.
    [44] M. Moskovits, Surface-enhanced spectroscopy [J], Rev. Mod. Phys.,1985,57, 783.
    [45]阎守胜,固体物理学[M],北京,北京大学出版社,2003, 3.
    [46] B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F. R Aussenegg, Surface plasmon propagation in microscale metal stripes [J], Appl. Phys. B 2001,79, 51-53.
    [47] C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, Drastic Reduction of Plasmon Damping in Gold Nanorods [J], Phys. Rev. Lett., 2002, 88, 077402.
    [48] H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, Y. F. Chen, and K. T. Tsen, Enhancement of band gap emission stimulated by defect loss [J], Opt. Express, 2006, 14, 2372-2379.
    [1] S.K. Ghosh, T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications [J], Chem. Rev., 2007, 107, 4797-862.
    [2] C. Noguez, Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment [J], J. Phys. Chem. C, 2007, 111, 3806-3819.
    [3] T.A. El-Brolossy, T. Abdallah, M.B. Mohamed, S. Abdallah, K.Easawi, S. Negm, H. Talaat, Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique [J], Eur. Phys. J. Special Topics, 2008, 153, 361-364.
    [4] C.R. Simovski, Surface-enhanced Raman scattering from silica core particles covered with silver nanoparticles [J], Phys. Rev. B, 2009, 79, 214303.
    [5] A. Akbari, P. Berini, Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide [J], Appl. Phys. Lett., 2009, 95, 021104.
    [6] E. Ozbay, Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions [J] , Science, 2006, 311, 189-193.
    [7] R.F. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale [J], Nature, 2009, 461, 629-632.
    [8] Xuehong Li, Yang Zhang, and Xijun Ren, Effects of localized surface plasmons on the photoluminescence properties of Au-coated ZnO films [J], Optics Express, 2009, 17, 8735-8740.
    [9] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, Surface-plasmon-enhanced light emitters based on InGaN quantum wells [J],Nature Materials,2004, 3, 601- 605.
    [10] C.J. Yates, I.D. W. Samuel, P.L. Burn, S. Wedge, W. L. Barnes, Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes [J], Appl. Phys. Lett., 2006, 88, 161105.
    [11] Y.R. Ryu, J.A. Lubguban, T.S. Lee, H.W. White, T.S. Jeong, C.J. Youn, B.J. Kim,Excitonic ultraviolet lasing in ZnO-based light emitting devices [J], Appl. Phys. Lett., 2007, 90, 131115.
    [12] P. Wang, N.F. Chen, Z.G. Yin, R.X. Dai, Y.M. Bai, P-doped p-type ZnO films deposited on Si substrate by radio-frequency magnetron sputtering [J], Appl. Phys. Lett., 2006, 88, 152102.
    [13] Y. Zhang, B. Lin, Z. Fu, C. Liu, W. Han, Strong ultraviolet emission and rectifying behavior of nanocrystalline ZnO films [J], Opt. Mater. 2006, 28, 1192.
    [14] M. Al-Suleiman, A. Che Mofor, A. El-Shaer, A. Bakin, H.-H. Wehmann, A. Waag, Photoluminescence properties: Catalyst-free ZnO nanorods and layers versus bulk ZnO [J], Appl. Phys. Lett. 2006, 89, 231911.
    [15] H.Y. Lin, Y.Y. Chou, C.L. Cheng, Y.F. Chen, Giant enhancement of band edge emission based on ZnO/TiO2 nanocomposites [J], Opt. Express, 2007, 15, 13832.
    [16] Y. Zhang, W. Zhang, C. Peng, Strong ultraviolet luminescence of ZnO thin film with nano-network structures [J], Opt. Express, 2008, 16, 10696-10700.
    [17] A.P. Abiyasa, S.F. Yu, S.P. Lau, Eunice S.P. Leong, H.Y. Yang, Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance [J], Appl. Phys. Lett., 2007, 90, 231106.
    [18] P. Cheng, D. Li, Z. Yuan, P. Chen, D. Yang, Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film [J], Appl. Phys. Lett., 2008, 92, 041119.
    [19] C.W. Cheng, E.J. Sie, B. Liu, C. H. A. Huan, T.C. Sum, H.D. Sun, H.J. Fan, Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles [J], Appl. Phys. Lett., 2010, 96, 071107.
    [20] J. Li, H.C. Ong, Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films [J], Appl. Phys. Lett., 2008, 92, 121107.
    [21] J.B. You, X.W. Zhang, J.J. Dong, X.M. Song, Z.G. Yin, N.F. Chen, H. Yan, Localized-Surface-Plasmon Enhanced the 357 nm Forward Emission from ZnMgO Films Capped by Pt Nanoparticles [J], Nanoscale Res Lett, 2009, 4, 1121-1125.
    [22] K.W. Liu, Y.D. Tang, C.X. Cong, T.C. Sum, A.C.H. Huan, Z.X. Shen, Li Wang, F.Y.Jiang, X.W. Sun, H.D. Sun, Appl. Phys. Lett., 2009, 94, 151102.
    [23] T. Koida, S.F. Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki, T. Sota, Y. Segawa, H. Koinuma, Correlation between the photoluminescence lifetime and defect density in bulk and epitaxial ZnO [J], Appl. Phys. Lett., 2003, 82, 532.
    [24] C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, Drastic Reduction of Plasmon Damping in Gold Nanorods [J], Phys.Rev.Lett., 2002, 88, 077402.
    [25] S.L. Westcott, S.J. Oldenburg, T.R. Lee, N.J. Halas, Construction of simple gold nanoparticle aggregates with controlled plasmon–plasmon interactions [J], Chem. Phys. Lett., 1999, 300, 651.
    [26] K.C. Chu, C.Y. Chao, Y.F. Chen, Y.C. Wu, C.C. Chen, Electrically controlled surface plasmon resonance frequency of gold nanorods [J], Appl. Phys. Lett., 2006, 89, 103107 (2006).
    [27] S.A. Studenikin, N. Golego, M. Cocivera, Optical and electrical properties of undoped ZnO films grown by spray pyrolysis of zinc nitrate solution [J], J. Appl. Phys., 1998, 83, 2104.
    [28] Y. Ni, X. Wei, J. Hong,Y. Ye, Hydrothermal preparation and optical properties of ZnO nanorods [J], Sci. & Eng. B, 2005, 121, 42.
    [29] J. M. Calleja, M. Cardona, Resonant scattering in ZnO [J], Phys. Rev., 1977, 16, 3753.
    [30] T. C. Damen, S.P.S. Porto, B. Tell, Raman effect of zinc oxide [J], 1966, 142, 570.
    [31] Rui Zhang, Peng-Guang Yin, Ning Wang, and Lin Guo, Photoluminescence and Raman scattering of ZnO nanorods [J], Solid State Science, 2009, 11, 865-869.
    [32] V.A. Fonoberov, A.A. Baladin, Phy. Rev. B, 2004, 70, 233205.
    [33] C.A. Arguello, D.L. Rousseau, S. P. S. Porto, First-Order Raman Effect in Wurtzite-Type Crystals [J], Phys. Rev., 1969, 181, 1351.
    [34] M. Rajalakshmi, Akhilesh K, Arora, B.S. Bendre, Shailaga Mahamuni, Optical phonon confinement in zinc oxide nanoparticles [J], J. Appl. Phys., 2000, 87, 2445.
    [35] F.J. Manjon, B.Mari, J. Serrano, A.H. Romero, Silent Raman modes in zinc oxide and related nitrides [J], J. Appl. Phys., 2005, 97, 053516.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700