斜拉桥拉索参数振动的半主动控制及MR阻尼器优化布置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜拉索作为斜拉桥的主要受力构件,具有小质量、低阻尼、大柔度等特点,极易在风、风雨、桥面振动等外部激励下发生大幅振动,如涡激共振、尾流驰振、参数共振和风雨振等。拉索的大幅振动一方面会引起拉索的疲劳破坏,对拉索的使用寿命和桥梁安全运营构成很大威胁;另一方面,拉索大幅振动会引起人对桥梁安全性的怀疑。因此,准确分析拉索振动机理及特性,特别是对振幅可达数米的拉索参数振动,寻求其有效振动控制措施具有重要学术意义和工程应用价值。
     本文以在设计阶段的贵州红水河混合梁特大斜拉桥(213+508+185m)为工程背景,对基于MR阻尼器的斜拉桥拉索参数振动的半主动控制、MR阻尼器优化布置等问题进行了深入研究,主要研究内容和取得的研究成果如下:
     1.总结了已有MR阻尼器力学模型,依据RD-1097型MR阻尼器的实验数据,提出了一种新的MR阻尼器力学模型——非线性Bingham滞回模型,该模型能从物理意义上反映MR阻尼器阻尼与速度的滞回特性,并能很好地反映低速时MR阻尼器阻尼力与速度之间的关系。对提出的新模型在ANSYS中的数值分析进行了研究,采用大型通用有限元软件ANSYS中的COMBIN37单元实现了对非线性Bingham滞回模型的模拟;
     2.从理论计算和ANSYS数值模拟两方面分析了考虑垂度效应的斜拉索振动特性和端部轴向简谐激励下的拉索非线性参数振动特性。采用ANSYS对拉索在端部轴向简谐位移激励下振动进行了瞬态动力学分析,并与理论计算结果进行了分析对比,为斜拉索-MR阻尼器系统在端部轴向简谐位移激励下斜拉索主共振和参数共振振动控制的研究奠定了基础;
     3.采用ANSYS对斜拉索-MR阻尼器系统端部轴向周期激励下引起的拉索主共振和参数共振下的被动控制进行了研究,编制了斜拉索-MR阻尼器系统振动控制的APDL程序,分析了Passive-off(OV)和Passive-on(2.5V)、不同激励幅值、阻尼器安装位置、阻尼器间安装角度对斜拉索主共振和参数共振振动控制的影响;
     4.基于模糊逻辑理论,提出了斜拉索-MR阻尼器系统主共振与参数共振振动控制的一般模糊半主动控制策略,编制了斜拉索-MR阻尼器系统一般模糊半主动控制的APDL程序,并与被动控制进行了对比分析,所提出的模糊半主动控制策略控制效果优于被动控制效果,且采用模糊控制器控制MR阻尼器的输入电压,简单实用;
     5.基于一般模糊半主动控制策略,提出了改进的半主动控制策略。引入量化因子模糊控制器,根据拉索振动状态自适应调整量化因子,大大简化了模糊半主动控制中通过大量尝试以确定输入、输出变量的基本论域以及相应的量化因子的过程。与一般模糊半主动控制对比分析结果表明:改进的模糊半主动控制策略的效果稍优于一般模糊控制策略效果,且更简便和智能,提高了控制效率;
     6.对八种不同工况下斜拉索参数共振的振动控制进行MR阻尼器的优化布置研究,提出了斜拉索-MR阻尼器系统MR阻尼器优化布置方法。建立多目标函数,基于MATLAB平台和ANSYS软件编制了MR阻尼器优化布置程序,采用遗传算法进行优化求解。结果表明,提出的MR阻尼器优化布置的方法可行、有效。
     研究结果为红水河混合梁特大斜拉桥拉索抑振提供了依据。
As main supporting components of cable-stayed bridges, cables with small mass, low damping and large flexibility are easy to induce large amplitude vibration in wind, rain and excitation vibration of deck and other external excitations etc., such as vortex-excited resonance, wake galloping, parametric resonance and rain-wind induced vibration. On one hand, large amplitude vibration can cause fatigue failure of cables which threats service life of cables and safe operation of a bridge; on the other hand, large amplitude vibration induces the suspicion of the safety of a bridge. Therefore, the accurate analysis of cable vibration mechanism and characteristics, especially for cable parameter vibration with amplitude of several meters, has important academic significance and engineering application value to seek the effective vibration control measures.
     Taking the Guizhou Hongshuihe hybrid girder supermajor cable-stayed bridge with213+508+185meters spans in design stage as the engineering background, the issues of semi-active parameter vibration control of cables based on MR damper (MRD) and the optimized placement of MRD are investigated deeply. The main research contents and results are summarized as follows:
     1. The present MRD dynamic models were summarized. Based on the experimental data of the RD-1097MRD and analysis, a new dynamic model, nonlinear Bingham hysteresis model, which can not only reflect the hysteretic characteristics between the damper and velocity of MRD physically, but also can better reflect the new mechanical model in low speed, was proposed. The new model in the ANSYS numeric analysis was studied and the simulation of nonlinear Bingham hysteresis model was realized by using COMBIN37element in the finite element software ANSYS.
     2. The natural vibration characteristics of the stay cables including sag effect and the non-linear parameter vibration characteristics of the stay cables under the end axial periodic excitation were analyzed through theoretical calculation and numerical simulation by ANSYS. Transient dynamic analysis was carried out on the vibration of the stay cables under the end axial periodic excitation by ANSYS, and results of ANSYS analysis were compared with those theoretical results, which laid a foundation for study on the primary resonance and the parameter resonance control of the stay cables under the end axial periodic excitation.
     3. The study on the passive control of cable-MRD system under the primary and parameter resonance induced by the end axial periodic excitation was carried out by ANSYS software. The APDL programs of vibration control of cable-MRD system were compiled. Meanwhile, the effects on vibration control with primary and parametric resonance of stay cables at different conditions, including passive-off (OV) and Passive-on (2.5V), excitation amplitudes, the installation position and the installation angles, were investigated.
     4. Based on fuzzy logic theory, a fuzzy semi-active control strategy of vibration control of cable-MRD system under primary and parametric resonance was proposed. The APDL fuzzy semi-active control programs of cable-MR damper system were compiled. The effects of fuzzy semi-active control were compared with the effects of passive control. The control effect of the proposed fuzzy semi-active control strategy was better than that of passive control. The fuzzy control strategy presented in this paper which adopted the fuzzy controller to control input voltage of MRD was simple and practical.
     5. Based on the fuzzy semi-active control strategy, the improved fuzzy semi-active control strategy was proposed. By introducing the quantitative factor fuzzy controller, the quantitative factor can be adjusted adaptively according to the different cable vibration conditions. The process of the fuzzy semi-active control through a large number of attempts to determine the basic domain of input, output variables and quantification factor corresponding was greatly simplified. In comparison with the fuzzy semi-active control strategy, the effect of the improved strategy was slightly better than that of the fuzzy semi-active control strategy. In addition, the improved strategy was more convenient and intelligent and had a high control efficiency.
     6. Study on the optimized placement of MRD in vibration control of cable parametric resonance under eight different working conditions was carried out. The optimized placement method of MRD in cable-MRD system was proposed. To establish a multi-objective function, the optimized placement of MRD was programmed based on MATLAB and ANSYS, and the optimized calculation was complishied by the genetic algorithm. The result showed that the presented method of MRD optimized placement was feasible and effective.
     The research results will provide basis for the cable vibration suppression of the Guizhou Hongshuihe hybrid girder supermajor cable-stayed bridge.
引文
[1]任淑琰.斜拉桥拉索参数振动研究[D].上海:同济大学,2007.
    [2]肖志荣.大跨度斜拉桥拉索的非线性振动及智能半主动控制研究[D].杭州:浙江大学,2008.
    [3]陈水生.大跨度斜拉桥拉索的振动及被动_半主动控制[D].杭州:浙江大学,2002.
    [4]王福俊.斜拉桥拉索参数振动及斜拉桥动力分析[D].成都:西南交通大学,2007.
    [5]王涛.斜拉桥拉索参数振动的理论与数值分析[D].成都:西南交通大学,2009.
    [6]彭刚,张栋国.土木工程结构振动控制[M].武汉:武汉理工出版社,2002.
    [7]周福霖.工程结构减震控制[M].北京:地震出版社,1997.
    [8]欧进萍.结构振动控制——主动、半主动和智能控制[M].北京:科技出版社,2003
    [9]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [10]李金海,关新春,刘敏,等.斜拉索磁流变液阻尼器半主动振动控制系统的设计与应用[M].功能材料,2006,(05):827-830.
    [11]刘中良.磁流变阻尼器动力学模型的建立[D].长沙:中南大学,2012.
    [12]王修勇.斜拉桥拉索振动控制新技术研究[D].长沙:中南大学,2002.
    [13]Rabi now J. The Magnetic Fluid Chutch[J].AIEE Transaction,1948,67:1308-1315.
    [14]Jolly MR, Bender JW, Carlson JD. Properties and Applications of Commercial Magneto-Rheological Fluids[J].SPIE 5thAnnual International Symposium on Smart Structures and Materials. San Diego,1998.
    [15]http://www.lord.com/.
    [16]Yang G Q. Large-Scale Magneto rheological Fluid Damper for Vibration Mitigation: Modeling [J]. Testing and Control. Indiana:Doctoral Thesis of University of Notre Dame,2001:150-169.
    [17]李宏男,杨浩,李秀领,等.磁流变阻尼器参数化动力学模型研究进展[J].大连理工大学学报,2004,(04):616-624.
    [18]关新春,欧进萍.磁流变耗能器的阻尼力模型及其参数确定[J].振动与冲击,2001,20(1):5-8.
    [19]I Kovacs.Zur Frage der Seilschwingungen undder Seildampfung[J].Die Bautechnik, 1981, (10):325-332.
    [20]G Tagata. Harmonically Forced, Finite Amplitude Vibration of A String[J]. Sound And Vibration,1977,51(4):483-492.
    [21]K Takahashi. An Approach to Investigate The Instability of The Multiple-Degree-of-Freedom Parametric Dynamic System[J]. Sound And Vibration, 1981,78(4):519-529.
    [22]J L Lilien, A Pinto Da Costa. Vibration Amplitudes Caused By Parametric Excitation of Cable Stayed Structures [J]. Sound And Vibration,1994,174(2):69-90.
    [23]A Pinto Da Costa, J A C Martins, et al. Oscillations of Bridge Stay Cables Induced by Periodic Motions of Deck and or Towers[J]. Engineering Mechanics,1996,122(7): 613-622.
    [24]Michel Virlogeux. Cable Vibration in Cable-stayed Bridges [J].Bridge Dynamic,1998.
    [25]B N Sun, Z G Wang, J M Kao, et al. Cable Oscillation Induced by Parametric Excitation of Cable-Stayed Bridge[J].Advances In Structural Dynamics,2000.
    [26]B N Sun, Z G Wang, J M Kao, et al. Cable Parametric Oscillation and Its Control for Cable-Stayed Bridge[J]. PIE,2001,3:336-376.
    [27]汪至刚.大跨度斜拉桥拉索的振动与控制[D].杭州:浙江大学,2000.
    [28]亢战,钟万勰.斜拉桥参数共振问题的数值研究[J].土木工程学报,1998,31(04):14-22.
    [29]彭超.大跨度斜拉桥拉索参数振动与半主动控制研究[D].湘潭:湖南科技大学,2011.
    [30]赵跃宇,吕建根.索-拱组合结构中斜拉索的非线性振动[J].土木工程学报,2006,39(12):67-72.
    [31]魏建东,杨佑发,车惠民.斜拉桥拉索的参数振动有限元分析[J].工程力学,2000,17(6):131-134.
    [32]BenitoM Pacheco, Yozo Fujino, Ajai sulekh. Estimation Curve for Modal Damping in Stay Cables with Viscous Damper [J]. Structural Engineering,1993,119(6): 1961-1979.
    [33]H Fujitani, H Sodeyama, K Hata, et al. Dynamic Performance Evaluation of Magneto-Rheological Damper[J]. Advances in structure dynamics,2000,(1): 319-326.
    [34]E A Johnson, R E Christenson, B F Spencer, Jr. Semi-Active Damping of Cables with Sag[J]. Advances in Structure Dynamics,2000, (1):327-334.
    [35]W J Lou, Y Q Ni and J M Ko. Dynamic Properties of A Stay Cable Incorporated with Magneto Rheological Fluid Dampers[J]. Advances in Structure Dynamics,2000, (2): 1341-1348.
    [36]H Li, B Wu, L Katafyoist, et al. A control Algorithm Based on Maximum Energy Dissipation Criterion for Semi-Active Fluid Dampers[J]. Advances in Structure Dynamics,2000, (1):1333-1339.
    [37]J M Ko, Y Chen, G Zheng, et al. Experimental Study on Vibration Mitigation of A Stay Cable NNonlinear Hysteretic Dampers[J]. Advances in Structure Dynamics, 2000, (2):1325-1332.
    [38]Laura M Jansen, Shirley J Dyke. Semi-Active Control Strategies for MR Dampers: Comparative Study[J]. Engrg. Mech. ASCE,2000,126(8):795-803.
    [39]邬喆华,陈勇.磁流变阻尼器对斜拉索的振动控制[M].北京:科学出版社,2007.
    [40]Akbay Z, Aktan H M. Intelligent Energy Dissipation Devices [C]. Proc.4th U.S. Nat. Conf, on Earthquake Engrg,1990,3(4):427-435.
    [41]Akbay Z, Aktan H M. Actively Regulated Friction Slip Devices [C]. Proc.6th Can. Conf. on Earthquake Engrg,1991,367-374.
    [42]Dowdell D. J., Cherry S., Semi-active Friction Dampers for Seismic Response Control of Structures[C]. Proc,5th U.S. Nat. Conf. on Earthquake Engrg,1994,819-828.
    [43]Shinozuka M, Constantinou M C, Ghanem R. Passive and Active Fluid Dampers in Structural Applications[J]. U.S/China/Japan Workshop on Struct Control,1992, 507-516.
    [44]Johnson E A, Billie F Spencer, JR Yozo Fujino. Semi-active Damping of Stay Cables: A Preliminary Study[C]. Proceedings of The 17th International Modal Analysis Conference (IMAC XVII).Connecticut:Society for Experimental Mechanics,1999, 417-423.
    [45]Chen Y, Ko J M, Ni Y Q. Experimental Investigation of Cable Vibration Control using Electro-rheological (ER) Damper[J]. Proceedings of The International Symposium on Smart Structures and Microsystems, Hong Kong,2000.
    [46]武利冲.斜拉索MR半主动控制方法研究[D].长沙:中南大学,2010.
    [47]陈水生,任东红.斜拉桥拉索MR模糊半主动控制研究[J].华东交通大学学报,2005,05:7-10.
    [48]李宏男,常治国,王苏岩.基于智能算法的MR阻尼器半主动控制[J].振动工程学报,2004,03:96-101.
    [49]王成博,史志利,李忠献.大跨度斜拉桥地震反应MR阻尼器半主动控制[J].天津大学学报,2005,02:95-101.
    [50]王传波,刘肠.现代控制理论与经典控制理论的对比研究[J].机械管理开发,2006,03:6-8.
    [51]王庆林.经典控制理论的发展过程[J].自动化博览,1996,05:22-25.
    [52]Johnson E A, Baker G A, Spencer B F, et al. Mitigating Stay Cable Oscillation using Semi Active Damping[C]. In Smart Structures and Materials 2000:Smart System for Bridges, Structure and Highways. San Francisco:SPIE,2000,207-216.
    [53]Lou W J, Ni Y Q, Ko J M. Modal Damping and Stepping-Switch Control of Stay Cables With Magneto Rheological Fluid Dampers[C]. Liu S C, Ed. Smart Structures and Materials 2001:Smart Systems For Bridges, Structures, and Highways. Bellingham (WA):The International Society for Optical Engineering,2001,354-365.
    [54]Y Q Ni, Y. Chen, J M Ko. Neuro-control of cable vibration using semi-active magneto rheological dampers[J]. Engineering Structures,2002,24:295-307
    [55]Ni Y Q, Lou W J, Ko J M. A Hybrid Pseudo-force/laplace Transformation Method For Non-linear Transient Response of A Suspended Cable[J]. Sound and Vibration, 2000,238:189-214.
    [56]邬喆华,楼文娟,陈勇,等.MR阻尼器对斜拉索被动控制的研究[J].土木工程学报,2005,04:78-83.
    [57]邬喆华,楼文娟,陈勇,等.MR阻尼器对斜拉索减振控制的数值仿真[J].中国公路学报,2006,01:62-66.
    [58]周云,谭平.磁流变阻尼器控制理论与技术[M].北京:科学技术出版社,2007.
    [59]Ko J M, Zheng G, Ni Y Q. Periodically Forced Vibration of Nonlinear Stay Cables[C].Proceedings of the International Conference on Advanced Problems in Vibration Theory and Applications, Xi'an 2000.Beijing:Science press,1999, 437-443.
    [60]李学桥,马莉.神经网络·工程应用[M].重庆:重庆大学出版社,1996.
    [61]李士勇.模糊控制·神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [62]张乃尧,阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1998.
    [63]周其节,徐建闽.神经网络控制系统的研究与展望[J].控制理论与应用,9(6):569-577.
    [64]韦巍.智能控制技术[M].北京:机械工业出版社,2003.
    [65]陈水生.斜拉索振动的模糊半主动控制研究[J].计算力学学报,2006,06:733-736+742.
    [66]王修勇,陈政清,高赞明,等.磁流变阻尼器对斜拉索振动控制研究[J].工程力学,2002,(06):22-28.
    [67]杨智民,王旭,庄显义.遗传算法在自动控制领域中的应用综述[J].信息与控制,2000,29(8):329-337.
    [68]胡家亮,周丽,严刚.基于磁流变阻尼器的结构模糊半主动控制实验研究[J].工程力学,2009,28(3):131-135.
    [69]Agrawal A K, Yang J N. Optimal Placement of Passive Dampers on Seismic and Wind-excited Buildings using Combinatorial Optimization[J]. Intelligent Material Systems and Structures,1999,12(10):997-1014.
    [70]Ashour S A, Hanson R D. Elastic Seismic Response of Buildings with Supplemental Damping[C].Report No. UMCE 87-1 Department of Civil Engineering. The University of Michigan,1993,77-92.
    [71]Zhang R H, Soong T T. Seismic Design of Viscoelastic Dampers for Structural Application[J], structural Engineering, ASCE,1992,118(5):1375-1392.
    [72]滕军.结构振动控制系统优化理论与方法[D].哈尔滨:哈尔滨建筑大学,1992.
    [73]徐龙河,周云,李忠献.半主动控制装置在受控结构中的优化设置[J].地震工程与工程振动,2000,20(3):143-148.
    [74]Kirkpatrick S, Gelatt C D Jr., Vecchi M P. Optimization by Simulated Annealing[J]. Science,1983,220(4598):671-680.
    [75]Antoine G A, Niklaus E Z B. Predictive Habitat Distribution Models in Ecology[J]. Ecological Modelling,2000,135(2-3):147-186.
    [76]Kennedy J, Eberhart R C. Particle Swarm Optimization [C]. in Proceedings of IEEE International Conference on Neural Networks, IEEE Service Center, Piscataway, NJ,1995:1942-1948.
    [77]Booker L B, Goldberg D E, Holland J H. Classifier Systems and Genetic Algorithms[J]. Artificial Intelligence,1989,40(1-3):235-282.
    [78]于繁华,刘仁云.计算智能技术及其工程应用[M].北京:科学出版社,2010.
    [79]罗均,谢少荣,蒋蓁,等.编著智能控制工程及其应用实例[M].北京:化学工业出版社,2005.
    [80]孙增圻,邓志东,张再兴.智能控制理论与技术[M].北京:清华大学出版社,2011.
    [81]刘宇,毕丹,李兆霞.大跨斜拉桥基于遗传算法的传感器优化布置方法[J].东南大学学报:自然科学版,2009,39(4):825-829.
    [82]刘军.配电网智能优化规划平台的算法研究与应用[D].北京:华北电力大学,2008.
    [83]乌云高娃.演化计算和遗传算法的研究现状[J].福建电脑,2004,(8):9-10.
    [84]Mahendra P S, Luis M M. Optimal Placement of Dampers for Passive Response Control[J]. Earthquake Engineering and Structural Dynamics,2002,31:955-976.
    [85]Guo H Y, Zhang L. Optimal Placement of MR Dampers for Structural Control Using Identification Crossover Genetic Algorithm[J]. Frequency Noise, Vibration and Control.2004,23(3):167-178.
    [86]Bishop J A, Striz A G On Using Genetic Algorithms for Optimum Damper Placement in Space Trusses[J]. Structural and Multidisciplinary Optimization,2004,28(213): 136-145.
    [87]贝伟明,李宏男.半主动控制装置在受控结构中的优化布置[J].防灾减灾工程学报,2006,01:28-31.
    [88]Kwok N M, Ha Q P, Samali B. MR Damper Optimal Placement for Semi-Active Control of Buildings Using an Efficient Multi-Objective Binary Genetic Algorithm[C].24th International Symposium on Automation & Robotics in Construction (ISARC),2007:361-367.
    [89]Hamid M, Olof F. Optimal Placement of Dampers in Structures Using Genetic Algorithm[J].Engineering Computations,2006,23(6):597-606.
    [90]郑渊智.磁流变阻尼器在建筑结构中的优化布置[J].四川建筑,2008,28(6):153-154.
    [91]徐晓龙,孙炳楠.基于智能算法的磁流变阻尼器位置优化[J].江南大学学报:自然科学版,2008,7(2):221-226.
    [92]Ok S Y, Song J, Park K S. Optimal Design of Hysteretic Dampers Connecting Adjacent Structures Using Multi-objective Genetic Algorithm and Stochastic Linearization Method[J]. Engineering Structures.2008,30:1240-1249
    [93]帅虹,周岱,黄真.大跨空间结构振动抑制的阻尼器优化布置[J].中国科技论文在线,2008,3(7):485491.
    [94]帅虹,黄真,周岱.组合算法用于空间结构振动抑制的阻尼器优化布置[J].振动与冲击,2008,27(3):17-21.
    [95]郭勇,孙炳楠,叶尹,等.混合遗传算法在输电塔阻尼器优化布置中的应用[J].哈尔滨工业大学学报,2009,41(10):259-264.
    [96]Yousefzadeh A, Sebt M H, Tehranizadeh M. The Optimal TADAS Damper Placement in Moment Resisting Steel Structures Based on a Cost-benefit Analysis [J]. International Journal of Civil Engineering,2011,9(1):23-32.
    [97]Zhang J L, Hong Z, Lin Q et al. A Mixed Control System of 3D High Rise Benchmark Building Model Based on Genetic Algorithm[J]. Advanced Materials Research. 2010(163-167):2862-2867.
    [98]阎石,宁欣,王宁伟.磁流变阻尼器在受控结构中的优化布置[J].地震工程与工程振动,2004,24(3):175-178.
    [99]李宏男,曲激婷.基于遗传算法的位移型与速度型阻尼器位置优化比较研究[J].计算力学学报,2010,02:252-257.
    [100]刘朝晖.山区高速公路连续梁桥智能磁流变阻尼器减震控制研究[D].长沙:中南大学,2008.
    [101]蔡晓虹.设置磁流变阻尼器的房屋建筑结构的抗震分析与优化[D].长沙:湖南大学,2005.
    [102]邸龙.磁流变阻尼器对建筑结构的减震研究[D].西安:西安建筑科技大学,2003
    [103]杨飚,欧进萍.导管架式海洋平台模型结构磁流变阻尼隔震数值分析[J].应用基础与工程科学学报,2007,02:183-189.
    [104]嵇春艳,万乐坤,尹群.海洋平台磁流变阻尼器控制技术研究[J].海洋工程,2008,03:27-32.
    [105]管友海,黄维平.MR阻尼器在海洋平台半主动振动控制中的应用[J].中国海洋平台,2002,03:25-28.
    [106]任艳飞.基于磁流变阻尼器的半主动悬挂系统仿真研究[D].上海:复旦大学,2008.
    [107]熊超,郑坚,吕建刚,等.磁流变阻尼器力学特性及其在车辆悬挂系统中的应用[J].液压与气动,2006,01:47-50.
    [108]李利军.斜拉索风雨振分析及磁流变阻尼器减振应用研究[D].长安:长安大学,2005.
    [109]何旭辉,陈政清,黄万林,等.MR阻尼器在抑制斜拉桥拉索风雨振中的应用研究[J].湖南大学学报(自然科学版),2002,03:91-95.
    [110]朱连宇.磁流变阻尼器在大型结构振动控制中的应用[D].广州:暨南大学,2009
    [111]李占卫,李治军.磁流变阻尼器动力学模型的研究现状[J].电气技术与自动化,2012,41(1):142-145.
    [112]梁允魁,胡元,王寒阳,等.磁流变阻尼器原理及及力学特性研究[J].煤矿机械,2012,33(02):45-47.
    [113]王琪民,徐国梁,金建峰.磁流变液的流变性能及其工程应用[J].中国机械工程,2002,03:93-96+6.
    [114]汪建晓,孟光.磁流变液研究进展[J].航空学报,2002,01:6-12.
    [115]姚金光,晏华.高性能磁流变液研究的进展[J].材料开发与应用,2009,02:62-67.
    [116]浦鸿汀,蒋峰景.磁流变液材料的研究进展和应用前景[J].化工进展,2005,02:132-136.
    [117]王鸿云,郑惠强,李泳鲜.磁流变液的研究与应用[J].机械设计,2008,05:1-4+8.
    [118]张进秋,张建,孔亚男,等.磁流变液及其应用研究综述[J].装甲兵工程学院学报,2010,02:1-6.
    [119]Stanway R, Sprotston, J L, Stevens N G Non-linear Modeling of An Electrorheological Vibration Damper[J]. Electrostatics,1987,20:167-184.
    [120]Gamoto D R, Filisko F E. Dynamic Mechanical Studies of Electrorheological Materials[J]. moderate frequencies. J.Rheology,1991,35(3):399-425.
    [121]周强,瞿伟廉.磁流变阻尼器的两种力学模型和实验研究[J].地震工程与工程振动,2002,22(4):144-150.
    [122]汪建晓,孟光.磁流变液阻尼器用于振动控制的理论及实验研究[J].振动与冲击,2001,20(2):41-47.
    [123]Wereley N M, Pang L. Nondimensional Analysis of Semi-active Electrorheological and Magnetorheological Dampers using Approximate Parallel Plate Models[J]. Smart Materials and Structures,1998,7:733-743.
    [124]Shuqi G, Shaopu Y, Cunzhi P. Dyamic Modeling of Magnetorheological Damper Behaviors[J]. Inteligent material systems and structures,2006,17(1):3-14.
    [125]Wen Y K. Method of Random Vibration of Hysteretic Systems[J]. Engineering Mechanics Division, ASCE,102(EM2),1976,102(2):249-263.
    [126]关新春.磁流变液及其智能结构减振驱动器的理论与实验研究[D].哈尔滨:哈尔滨工业大学,2000.
    [127]徐赵东,李爱群,程文滚,等.磁流变阻尼器带质量元素的温度唯象模型[J].工程力学,2005,22(2):144-148.
    [128]Spencer Jr,B F, Dyke S J, Sain M K,et al. Phenomenological Model of A Magenetorheological Damper[J]. Engrg. Mech. ASCE,1997,1-23.
    [129]Yang G, et al. Large-scale Magnetorheological Fluid Damper For Vibration Mitigation:Modeling Testing and Control[D]. PH.D Dissertation University of Notre Dame, Indiana, USA,2001.
    [130]杨孟刚.飘浮体系桥梁基于MR阻尼器的纵向减震试验研究[D].长沙:湖南大学,2009.
    [131]王新敏,李义强,许宏伟.ANSYS结构分析单元与应用[M].北京:人民交通出版社,2011.
    [132]李凤臣.大跨度桥梁斜拉索的参数振动及索力识别研究[D].哈尔滨:哈尔滨工业大学,2009.
    [133]曾光奇,胡均安等.模糊控制理论与工程应用[M].武汉:华中科技大学出版社,2006.
    [134]胡宝清.模糊理论基础[M].武汉:武汉大学出版社,2010.
    [135]李晓丹.模糊PID控制器的设计研究[D].天津:天津大学,2005.
    [136]王季方,卢正鼎.模糊控制中隶属度函数的确定方法[J].河南科学,2000,04:348-351.
    [137]孙增圻,邓志东,张再兴.智能控制理论与技术[M].北京:清华大学出版社,2011.
    [138]左婷.模糊PID控制中模糊控制规则的获取方法[D].长春:东北师范大学,2010.
    [139]王刚,欧进萍.结构振动的模糊建模与模糊控制规则提取[J].地震工程与工程振动,2001,02:130-135.
    [140]张景元.模糊控制规则优化方法研究[J].计算机工程与设计,2005,11:59-61+90.
    [141]沈理.模糊逻辑控制推理中的反模糊化[C].中国智能自动化学术会议暨智能自动化专业委员会成立大会论文集(上册),1995:6.
    [142]Holland J H. Adaptation in Nature and Artificial Systems[M]. The University of Michigan Press,1975, MIT Press,1992.
    [143]陈国良,王煦法,庄镇泉,等.遗传算法及其应用[M].北京:人民邮电出版社,1996.
    [144]王小平,曹立明.遗传算法:理论、应用与软件实现[M].西安:西安交通大学出版社,2002.
    [145]米凯利维茨.演化程序:遗传算法和数据编码的结合[M].北京:科学出版社,1999.
    [146]Goldberg D. Genetic Algorithms in Search, Optimization and Machine Learning[M]. Addison-Wesley, Reading, MA,1989.
    [147]雷英杰,张善文,李续武,等.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [148]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700