离体乳腺组织电阻抗频谱特性分析及乳腺电阻抗扫描成像的临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌已经成为严重威胁女性生命健康最常见的恶性肿瘤。乳腺癌是否能够早期发现并制定相应合理的治疗策略是影响乳腺癌预后的重要因素,但是,目前临床使用的乳腺癌早期诊断方法仍有这样或那样的不足。乳腺钼靶X线检查是目前临床最广泛应用的乳腺癌早期检查手段,但设备昂贵,检查费用较高,检查时需要挤压乳房,给患者带来痛苦,同时放射线对人体有损害,年轻妇女乳腺组织比较致密而不易检出病灶,故一般认为40岁以下的妇女不适宜行乳腺X线钼靶检查,因而这种检查方法并不广泛适用于临床普查。超声检查对比较小的病灶敏感度不高,同时在很大程度上依赖于操作者水平,所以也不适宜单独用作乳腺普查的手段。CT、磁共振检查因设备昂贵,检查时间长,检查费用高而不适于大规模的人群普查。乳腺红外线扫描的敏感性较低,且假阳性率偏高,图像质量容易受多种因素的影响,因此这种检查手段也不宜用于妇女乳腺的普查。综上所述,目前还没有一种检测方法可以称得上是理想的普查手段。
     乳腺电阻抗扫描成像(EIS)技术是近年来发展起来的新技术,以其无损害、无创伤、成本低等优势,为乳腺癌的早期检查与辅助诊断开辟了一个新的方向。国外研究表明,乳腺癌与正常组织和良性病变组织在电阻抗特性上存在显著差异,而良性病变与正常组织电阻抗特性非常接近,因此利用乳腺组织的电阻抗特性可以诊断乳腺癌。临床应用研究也证明乳腺EIS成像检测对乳腺癌有较高的敏感性、特异性。乳腺EIS检测具有易于使用,对人体无明显伤害的特点,具有良好的患者接受度。
     但目前的乳腺电阻抗检测的研究也存在以下一些问题:(1)判断标准:基础研究表明乳腺癌组织的电阻率比其周围正常组织的电阻率低3~6倍,因而乳腺癌在电阻抗成像中应该呈现高电导区域,而我们使用课题组自行研制的乳腺电阻抗扫描成像(EIS)设备进行临床研究时发现,大部分乳腺癌的EIS影像呈现高电导区域,也有一部分呈现低电导区域。国外文献中的诊断标准大多数以高电导区域作为诊断标准,也有少量文献提到类似情况,但未对此给予说明和继续更深入的研究。(2)EIS临床测量的数据量还远远不够,不同乳腺疾病的EIS检测特点还没有足够多的数据来描述和支持。(3)不同人种间的乳腺差别很大,各种乳腺疾病发生率和发病年龄有较大差别,其电特性也应不同。目前的临床研究仅限于在欧美国家进行,其主要研究对象为白种人。(4)以目前的临床检测诊断水平,EIS还远远不能取代已经作为标准早期检测手段的乳腺钼靶X线检查。那么是否能为EIS乳腺检测找到更好的适用人群和用途。
     为了解决以上问题,我们一方面建立了中国妇女乳腺组织电阻抗频谱测量平台,相对系统地研究了我国妇女乳腺组织电阻抗频谱特性;另一方面我们开展了大量我国女性乳腺电阻抗成像的临床病例检测,同时进行EIS与超声、钼靶等传统检查的对照试验,研究和掌握我国女性乳腺EIS成像的特点。本文的具体工作及结果如下:
     1.离体乳腺组织阻抗频谱测量系统的设计
     为了更好的进行离体乳腺组织的阻抗频谱测量,获得稳定一致的结果,我们设计了以阻抗分析仪Solartron SI-1255B为核心的乳腺组织阻抗频谱测量系统。该系统包含可以提供多频率驱动电流和测量电路的阻抗分析仪,自行设计的带有屏蔽网、可以测量固定尺寸组织的阻抗测量盒,4根直径0.5mm的针状银电极。整个测量系统适合用于较宽频率范围的生物阻抗频谱测量并具有较高的测量精度。同时,为了保证实验条件的一致性,我们在测量时对环境的温度、湿度等条件也进行了控制。
     2.常见乳腺病变组织电特性离体测量研究
     采用我们自行设计的离体组织阻抗测量系统,对临床上常见的人体乳腺病变组织,(包括浸润性导管癌、浸润性小叶癌、乳腺腺病、乳腺纤维腺瘤、导管内乳头状瘤和乳腺囊性增生)进行离体电阻抗频谱测量。
     结果表明:不同个体同类型病理组织其电阻抗特性非常接近;而不同病理状态的各种乳腺组织的电阻抗频谱特性的值不尽相同:乳腺癌与乳腺良性病变组织的电阻抗特性存在显著差异,而两种乳腺癌之间,4种良性病变之间电阻抗特性没有显著差异。
     3.乳腺癌及其周围组织电阻抗频谱测量及其与在体EIS成像上的对照研究
     本试验采用我们自行设计的离体组织阻抗测量系统对手术切除的乳腺癌及其周围组织电阻抗频谱特性进行离体测量和分析,寻找乳腺癌与周围组织在电阻抗特性上存在的差异。同时,将这种差异与在体EIS成像进行对照研究,分析二者的关系。
     结果显示:乳腺癌及其周围组织的电阻抗特性也存在显著性差异,乳腺癌电阻率高于正常腺体和皮肤组织而远低于脂肪组织;同时通过与在体的EIS成像结果进行对照,我们发现乳腺癌在EIS大体成像的特点与乳腺癌灶周围组织的性质密切相关,当周围组织以脂肪组织为主时,乳腺癌在EIS成像上多表现为高亮区,当周围组织以腺体组织为主时,其成像多表现为暗区。这个结果一方面再次验证了EIS进行乳腺癌诊断的可行性,另一方面更为重要的是,首次发现乳腺癌周围组织的不同对电阻抗频谱特性的影响,将其与EIS在体成像结果结合,科学合理地解释了我国女性乳腺癌电阻抗扫描成像(EIS)呈现高电导区和低电导区并存的现象,也解决了国外相关资料在这方面的矛盾和模糊问题。在国际上未见报道。
     4.我国女性正常乳腺电阻抗检测病例的收集和分析
     使用具有我国自主知识产权的电阻抗乳腺诊断仪Angelplan-EIS1000对191例志愿者进行了正常乳腺的检测,收集了每一例志愿者两侧乳腺各9个部位电阻抗的实部、虚部、幅值和相位参数,对其分析,对比。
     结果显示:不同个体电阻抗四种参数的离散程度很大,某一个体电阻抗参数的异常改变相对于其他个体的正常波动很难区分;同一个体左右两侧乳腺电阻抗参数较为一致,而且左右两侧的差异要远小于不同个体的差异;被测者的年龄、身高、体质量对电阻抗参数无明显影响。因此,我们得到结论:乳腺电阻抗检测无法通过统一的绝对标准作为乳腺癌诊断依据;但因同一个体电阻抗参数分布均匀,左右一致,所以可以采用相对标准作为乳腺癌诊断依据。
     5.乳腺EIS检测临床病例的收集
     为了深入研究EIS在乳腺癌检测方面的临床应用价值,掌握我国女性乳腺癌EIS检测的规律和特点,需要大量临床病例的收集和总结分析。从2005年12月~2007年12月,我们对3124例乳腺门诊病人,在患者自愿的前提下行乳腺EIS检测,同时收集了其病理检查结果,病史,查体等临床资料,对所有资料进行分类、归纳和分析。
     结果显示:(1)使用我们自主研发的Angelplan-EIS1000电阻抗乳腺诊断仪进行乳腺癌的诊断有较高的敏感性和特异性,在检测能力上与国外商品化的产品TransScan TS 2000相当。
     (2)乳腺EIS检测有着其他乳腺检查无法替代的诊断特性。
     (3)乳腺EIS检测不受乳腺大小和年龄的影响。
     (4)对于不同大小的包块,EIS对乳腺癌的检测能力有较大的差别,对包块小于2cm的乳腺病灶,EIS乳腺检测有更好的表现。
     (5)月经期后阶段进行乳腺EIS检查有着更高的敏感度和特异度
     6.乳腺EIS检测与超声及钼靶X线检查对T1期乳腺癌诊断能力的对照试验
     为了进一步研究EIS乳腺检测在乳腺癌诊断方面的能力与优缺点,我们分别设计了其与乳腺超声和钼靶X线检查的对照试验,两项研究均为为双盲前瞻性研究。两项对照试验分别有163例和207例患者入组。
     结果显示:乳腺EIS检测与乳腺超声检查在T1期肿瘤的诊断能力上无明显差别,但是,两种检测方式有良好的互补性,两者联合可以明显提高检测敏感度和阴性预测值。乳腺EIS检测在T1期乳腺癌的诊断方面比钼靶X线检查还有一定的差距,但在分年龄段进行的亚组研究中,我们发现对年龄较大的患者(≥40岁)钼靶X线对EIS检测的优势较为明显,而在年龄较小患者(<40岁),两者间的敏感度没有明显差别。
     7.乳腺EIS与超声联合检测评价年轻女性罹患乳腺癌危险度的前瞻性研究
     我们从2006年10月至2007年12月对583例年龄在25岁到45岁之间的年轻女性进行了临床观察,所有患者均由其他检查方法(体检,乳腺拍片或磁共振)判定为需要进行乳腺活组织检查。在活检之前分别进行乳腺EIS检测及超声检查。本研究为双盲前瞻性临床观察研究。
     研究结果提示:乳腺EIS与超声联合检测用来评价年轻女性罹患乳腺癌危险度有良好的互补性,可以很好的预测年轻女性罹患乳腺癌的风险,有可能成为广泛应用的年轻女性乳腺癌的早期筛查方法。
Breast cancer is the most common malignant tumor that threatens the health and even lives of women.It is an important factor of prognosis of breast cancer that whether early breast cancer is detected and reasonable therapy strategy is set down.But the currently available clinical examination instruments don't fit the general breast survey of the woman because of their limitations in clinical application.As the commonly used early detection method,mammography has high cost and brings pain and damage of X-ray to patients,and is not suitable to early detection of all patients.Sonography is also not suitable because of its low sensitivity to small lesions and dependent on the experience of operator.CT,MRI and CDI are also not suitable owing to many shortcomings.
     Thanks to its freedom from radiation,invasion and high cost,breast Electrical Impedance Imaging(EIS) has opened up a brand-new horizon in the early detection and assistant diagnosis of the breast cancer.Previous researches had proved that there is significant difference in impedance characteristics between the breast cancer and the normal tissues.The feasibility of the application of EIS to breast cancer diagnosis is also confirmed by clinical observation tests.
     There yet have been many problems in the study of EIS.(1) criteria:The basic studies pointed out that resistivity of the breast cancer is 3~6 times lower than that of either the normal tissue or the benign lesion.So,the breast cancer appears as bright spots with high conductivity on EIS.But we found that some breast cancer appeared as ether bright or dark spots on the EIS equipment developed by ourselves,which phenomenon had been seldom reported abroad and needed further observation.(2) The ability of EIS test to early diagnosis of breast cancer needed more adequate clinical data to support.(3) Based on the differences in components and incidence of breast disease of different races,the characteristic of EIS must be different which has not ever been reported abroad. (4) With present level of diagnosis,EIS test can not replace mammography which has been used as a standard means of early detection of breast cancer.To find a better application area is very important.
     In order to explore the impedance characteristics of Chinese women and resolve those problems,we build a system for impedance spectroscopy measurement in vitro,with which a relative systemic study is indispensable on the impedance characteristics of the breast tissue of Chinese women using our own EIS equipment- Angelplan-EIS 1000.On the other hand,we embarked on EIS of a large number of clinical cases and made the control test with ultrasound and mammography.The present paper covers the following aspects.
     1.Construction of the breast impedance spectroscopy measurement system
     We constructed an impedance spectroscopy measurement system based on the frequency response analyzer,which provides current injection with different frequencies ranging from 10μHz to 1MHz and voltage measurement circuit with an accurate and stable output signal.The system also consisted of rectangular drawing,which can make the size of tissues fixed and four-terminal silvern configuration.To ensure the consistency of experiment condition,the temperature and humidity were also controlled.
     2.Measurement of the impedance spectroscopy of pathological breast tissues
     Based on our impedance spectroscopy system and technique,the impedance spectroscopy of diseased breast tissues were measured including invasive ductal carcinoma,invasive lobular carcinoma,mastopathy,fibroadenoma,mastoid neoplasm and cysts hyperplasia.The results showed that the impedance of breast carcinoma was higher than that of the benign tissue while there was no difference in impedance between the two carcinomas and between the four benign diseases.
     3.Impedance spectroscopy measurements of breast carcinoma and its surrounding normal tissues of breast organ with contrast of image produced by EIS in vivo.
     In this study,we measured the impedance spectroscopy of breast cancer and its surrounding normal tissues,which were obtained from mastectomy surgeries with infiltrating duct carcinoma to find the differences between them.The results were contrasted with the images of EIS test.
     The results showed there was significant difference in impedance characteristic between the breast carcinoma and its surrounding tissue.This study has indicated that there is an experimental base for Chinese women's breast survey by means of EIS.The other finding was that with different kind of surrounding tissues,the impedance characteristics were different.If the ingredient is mainly of fatty tissue,the impedance of carcinoma was lower than that of the peripheral tissue and the breast cancer appears as bright spots on EIS image.If the ingredient is mainly of normal gland tissue,the impedance of carcinoma was higher than that of the peripheral tissue and the breast cancer appears as dark spots on EIS image.These results can reasonably explain the reason why some breast cancers shows dark spots on EIS image in some patients and successfully solve the contradiction in abroad articles.
     4.Analysis of electrical impedance scanning of breasts in normal women.
     Using our own EIS equipment- Angelplan-EIS 1000,we tested normal breasts of 191 volunteers.The differences between different subjects were analyzed and the similarities between left and right breasts of the same subject were compared.The results demonstrated that the electrical impedance parameters were quite different between different subjects,but quite similar between the two breasts of the same subject.The characteristics of electrical impedance had no correlation with clinical parameters including age,stature and weight.
     5.Collection and analysis of EIS test data of patients on a large scale.
     In this study,a total of 3124 patients were entered into the study between Dec 2005 and Dec 2007.We collected results of EIS,pathological reports,ages, physical sighs,and other clinical information.The data were statically and methodology analyzed.The results demonstrated that:(1) Our self-developed electrical impedance instrument(Angelplan-EIS1000) had high sensitivity and specificity for diagnosis of breast cancer and its ability was not weaker than the foreign mature product TransScan-TS 2000.(2) EIS had some advantages which can't be replaced by other methods in diagnosis of early breast cancer.(3) The test of EIS rise superior to the size of breast and age.(4) For breast masses with different diameters,EIS has different diagnosis ability.The sensitivity and specificity were higher in groups with masses smaller than 20ram.(5) A higher sensitivity and specificity were observed in patients who received EIS test in delayed menstruation.
     6.Contrast test of EIS and ultrasound,mammography.
     We designed two contrast clinical tests to compare the test ability of EIS and ultrasound,mammography.There were 163 and 207 patients enrolled into the two studies,respectively.The results indicated that there were no differences between the abilities of EIS and ultrasound in diagnosis of T1 breast cancer,but the two kinds of test had complementarity.Combinational detections were obviously able to increase sensitivity and PPV of breast cancer detection. Mammography was prior to EIS in detecting T1 breast cancer,but to patients whose age were younger than 40,the two tests had no differences.
     7.Prospective study on combinational detection of EIS and ultrasound in estimating risk for development of breast cancer in young women.
     A prospective,double blind clinical trial was done in young women aged 45 years and under.EIS and ultrasound results were compared with final histopathology results.Study end points included sensitivity and specificity of EIS,ultrasound and both combination,as well as relative probability of breast cancer of positive patients detected by combinational application of EIS and ultrasound.
     The results show that the combination of EIS and ultrasound could obviously increase sensitivity in detecting breast cancer of young women.The more important results was that the combination could increase the relative possibility of breast cancer of positive young women from 8.67,5.77 to 14.84. The combination of EIS and ultrasound is likely to become a main approach to screen early breast cancer for young women.
引文
1.Von Fournier D,Anton HW,Junkermann H,et al.Brustkrebsscreening.Radiologie 1993,33,227-235.
    2.Kopans B.Breast Imaging,2nd edn.Lippincott-Raven,1998,29-54.
    3.孟洁,张谨.年轻女性乳腺癌临床资料分析.中国肿瘤临床,2006,33(22):1316-1320.
    4.http://xwcb.eastday.com/c/20071014/ula363364.html
    5.Morrow M,Schmidt R,Cregger B,Hasset C.Preoperative evaluation of abnormal mammographic fingdings to avoid unnecessary breast biopsies.Arch Surg 1994,129:1091-1096.
    6.Rosenberg RD,Hunt WC,Williamson MR,et al.Effects of age,breast density,ethnicity,and estrogen replacement therapy on screening mammographic sensitivity and cancer stage at diagnosis:riview of 183233 screening mammograms in Albuquerque New Mexico.Radiology 1998,209,511-518.
    7.Kerlikowske K,Grady D,Barclay J,Sickles EA,Ernster V.Effect of age,breast density,and family history on the sensitivity of first screening mammography.JAMA 1996,276:33-38.
    8.沈镇宙,邵志敏.现代乳腺肿瘤学进展.上海:上海科学技术文献出版社,2002
    9.曹月敏,王国佩.乳腺外科学.石家庄:河北科学技术出版社,1991
    10.朱雪萍,王纯杰,王汝香.彩色多普勒超声与X线钼靶联合应用对乳腺癌的诊断价值.中国超声医学杂志,2002,18(10):790-792.
    11.陈曼,陈伟国,龚新环.彩色多普勒超声在乳腺疾病中的应用及相关因素.中国超声医学杂志,1999,15(7):541-543.
    12.杨荷霞.乳腺癌CT检查的价值探讨.现代诊断与治疗,2005,6:
    13.李洁,张晓鹏.磁共振成像在乳腺癌新辅助化疗的应用研究进展.临床放射学杂志, 2007,26(7):729-732.
    14.丛新丽,李树祝.乳腺癌的影像学诊断现状与进展.医学影像学杂志,2003,13(8):602-605
    15.Fricke H and Morse S.The Electric Capacity of Tumors of the Breast.J.Cancer Res.1926,16:340-376.
    16.Mitsuyama N,Morimoto T,Kinouchi Y,Iritani T,Sumi T,Kimura S,Monden Y.In vivo measurements of electrical bio-impedance of breast tumors.Nippon Geka Gakkai Zasshi.1988 Feb;89(2):251-5.
    17.Morimoto T,Kinouchi Y,Iritani T et al.Measurement of the electrical bio-impedance of breast tumors.Eur Surg Res 1990,22:86-92.
    18.Morimoto T,Kimura S,Konishi Y et al.A study of the electrical bio-impedance of tumors.J Invest Surg.1993,6:25-32.
    19.Foster KR,Schwan HP.Dielectric properties of tissues and biologic materials:a Critical review.Crit Rev Biomen Eng.1989,17:25-104.
    20.Stuchily MA,Stuchly SS.Electrical properties of biological substances.In:Gandhi OP (ed) Biological effects and medical applications of electromagnetic energy.Prentice-Hall,Englewood Cliffs,1996,New Jersey.
    21.Morucci JP,Valentinuzzi ME,Rigaud B et al.Bioelectrical impedance techniques in medicine.Crit Tev Bio-med Eng.1996,24:275.
    22.Jossinet J.The impedivity of freshly excised human breast tissue.Physiol Meas.1998,19,61-75.
    23.Jossinet J.Variability of impedivity in normal and pathological breast tissue.Med Biol Edng Comput.1996,34,346-350.
    24.Singh B,Smith C W,Hughes R.In vivo dielectric spectrometer.Med Biol Eng Computing,1979;17:45-60.
    25. Surowiec AJ, Stuchly SS, Barr JR, Swarup A. Dielectric Properties of Breast Carcinoma and the Surrounding Tissues. IEEE Trans Biomed Eng, 1988; 35(4): 257-263.
    26. Cuzick J, Holland R, Barth V, Davies R, Faupel M, Fentiman I, Frischbier HJ, LaMarque JL, Merson M, Sacchini V, Vanel D, Veronesi U: Electropotential measurements as a new diagnostic modality for breast cancer. Lancet 352(9125): 359 - 363, 1998
    27. Stuchly MA, Stuchly SS. Electrical Properties of Biological Substances: Biological Effects and Medical Applications of Electromagnetic Energy. Ed Om P Gandhi, Prentice Hall Inc, Eaglewood Cliffs, NJ, USA, 1990.
    28. Morucci JP, Valentinuzzi ME, Rigaud B, Felice CJ, Chauveau N, Marsili PM. Bioelectrical Impedance Techniques in Medicine. Critical Reviews in Biomedical Engineering, Vol. 24, and Issues4-6: 275, Begell House Inc, Congers, NY, USA, 1996.
    29. Blad B, Baldetorp B. Impedance spectra of tumor tissue in comparison with normal tissue: a possible clinical application for electrical impedance tomography. Physiol Meas 1996; 17:A105-A15.
    30. Chaudhary SS, Mishra RK, Swarup A, et al. Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies. Indian J Biochem Biophys 1984, 21:pp76-79
    31. Campbell AM, Land DV. Dielectric properties of female breast tissue measured in vitro at 3.2GHz. Phys Med Biol, 1992, 37:pp193-210
    32. Jossinet J, Lobel A, Michoudet C, et al. Quantitative technique for bio-electrical spectroscopy. J Biomed Eng, 1985,7:pp289-294
    33. Jossinet J, Schmitt M. A review of parameters for the bioelectrical characterization of breast tissue. Ann NY Acad Sci 1999, 873:pp30-41
    34.Surowiec A, Stanislaw SS, Barr JR, Swarup A. Dielectric properties of breast carcinoma and the surrounding tissues. IEEE Trans Biomed Eng 1988, 35: pp257-263
    35. Heinitz J, Minet O. Dielectric properties of female breast tumors. Proceedings of Ninth International Conference on Electrical Bio-Impedance. Heidelberg; University of Heidelberg; 1995:pp356-359
    36. Todd E Kerner, Alex Hartov, Sandra K Soho. Imaging the breast with EIS: an initial study of exam consistency Physiol. Meas.2002,(23): pp221 -236
    37. Rigaud B, Morucci JP, Chauveau N. Bioelectrical impedance techniques in medicine. Part I: Bioimpedance measurement. Second section: impedance spectrometry. Crit Rev Biomed Eng 1996;24(4-6):257-351.
    38. Stelter J, Wtorek J, Nowakowski A, Kopacz A, Jastrzembski T. Complex permittivity of breast tumor tissue. Proceedings of 10th International Conference on Electrical Bio-Impedance, Barcelona; 1998. p. 59-62.
    39. FDA. 1999. Available from: http://www.fda.gov/cdrh/pdf/p970033.html.
    40. Piperno G, Frei EH, Moshitzky M: Breast cancer screening by impedance measurements. Frontiers Med Biol Eng 1990,2: 111-117.
    41. A. Malich, T. Fritsch, R. Anderson, T. Boehm, M. G. Freesmeyer, M. Fleck, W. A. Kaiser. Electrical impedance scanning for classifying suspicious breast lesions: First results. Eur. Radiol., 2000,10:1555-1561,.
    42. A. Wersebe, K. Siegmann, U. Krainick, N. Fersis, U. Vogel, C. D. Claussen, M. Mueller-Schimpfe. Diagnostic potential of targeted electrical impedance scanning in classifying suspicious breast lesions. Investigat. Radiol., 2002, 37: 65-72,.
    43. A. Malich, T. Boehm, M. Facius, M. G. Freesmeyer, M. Fleck, R. Anderson, W. A. Kaiser. Differentiation of mammographically suspicious lesions: Evaluation of breast ultrasound, MRI, mammography and electrical impedance scanning as adjunctive technologies in breast cancer detection. Clin. Radiol., 2001, 56: 278-283,.
    44. A. Malich, T. Boehm, M. Facius, M. G. Freesmeyer, M. Fleck, R. Anderson, W. A. Kaiser. Additional value of electrical impedance scanning: Experience of 240 histologically-proven breast lesions. Eur. J. Cancer. 2001, 37: 2324-2330,.
    45. M. Fuchsjaeger, T. Diebold, B. Szabo, A. Malich,W. Kaiser, B. Bone, T. J. Vogel. T. Helbich. Adjunctive use of electrical impedance scanning (EIS) new software algorithm to differentiate breast lesions in comparison to histopathology: European multicentre study," presented at the ECR Vienna 2002, Vienna, Austria, Mar. 2002, Presentation B-0649.
    46. A. Malich, T. Boehm, M. Facius, M. G. Freesmeyer, M. Fleck, R. Anderson, W. A. Kaiser. Electrical impedance scanning as a new imaging modality in breast cancer detection-a short review of clinical value on breast application, limitations and perspectives. Nuclear Instruments and Methods in Physics Research,2003, A 497: 75 - 81.
    47. A. Malich, T. Boehm, M. Facius, M. G. Freesmeyer, M. Fleck, R. Anderson, W. A. Kaiser. Influence of size and depth on accuracy of electrical impedance scanning. Eur Radiol, 2003, 13:2441-2446.
    48. Fuchsjaeger MH, Flory D, Reiner CS, Rudas M, Riedl CC, Helbich TH. The negative predictive value of electrical impedance scanning in BI-RADS category IV breast lesions. Invest Radiol. 2005 Jul;40(7):478-85.
    49. Diebold T, Jacobi V, Scholz B, Hensel C, Solbach C, Kaufmann M, Viana F, Balzer J, Peters J, Vogl T. Value of electrical impedance scanning (EIS) in the evaluation of BI-RADS III/IV/V-lesions. Technol Cancer Res Treat. 2005 Feb;4(1):93-7.
    50. Malich A, Boehm T, Facius M, Kleinteich I, Fleck M, Anderson R, Kaiser WA. Electrical impedance scanning as a new imaging modality in breast cancer detection-a short review of clinical value on breast application, limitations and perspectives. Nucl Instr Methods Physics ResA, 2002; 20115:1-7. 型仿真实验研究.航天医学与医学工程,2005,18(2):130-134
    52.刘锐岗,董秀珍,付峰,尤富生,季振宇.电阻抗扫描成像乳腺肿瘤检测仪软件系统的设计.医疗卫生装备,2005,26(4):5
    53.刘锐岗,付峰,史学涛,尤富生,季振宇,董秀珍.乳腺电阻抗扫描的频率特性初步分析.北京生物医学工程杂志,2005,22(4):305-307
    54.王侃,董秀珍,付峰,刘锐岗,史学涛,尤富生,季振宇.电阻抗乳腺扫描成像临床数据管理系统的设计与实现.医疗卫生装备,2005,26(2):11-12
    55.刘锐岗,付峰,史学涛,尤富生,季振宇,董秀珍.几种乳腺疾病的电阻抗扫描的频率特性.生物医学工程杂志,2005,22(6):1090-1094
    56.SFDA.2005.Available from:http://appl.sfda.gov.cn/datasearch /face3/base.jsp?tableId=26-tableName=TABLE26title=国产器械&bcId=118103058617027083838706701567.
    57.Van Ongeval Ch.Digital mammography for screening and diagnosis of breast cancer:an overview.JBR-BTR,2007 May-Jun;90(3):163-6
    58.Schlecht L,Hadijuana J,Hosten N,Oellinger H,Minguillon C,Lichtenegger W,Felix R.Ultrasound examination of the female breast:comparison of 7.5 and 13 MHz.Aktuelle Radiol.1996 Mar;6(2):69-73.
    59.Algul,Balei,Seeil,et al.Contrast enhanced power Doppler and color Doppler ultrasound in breast masses:Efficiency in diagnosis and contributions to differential diagnosis.Tani Girisim Radiol,2003,9(2):199-206.
    60.韩增辉,王建宏,钱蕴秋,等.小乳腺癌的高频声像图及能量多普勒血流特征.中国超声医学杂志,2001,17(7):499-502
    61.李坤成,孙泽明.乳腺影像诊断学.北京:人民卫生出版社,2003,3:199,200.
    62.Obenauer S,Hermann KP,Grabbe E.Applications and literature review of the BI-RADS classification.Eur Radiol.2005 May;15(5):1027-36.
    63. Liberman L, Menell JH. Breast imaging reporting and data system (BI-RADS). Radiol Clin North Am. 2002 May;40(3):409-30, v.
    64. Van Ongeval Ch. Digital mammography for screening and diagnosis of breast cancer: an overview. JBR-BTR. 2007 May-Jun; 90(3): 163-6
    65. Edell SL, Eisen MD. Current imaging modalities for the diagnosis of breast cancer. Del Med J 1999; 71: 377-82.
    66. Kriege M, Brekelmans CT, Boetes C, et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med 2004; 351(5): 427-437.
    67. MacKarem G. The effectiveness of the Gail model in estimating risk for development of breast cancer in women under 40 years of age. Breast J 2001; 7(1): 34 - 39
    68. Committee on New Approaches to Early Detection and Diagnosis of Breast Cancer, Saving Women' s Lives Strategies for Improving Breast Cancer Detection and Diagnosis. In: Joy JE, Penhoet EE, Petitti DB (eds) Institute of Medicine and National Research Council of the National Academies. National Academy Press, Washington DC, 2004
    69. Shannon C, Smith IE: Breast cancer in adolescents and young women. Eur J Cancer 39(18): 2632-2642, 2003
    70. Sundquist M, Thorstenson S, Brudin L, Wingren S, Nordenskjold B: Incidence and prognosis in early onset breast cancer. Breast 11(1): 30 - 35, 2002
    71. American Cancer Society. Cancer Facts & Figures 2004. [monograph online] 2004: Available from URL: http:// www.cancer.org/statistics/index.html? Language=English [Accessed on August 31, 2004]
    72. Smith RA, Saslow D, Sawyer KA, et al.: American Cancer Society guidelines for breast cancer screening: update 2003. CA Cancer J Clin 53(3): 141 - 169, 2003
    73. Kuhl CK: High-risk screening: multi-modality surveillance of women at high risk for breast cancer (proven or suspected carriers of a breast cancer susceptibility gene). J Exp Clin Cancer Res 21(3 Suppl): S103 - S106, 2002
    74. Carney PA, Miglioretti DL, Yankaskas BC, et al.: Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med 138(3): 168 - 175,2003
    75. Leconte I, Feger C, Galant C, et al.: Mammography and subsequent whole-breast sonography of nonpalpable breast cancers: the importance of radiologic breast density. AJR Am J Roentgenol 180(6): 1675 - 1679, 2003
    76. Kroenke CH, Rosner B, Chen WY, Kawachi I, Colditz GA, Holmes MD: Functional impact of breast cancer by age at diagnosis. J Clin Oncol 22(10): 1849 - 1856,2004
    77. Warner E, Plewes DB, Shumak RS, et al.: Comparison of breast magnetic resonance imaging, mammography, and ultrasound for surveillance of women at high risk for hereditary breast cancer. J Clin Oncol 19(15): 3524 - 3531, 2001
    78. Chauveau N, Hamzaoui L, Rochaix P, Rigaud B, Voigt JJ, Morucci JP: Ex vivo discrimination between normal and pathological tissues in human breast surgical biopsies using bioimpedance spectroscopy. Ann NY Acad Sci 873: 42 - 50, 1999
    79. Melloul M, Paz A, Ohana G: Double-phase 99 m Tc-sestamibi scintimammography and Trans-scan in diagnosing breast cancer. J Nucl Med 40(3): 376 - 380, 1999
    80. Scholz B, Anderson R: On electrical impedance scanning-principles and simulations. Electromedica 68: 35 - 44, 2000
    81. Perlet C, Kessler M, Lenington S, Sittek H, Reiser M: Electrical impedance measurements of the breast: effect of hormonal changes associated with the menstrual cycle. Eur Radiol 10: 1550 - 1554, 2000
    82. Malich A, Fritsch T, Mauch C, Boehm T, Freesmeyer M, Fleck M, Anderson R, Kaiser WA: Electrical impedance scanning: a new technique in the diagnosis of lymph nodes in which malignancy is suspected on ultrasound. Br J Radiol 74(877): 42 - 47,2001
    83. Glickman YA, Filo O, Nachaliel U, Lenington S, Amin-Spector S, Ginor R: Novel EIS postprocessing algorithm for breast cancer diagnosis. IEEE Trans Med Imaging 21: 710 -712,2002
    84. Malich A, Boehm T, Facius M, Mentzel HJ, Fleck M, Boettcher J, Anderson R, Kaiser WA: Use of electrical impedance scanning in the differentiation of sonographically suspicious and highly suspicious lymph nodes of the head-neck region. Eur Radiol 12(5):1114- 1120,2002
    85. Kerner TE, Paulsen KD, Hartov A, Soho SK, Poplack SP: Electrical impedance spectroscopy of the breast: clinical imaging results in 26 subjects. IEEE Trans Med Imag 21:638-645,2002
    86. Martin G, Martin R, Brieva MJ, Santamaria L: Electrical impedance scanning in breast cancer imaging: correlation with mammographic and histologic diagnosis. Eur Radiol 12: 1471 -1478,2002
    87. Facius M, Malich A, Schneider G, Boehm T, Anderson R, Kaiser WA: Electrical impedance scanning used in addition to ultrasound for the verification of submandibular and parotid lesions: initial results. Invest Radiol 37(8): 421 - 427, 2002
    88. Mentzel HJ, Malich A, Kentouche K, Freesmeyer M, Bottcher J, Schneider G, Gruhn B, Vogt S, Zintl F, Anderson R, Kaiser WA: Electrical impedance scanning-application of this new technique for lymph node evaluation in children. Pediatr Radiol 33(7): 461 -466,2003
    89. Zou Y, Guo Z: A review of electrical impedance techniques for breast cancer detection. Med Eng Physics 25: 79 - 90, 2003
    90. Glickman YA, Filo O, David M, Yayon A, Topaz M, Zamir B, Ginzburg A, Rozenman D, Kenan G: Electrical impedance scanning: a new approach to skin cancer diagnosis. Skin Res Technol 9(3): 262 - 268, 2003
    91. Aberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S: Skin cancer identification using multifrequency electrical impedance - a potential screening tool. IEEE Trans Biomed Eng 51(12): 2097 - 2102, 2004
    92. Stojadinovic A, Fields SI, Shriver CD, Lenington S, Ginor R, Peoples GE, Burch HB, Peretz T, Freund HR, Nissan A: Electrical impedance scanning of thyroid nodules prior to thyroid surgery: a prospective study. Ann Surg Oncol 12(2): 152 - 160, 2005
    93. Har-Shai Y, Glickman YA, Siller G, McLeod R, Topaz M, Howe C, Ginzburg A, Zamir B, Filo O, Kenan G, Ullmann Y: Electrical impedance scanning for melanoma diagnosis: a validation study. Plast Reconstr Surg 116(3): 782 - 790, 2005
    94. Stojadinovic A, Nissan A, Gallimidi Z, et al.: Electrical impedance scanning for the early detection of breast cancer in young women: preliminary results of a multi-center prospective clinical trial. J Clin Oncol 23(12): 2703 - 2715, 2005
    95. Davies RJ, Quinn DA, Davisson TH: Impedance spectroscopy characterizes the electrical signature of benign and malignant breast epithelium. Breast Cancer Res Treat 88: S221, 2004
    96. Davies RJ, Quinn DA, Davisson TH: Alterations in ionic transport and conductance during malignancy in breast epithelium. Breast Cancer Res Treat 88: S222, 2004
    97. Collaborative Group on Hormonal Factors in Breast Cancer Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet 358: 1389-1399,2001
    98. Krieger N, Hiatt RA: Risk of breast cancer after benign breast disease. Am J Epidemiol 136:619-631,1992
    99. London SJ, Connolly JL, Schmitt SJ, Colditz GA: A prospective study of benign breast disease and the risk of breast cancer.JAMA 267:941-944,1992
    100.Bodian CA,Perzin KH,Lattes R,Hoffman P,Abernathy TG:Prognostic significance of benign breast disease.Cancer 71:3798-3807,1993
    101.Piperno G,Lenington S:Breast electrical impedance and estrogen use in postmenopausal women.Maturitas 41:17-22,2002
    102.Tilanus-Linthorst MM,Obdeijn IM,Bartels KC,de Koning HJ,Oudkerk M:First experiences in screening women at high risk for breast cancer with MR imaging.Breast Cancer Res Treat 63(1):53-60,2000
    103.Kuhl CK,Schmutzler RK,Leutner CC,et al.:Breast MR imaging screening in 192women proved or suspected to be carriers of a breast cancer susceptibility gene:preliminary results.Radiology 215:267-279,2000
    104.Stoutjesdijk MJ,Boetes C,Jager GJ,et al.:Magnetic resonance imaging and mammography in women with a hereditary risk of breast cancer.J Natl Cancer Inst 93(14):1095-1102,2001
    105.孙振球,徐勇勇.《医学统计学》.人民卫生出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700