溶胶—凝胶技术在纺织品功能整理上的应用与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溶胶-凝胶技术是指金属有机或无机化合物经过溶液、溶胶、凝胶而固化,再经热处理而形成氧化物或其它化合物固体的一种技术。作为一种材料制备的方法,该技术在许多方面得到了广泛应用,如制备玻璃、纤维、粉末、薄膜、涂层、复合材料等,但在纺织上的应用研究刚刚起步。本论文从溶胶-凝胶法的基本原理出发,制备不同的溶胶,采用浸轧、预烘、焙烘等常用工艺,将该方法应用到纺织品后整理上,赋予纺织品多种功能。实验结果表明:溶胶-凝胶技术用于纺织品整理不仅具有可行性,而且有着广阔的发展空间。
     溶胶-凝胶法处理可在织物表面形成复杂的三维网络结构。利用这一特性,制备不同性质的溶胶。将溶胶-凝胶技术用于织物的功能整理,既能赋予织物抗紫外、抗静电、抗菌、产生负离子、提高染料色牢度等特殊的功能,又能提高了产品附加值,增强我国纺织品在国际上的竞争力。
     本论文制备了钛溶胶并用于棉织物的抗紫外整理,实验结果表明:经钛溶胶处理过的棉织物拥有优异、持久的抗紫外性能;同时结合荧光增白剂VBL和自制聚丙烯酸酯低温粘合剂的使用,不但可以弥补钛凝胶对UVA区紫外光吸收不足的缺点,使棉织物抗紫外能力进一步大幅度提高,而且克服了织物泛黄现象,改善了织物的强力;一系列处理后,棉织物不但拥有优异、持久的抗紫外性能,且手感、强力、透气性等性能无明显变化。
     本论文制备了硅水溶胶用于涤纶织物的抗静电整理,实验结果表明:经硅水溶胶处理后,涤纶织物的静电压、静电半衰期、比电阻都大幅度下降,抗静电性能显著提高,且手感、强力、白度等各项性能无明显变化。
     本论文将制备的硅水溶胶和钛水溶胶按照不同摩尔比复合对直接染料进行固色处理。实验结果表明:当Si/Ti=14:1(摩尔比)时对直接染料有较好的固色效果,湿牢度普遍提高;同时发现硅水溶胶对直接黑GF有着明显的固色和增深作用。经溶胶-凝胶整理后,直接黑GF的各项色牢度显著提高,色深曲线较处理前有较大幅度的提高,增深效果使得用较少的染料染得较浓的黑色成为可能。
     本论文对溶胶-凝胶技术在纺织上的其它应用进行了初步探索,如抗菌、拒水、产生负离子等。实验结果表明:经钛溶胶处理过的棉织物对大肠杆菌、金黄色葡萄球菌、白色念珠菌三种常见菌具有很好的抗菌效果:经钛水溶胶处理后的棉织物具有较好的拒水效果,接触角达130°;经硅、钛溶胶处理的棉织物能够释放大量负离子,起到净化空气和保健人体的作用。
     本论文对硅水溶胶和钛水溶胶的制备条件,以及溶胶-凝胶技术用于纺织品整理的工艺条件进行了初步探讨,确定了较为合适的溶胶制备条件和整理工艺。
     本论文利用激光粒度仪对溶胶的粒径进行了表征;采用扫描电镜、原子力显微镜观察凝胶在织物表面的形貌状态;采用红外光谱仪、热失重分析仪、DSC分析仪对经过硅、钛溶胶处理的织物以及硅、钛凝胶粉末分别进行了表征测试,并对溶胶-凝胶法抗紫外、抗静电、固色、抗菌和产生负离子的机理做了初步的研究探讨。
The sol-gel process is a kind of technology that begins with metal organic or inorganic compounds and solidifies through a solution-sol-gel evolvement, finally resulting very fine particles of oxide. As a method of preparing materials, this technology has been applied to a great many of aspects such as specific glasses, fibers, powders, films, coatings, composite materials, etc. However, the research and application of the sol-gel process on textiles have not been for a long time yet. In this dissertation, a series of sols were prepared based on the principles of the sol-gel process, and then were applied on textiles through traditional pad-dry-cure techniques, endowing textiles with kinds of special functions. Primary experimental results showed that the sol-gel process technology was not only feasible for textiles' function finishing after treatment, but also had promising and bright prospect.
     A compound and complex three-dimensional networks could be formed on the surface of fibers after the sol-gel treatment, which may be used to endow the textiles with special functions such as anti-ultraviolet radiation, antibacterial, antistatic, releasing negative ion and enhancing the wash fastness of dyes and so on. Not only the added value of textiles is improved, but also the competitive ability of textiles trade could be strengthened at the same time.
     Titanium sols were prepared to enhance the ultraviolet protection property of cotton fabrics in the dissertation. The UV transmittance of treated fabrics decreased considerably after sol treatment, assisted with fluorescent whitening agent, the UV resistance was improved further, and the yellowing incurred by the sol treatment was also eliminated. The use of self-developed polyacrylate adhesive could increase not only the washing durability but also the UV resistance of the fabric, and at the same time strength loss also was resolved. The strength, hand, air permeability tests of the treated fabrics showed no negative effects from a series of treatment on the cotton fabrics.
     Silane sols were prepared with organic precursors to improve the antistatic property of polyester fabrics. The experimental results showed that the inductive static voltage, volume specific resistance and half-time of treated PET fabrics were improved considerably by sol treatment, while there were no negative effects on the whiteness, strengthes and handle of the treated fabrics.
     Silane hydrosol and titanium hydrosol were prepared and mixed according to different mol ratios, and then used fixing direct dyes and experimental results showed that direct dyed fabrics got good washing fastness after the sol-gel treatment by the mixed sol of Si/Ti=14: 1; It was found that silane hydrosol was used for fixing DirectBlack GF dyed cotton, and good washing fastness and darkening effect were obtained. The colorfastness of treated fabrics dyed with Direct Black GF was improved obviously and the K/S curves rose up greatly compared with the untreated, and the darkening effect made it possible get very full black color with excellent wet fastness with relative small amount of the Direct Black GF dye.
     Other applications of the sol-gel technology on textiles were discussed in the dissertation as well, such as water-repellency, antibacterial, releasing negative ion etc. Experimental results showed that the cotton treated with titanium sols resulted in good antibacterial property, the cotton treated with titanium hydrosol possessed better water-repellency and contact angle of water exceeded 130°, the cotton treated with silane and titanium sols both can release a lot of negative ion to play a role in purifying the air and do some health to people.
     The preparation conditions of both silane hydrosol and titanium hydrosol, and the technique conditions for the application of sol-gel technology on textiles finishing were discussed in the dissertation, appropriate conditions were determined approximately.
     The particle size of the sols and morphology of the gels on the fibers were characterized by Nanosizer, SEM and AFM. The fabrics treated with sols and gels powder were investigated with IR, TG, DSC analyzers. The primary mechanisms of anti-ultraviolet radiation, antibacterial, antistatic, releasing negative ion and enhancing the wash fastness of direct dyes with sol-gel process were discussed in the dissertation.
     Xu Peng (Textile Chemistry&Dyeing and Finishing Engineering)
     Supervised by Professor Chen Shuilin
引文
[1] 郑昌琼,冉均国.新型无机材料.北京:科学出版社.2003,14
    [2] 孙继红,范文浩,吴东等.溶胶-凝胶化学及其应用.材料导报.2000,14(4):25-29
    [3] Brinker C J, Scherer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, 1990, Academic Press, Boston: 131-134
    [4] Geffcken W, Berger E. German Patent, 1939, 736411
    [5] Dislich H. New Routes to Multicomponent Oxide Glasses. Angew Chem Int Ed. 1971, 10(6): 363
    [6] Yoldas B E. Alumina Gels That Form Porous Transparent Al_2O_3. Journal of Material Science. 1975, 12(6): 1203-1208
    [7] Yoldas B E. Preparation of Glasses and Ceramics from Metal-Organic Compounds. Journal of Material Science. 1977, 10(11): 1856-1860
    [8] Mackenzie J D. Glasses from Melts and Glasses from Gels. Journal of Non-Crystalline Solids. 1982, 48(1): 1-10
    [9] Uhmann D R, Zelinski B J J, Wnek C E. Mat Res Soc Symp Proc. 1984, 32: 59
    [10] Uhlmann, D R, Teowee G, Sol-Gel Science and Technology: Current State and Future Prospects. Journal of Sol-Gel Science and Technology. 1998, 13(1): 153-162
    [11] Zarzycki J. Past and Present of Sol-Gel Science and Technology. Journal of Sol-Gel Science and Technology. 1998, 8(1): 17-22
    [12] 余桂郁,杨南如.溶胶-凝胶法工艺过程.硅酸盐学报.1993,21(6):60-66
    [13] 董占能,赵兵,郭玉忠.金属醇盐的物化特性.昆明理工大学学报.2000,25(2):63-67
    [14] 杨南如,余桂郁.溶胶-凝胶法简介.硅酸盐通报.1992,11(2):56-63
    [15] Anderson M A, et al. Titania and Alumina Ceramic Membranes. Journal of Membrane Science. 1988, 39(3): 243-258
    [16] 殷明志,姚熹,李振荣,张良荧.酸催化正硅酸乙酯溶胶-凝胶二氧化硅薄膜的制备.西安交通大学学报.2002,36(8):847-850,880
    [17] 徐莉.正硅酸乙酯溶胶-凝胶过程中催化剂的作用.南京林业大学学报.1998,22(4):67-70
    [18] 林健.催化剂对正硅酸乙酯水解-聚合机理的影响.无机材料学报.1997,12(3):363-369
    [19] Hoebbel D, Nacken M, Schmidt H. On the Existence and Hydrolytic Stability of Titanosiloxane Bonds in the System: Glycidoxypropyltrimethoxysilane, Water and Titaniumtetraethoxide. Journal of Sol-Gel Science and Technology. 1998, 13(1): 37-43
    [20] Hoebbel D, Nacken M, Schmidt H. On the Influence of Metal Alkoxides on the Epoxide Ring-opening and Condensation Reactions of 3-Glycidoxypropyltrimethoxysilane. Journal of Sol-Gel Science and Technology. 2001, 21(3):177-188
    [21] 余熹宾,吴虹.正硅酸乙酯的水解、缩合过程研究.无机材料学报.1996,11(4):703-707
    [22] Kalinin S V, Kheifets L I, Mamchik A I, et al. Influence of the Drying Technique on the Structure of Silica Gels. Journal of Sol-Gel Science and Technology. 1999, 15(1): 31-36
    [23] 洪新华,李保国.溶胶-凝胶方法的原理与应用.天津师范大学学报.2001,21(1):5-8
    [24] 丁子上,翁文剑.溶胶-凝胶技术制备材料的进展.硅酸盐学报,1993,21(5):443-450
    [24] Schmidt H, Popall M. Inorganic-Organic Composites for Optical Application. SPIE. 1990, 1328:249-257
    [26] 邬润德,童莸莉.聚钛硅氧烷化物制隐形眼镜及其材料性能研究.高分子材料科学与工 程.1997,13(1):131-134
    [27] Hench L L, West J K. The Sol-Gel Process. Chemical Reviews. 1990, 90(1):33-72
    [28] Machenzie J D. Sol-gel Optics Present Status and Future Trends. SPIE. 1990, 1328:2-13
    [29] Kamiya K, Katayama A, Suzuki H, et al. Preparation of Silicon Oxycarbide Glass Fibers by Sol-Gel Method-Effect of Starting Sol Composition on Tensile Strength of Fibers. Journal of Sol-Gel Science and Technology. 1999, 14(1): 95-102
    [30] Glaubitt W, Watzka W, Scholz H, et al. Sol-Gel Processing of Functional and Structural Ceramic Oxide Fibers. Journal of Sol-Gel Science and Technology. 1997, 8(1):29-33
    [31] Matejec V, Hayer M, Pospisilova M, et al. Preparation of Optical Cores of Silica Optical Fibers by the Sol-Gel Method. Journal of Sol-Gel Science and Technology. 1997,8(3): 889-893
    [32] Song K C. Preparation of Mullite Fibers by the Sol-Gel Method. Journal of Sol-Gel Science and Technology. 1998,13(1): 1017-1021
    [33] Binkle O, Nass R. Synthesis and Characterization of PZT Fibers via Sol-Gel. Journal of Sol-Gel Science and Technology. 1998,13(3): 1023-1026
    [34] Hasegawa I, Nakamura T, Motojima S, et al. Synthesis of Silicon Carbide Fibers by Sol-Gel Processing. Journal of Sol-Gel Science and Technology. 1997,8(1): 577-579
    [35] Muralidharan B G, Agrawal D C. Sol-Gel Derived TiO_2-SiO_2 Fibres. Journal of Sol-Gel Science and Technology. 1997,9(1): 85-93
    [36] Matejec V, Kasik I, Berkova D, et al. Sol-Gel Fabrication and Properties of Silica Cores of Optical Fibers Doped with Yb~(3+), Er~(3+), Al2O_3 or TiO_2. Journal of Sol-Gel Science and Technology. 1998, 13(1): 617-621
    [37] Boulton J M, Jones K, Emblem H G. Preparation of Spinel Fibre by A Sol-Gel Route. Journal of Materials Science Letters. 1990, 9(8): 914-915
    [38] Carr S W, Li O, Duan S, et al. Synthesis and Structural Studies of Porous Organobridged Silicate Amorphous Powder. Journal of Sol-Gel Science and Technology. 1999, 13(1): 31-36
    [39] Lee E G, Park S D, Jeon C J, et al. Photocatalytic Effects of Rutile Phase TiO_2 Ultrafine Powder with High Specific Surface Area Obtained by A Homogeneous Precipitation Process at Low Temperatures. Journal of Sol-Gel Science and Technology. 2001, 22(1): 63-74
    [40] Lee Y C, Jung Y J, Park P Y, et al. Preparation of TiO_2 Powder by Modified Two-Stage Hydrolysis. Journal of Sol-Gel Science and Technology. 2004, 30(1): 21-28
    [41] Navio J A, Marchena F J, Macias M, et al. Preparation and Characterization of Amorphous ZrO_2-SiO_2 Composite Powders Processed by Sol-Gel Chemistry. Journal of Sol-Gel Science and Technology. 1997, 10(2): 165-175
    [42] 周秀文,朱祖良,罗明仁等.(TiO_2-CdS)/SiO_2复合粉体的溶胶-凝胶法合成及晶相转变.材料导报.2004,18(4):83-85
    [43] 王华林,余锡宾,王长友.聚甲基三乙氧基硅烷/二氧化钛有机无机杂化材料的制备.应用化学.1998,15(5):101-103
    [44] 王华林,余锡宾,王长友等.PMTES/SiO_2有机—无机杂化材料的研究.高分子材料科学与工程.1999,15(6):92-94
    [45] Innocenzi P, Esposto M, Maddalena A. Mechanical Properties of 3-Glycidoxypropyltrimethoxysilane Based Hybrid Organic-Inorganic Materials. Journal of Sol-Gel Science and Technology. 2001, 20(3): 293-302
    [46] Hofman Z, Keizer K, Verweij H, et al. Coating of Sol Particles for Membrane Applications. Journal of Sol-Gel Science and Technology. 1997,8(1): 523-527
    [47] Klein L C. Coatings Technology Handbook. 1991: 655-657
    [48] 刘小林,张伟清,粱培辉.水解反应温度对溶胶-凝胶SiO_2增透膜光学性能的影响.光子学报.1999,28(6):558-560
    [49] 曹冰,董文庭,朱从善.有机改性SiO_2无支撑膜的溶胶-凝胶法制备.光学学报.1999,19(4):574-576
    [50] Abe K, Sanada Y, Morimoto T. Anti-Reactive Coatings for CRTs by Sol-Gel Process. Journal of Sol-Gel Science and Technology. 2001, 22(1): 151-166
    [51] Langlet M, Burgos M, Coutier C, et al. Low Temperature Preparation of High Refractive Index and Mechanically Resistant Sol-Gel TiO_2 Layers for Multilayer Antireflective Coating Applications. Journal of Sol-Gel Science and Technology. 2001,22(1): 139-150
    [52] Thomas R, Dube D C, Kamalasanan M N, et al. Electrical Properties of Sol-Gel Processed Amorphous BaTiO_3 Thin Films. Journal of Sol-Gel Science and Technology. 1999, 16(1): 101-108
    [53] Gilath I. Water Repellent Coating for Welding Electrodes Based on Sol-Gel Technology. Journal of Sol-Gel Science and Technology. 1997, 10(1): 101-104
    [54] 张国昌,陈运法,吴镇江等.溶胶-凝胶法制备硅系有机-无机杂化分离膜.高等学校化学学报.2001,22(5):713-716
    [55] Djaoued Y, Badilescu S, Ashrit P V, et al. Low Temperature Sol-Gel Preparation of Nanocrystalline TiO_2 Thin Films. Journal of Sol-Gel Science and Technology. 2002, 24(3): 247-254
    [56] 罗敏,张晓莉,陈小立等.溶胶-凝胶技术及其在纺织上的应用前景.印染助剂.2004,21(1):6-8,12
    [57] Textor T, Bahners T H, Schollmeyer E. Surface Modification of Textile Fabrics by Coating Based on the Sol-Gel Process. Melliand Textilberichte. 1999,(10):229
    [58] Textor T, Bahners T H, Schollmeyer E. Coating Wool and Silk by Sol-Gel Technique. The 10th International Wool Textile Research Conference. 2003, F1-12:1-5
    [59] Mathltig B, Bottcher H. Refining of Textiles by Nanosol Coating. Melliand Textilberichte 2002,83(4):50-51
    [60] Lee M S, Jo N J. Coating of Methyltriethoxysilane-Modified Colloidal Silica on Polymer Substrates for Abrasion Resistance. Journal of Sol-Gel Science and Technology. 2002,24(2): 175-180
    [61] Textor T, Bahners T H, Schollmeyer E. Inorganic-organic Hybrid Polymers to Protect Technical Textiles. Technical Textiles. 2002,45(8): 103-105
    [62] Knittel D, Bahners T, Schollmeyer E. Nachrichten Aus Der Chemie, 2001(49):1405-1410
    [63] Schramm C, Binder W H, Tessadri R. Durable Press Finishing of Cotton Fabric With 1,2,3,4-Butanetetracarboxylic Acid and TEOS/GPTMS. Journal of Sol-Gel Science and Technology. 2004,29(3):155-165
    [64] Mahltig B, Bottcher H. Modified Silica Sol Coatings for Water-Repellent Textiles. Journal of Sol-Gel and Technology. 2003(27): 43-52
    [65] Daoud W A, Xin J H, Tao X M. Superhydrophobic Silica Nanocomposite Coating by A Low-Temperature Process. Journal of American Ceramic Society. 2004, 87(9):1782-1784
    [66] Xu P, Wang W, Chen S L. Application of Nanosol on the Antistatic Property of Polyester. Melliand International. 2005, 11(1):56-59
    [67] Song K C, Park J K, Kang H U, et al. Synthesis of Hydrophilic Coating Solution for Polymer Substrate Using Glycidoxypropyltrimethoxysilane. Journal of Sol-Gel Science and Technology. 2003(27):53-59
    [68] 敬承斌,赵修建,陈文梅等.环氧基硅烷改性TiO_2薄膜对尼龙吸水性、耐化学试剂性能的影响.高分子材料科学与工程.2002,18(3):180-184
    [69] Xin J H, Daoud W A, Kong Y Y. A New Aprroach to UV-Blocking Treatment for Cotton Fabrics. Textile Research Journal. 2004,74(2): 97-100
    [70] Xu P, Wang W, Chen S L. UV-Blocking Treatment of Cotton Fabrics by Titanium Hydrosol. AATCC Review. 2005,5(6): 17-20
    [71] Kim M S, Seok S I, Ahn B Y, et al. Encapsulation of Water-Soluble Dye in Spherical Sol-Gel Silica Matrices. Journal of Sol-Gel Science and Technology. 2003,27(3): 355-361
    [72] Shibata S, Taniguchi T, Yano T, et al. Formation of Water-Soluble Dye-Doped Silica Particles. Journal of Sol-Gel Science and Technology. 1997,10(3): 263-268
    [73] Bohmer M R, Keursten T A P M. Incorporation of Pigments in TEOS Derived Matrices. Journal of Sol-Gel Science Technology and Science. 2000(19): 361-364
    [74] Luo M, Zhang X L, Chen S L. Enhancing the Wash Fastness of Dyeings By A Sol-Gel Process. Part 1: Direct Dyes on Cotton. Coloration Technology. 2003(119): 297-300
    [75] Du J, Zhan L, Chen S L. Wash Fastness of Dyed Fabric Treated by the Sol-Gel Process. Coloration Technology. 2005, 121(1): 29-36
    [76] Mahltig B, Knittel D, Schollmeyer E, et al. Incorporation of Triarylmethane Dyes into Sol-Gel Matrices Deposited on Textiles. Journal of Sol-Gel Science and Technology. 2004, 31(1): 293-297
    [77] Mahltig B, Bottcher H, Knittel D, et al. Light fading and wash fastness of dyed nanosol coated textiles. Textile Research Journal. 2004,74(6): 521-527
    [78] Bottcher H, Prake. Bioactive Sol-Gel coatings. Journal Fur Praktische Chemic Practical Applications and Applied Chemistry. 2000,342(5): 427-436
    [79] Brasack I, Bottcher H, Hempel U. Biocompatibility of Modified Silica-Protein Composite Layers. Journal of Sol-Gel Science and Technology. 2000, 19(1): 479-482
    [80] Mahltig B, Fiedler D, Bottcher H. Antimicrobial Sol-Gel Coatings. Journal of Sol-Gel Science and Technology. 2004, 32(1): 219-222
    [81] Bottcher P. Sol-Gel Coating on Textiles-Possibilities and Problems. Textilveredlung. 2001, 36(3-4): 16-21
    [82] 刘丽雅,王潮霞,陈水林.用β—环糊精开发芳香医疗保健纺织品.产业用纺织品.2002,20(12):35-37
    [1] Algaba I, Riva A. In Vitro Measurement of the Ultraviolet Protection Factor of Apparel Textiles. Coloration Technology, 2002, 118(2): 52-58.
    [2] Algaba I, Riva A, Crews P C. Influence of Fiber Type and Fabric Porosity on the UPF of Summer Fabrics. AATCC Review. 2004, 4(2): 26-31.
    [3] 杨栋梁.纺织品的紫外线屏蔽整理(一).印染.1995,21(5):35-38
    [4] 杨栋梁.纺织品的紫外线屏蔽整理(二).印染.1995,21(6):35-39
    [5] 张济邦.防紫外线织物(一).印染.1996,22(2):39-43
    [6] Ian Holme. UV Absorbers for Protection and Performance. AATCC Review. 2003,3(4):11-13
    [7] 薛迪庚编著.织物的功能整理.北京:中国纺织出版社.2000,56-66
    [8] 张济邦.防紫外线织物(二).印染.1996,22(3):35-37
    [9] 杨栋梁.纺织品的紫外线屏蔽整理(三).印染.1995,21(7):29-31
    [10] Zhao J W, Yang T. The Optical Waveguiding Properties Of TiO_2-SiO_2 Composite Films Prepared by the Sol-Gel Process. Ceramics International. 1995, 25(7): 667-670
    [11] AS/NZS 4399: Sun Protective Clothing-Evaluation and Classification. Published jointly by Standard Australian and Standards New Zealand. 1996
    [12] CLE Research Note. A Reference Action Spectrum for Ultraviolet Induced Erythem a in Human Skin
    [13] 胡安正,唐超群.Sol-Gel法制备纳米TiO_2的原料和胶凝过程机理探研.功能材料.2002,33(4):394-397
    [14] 罗伍文.溶胶-凝胶法简介(二).硅酸盐学报.1993,21(4):60-68
    [15] 李春燕,李懋强.TiO_2的溶胶-凝胶过程研究.硅酸盐学报.1996,24(3):338-341
    [16] 董仲生.光对荧光增白剂VBL的影响.印染助剂.2002,19(6):21-23
    [17] 黄茂福.荧光增白剂(一).印染.2001,27(4):37-41
    [1] 孙丽萍,高山,赵辉等.锐钛矿型二氧化钛纳米粉体的IR光谱与光催化性能研究.光散射学报.2004,15(4):300-302
    [2] 荆煦瑛,陈式棣等.红外光谱实用指南.天津科学技术出版社.1992,29
    [3] 荆煦瑛,陈式棣等.红外光谱实用指南,天津科学技术出版社.1992,99
    [4] 陈文梅,赵修建.溶胶-凝胶法制备TiO_2多孔纳米薄膜.武汉工业大学学报.2000,22(1):6-9
    [5] 李俊,刘长生,王卫红.锐钛矿型纳米TiO_2的制备及光催化性能研究.化学与生物工程.2003(5):41-43
    [6] 包定华,顾豪爽,邝安祥等.Sol-Gel法合成TiO_2纳米粉末和薄膜.无机材料学报.1996,11(3):453-458
    [7] 曹剑瑜,卢文庆,焦程敏等.纳米TiO_2的合成、表征及紫外吸收性能.南京师大学报(自然科学版).2004,27(1):51-54
    [8] Kim S J, Park S D, Jeong Y H, et al. Homogeneous Precipitation of TiO_2 Ultrafine Powders from Aqueous TiOCl_2 Solution. Journal of the American.Ceramic Society. 1999,82(4): 927-932
    [9] Ovenstone J, Yanagisawa K. Effect of Hydrothermal Treatment of Amorphous Titania on the Phase Change from Anatase to Rutile During Calcination. Chemical Materials.1999,11(10): 2770-2774
    [10] 刘国光,张学治,丁雪军等.二氧化钛光催化剂的表征方法研究.环境污染治理技术与设备.2003,4(4):55-60
    [11] 唐子龙,张俊英,成哲,张中太.纳米金红石TiO_2的低温制备.功能材料.2002,33(5):542-544,547
    [12] 朱诚身.聚合物结构分析.北京:科学出版社.2004,524
    [13] 喻志刚,袁荞龙,应圣康.SiO_2-TiO_2复合微粒的研究.复合材料学报.2000,17(4):71-75
    [14] Walid A, Daoud, John H Xin. Low Temperature Sol-Gel Processed Photocatalytic Titania Coating. Journal of Sol-Gel Science and Technology. 2004,29(1):25-29
    [1] 王菊生,孙恺等.染整工艺原理(第一册).北京:纺织工业出版社.1984:198,200
    [2] 黄茂福.抗静电与抗静电剂(一).印染助剂.1997,14(2):31-34
    [3] Garnett J L, Jankiewicz S V, Long M A, et al. Inorganic Salts as Additives in Accelerating the Photografting of Styrene to Cellulose and Polyethylene. Journal of Polymer Science. Part C. 1986,24(3): 125-129,
    [4] Terlington J G A, Feijen J, Hoffman A S. Immobilization of Surface Active Compounds on Polymer Supports Using Glow Discharge Processes: 1. Sodium Dodecyl Sulfate on Poly(propylene). Jouranl of Colloid Interface and Science. 1993, 155(1):55-65
    [5] Jahagirdar C J, Venkatakrishnan S J. Antisoiling of Polyester(PET)by a Novel Method of Plasma Treatments and Its Evaluation by Color Measurement. Journal of Applied Polymer Science.1990, 41(1-2):117-121
    [6] Asfardjani K, Segui Y, Aurelle Y, et al. Effect of Plasma Treatments on Wettability of Polysulfone and Polyetherimide. Journal of Applied Polymer Science. 1991,43(2):271-281
    [7] Eom S. Using Chitosan As an Antistatic Finish for Polyester Fabric. AATCC Review. 2001,1(3): 57-60
    [8] 邢凤兰等.印染助剂.北京:化学工业出版社.2002:472
    [9] 黄茂福.抗静电与抗静电剂(二).印染助剂.1997,14(3):32-35
    [10] Menachem L, Stephen B S. Functional finishes. Part B. 1984: 291-313
    [11] Joshi V K. Antistatic Fibres and Finishes. Man-Made Textiles in India, 1996,39(7):245
    [12] Anderson M A. Titania and alumina ceramic membranes. Journal of Membrane Science. 1998, 39(3):243
    [13] 杨辉,丁子上,江仲华等.正硅酸乙酯溶胶-凝胶过程动力学.硅酸盐学报.1989,17(3):204-209
    [14] 王剑华等.溶胶-凝胶法制备SiO_2薄膜的研究.材料科学与工艺.1999,7(9):1-15
    [15] 余锡宾,吴虹.正硅酸乙酯的水解、缩合过程研究.无机材料学报.1996,11(4):703-707
    [16] 徐莉.正硅酸乙酯溶胶-凝胶过程中催化剂的作用.南京林业大学学报.1998,22(4):67-70
    [17] 林健.催化剂对正硅酸乙酯水解-聚合机理的影响.无机材料学报.1997,12(3):363-369
    [18] 顾宇辉,古宏晨,徐宏等.正硅酸乙酯水解过程的半经验量子化学研究.无机化学学报.2003,19(12):1301-1306
    [19] 朱诚身.聚合物结构分析.北京:科技出版社.2004:33
    [20] 中西香尔,P.H.索罗曼.红外光谱分析100例.北京:科学出版社.1984:44
    [21] 钱军民,李旭祥.以四甲氧基为前驱体的溶胶-凝胶材料研究.西安交通大学学报.2002,36(1):103-107
    [22] 夏海平,朱从善,干福熹.含NH_2基团的有机改性硅酸盐材料合成及IR、DTA和TG分析.硅酸盐学报.1997,25(5):554-560
    [23] 钱军民,李旭祥.以四甲氧基为前驱体的溶胶-凝胶材料研究.西安交通大学学报.2002,36(1):103-107
    [24] 王华林,余锡宾,王长友.聚甲基三乙氧基硅烷/二氧化钛有机无机杂化材料的制备.应用化学.1998,15(5):101-103
    [1] 许海育.固色剂的性能和深色作用.印染.1996,22(2):23-26
    [2] 黄茂福,沈锡.活性染料固色剂的研究.染整科技.1999(3):49-53
    [3] 丁忠传,杨新伟.纺织染整助剂.北京:中国纺织工业出版社 2000
    [4] 唐育民.固色剂的发展概况评述.染整技术.1995,21(5):19-21
    [5] 催连复,史立新.固色剂Y的生产与应用.沈阳化工.1991(2):37-39
    [6] 黄茂福.论无甲醛固色剂的发展.印染.2000(6):49-53
    [7] 吴雄英等.纺织品耐摩擦牢度测试方法的差异比较.印染.2002,28(3):30-32
    [8] 陆世安.提高摩擦牢度和日晒牢度的技术措施.丝绸.2001(9):13
    [9] 杨宝根.色牢度指标与国际标准接轨对纺织品出口的影响及对策.现代纺织技术.2001,10(1):40-41
    [10] 李汝富.无甲醛固色剂SH-96的合成和应用.印染助剂.1997,14(5):18-19
    [11] 付永刚,王树根,姚于红.非离子无甲醛固色剂TX的研制与应用.印染助剂.1999,16(6):13-15
    [12] 王春梅等.无甲醛固色剂NF-1的合成与应用.印染助剂.1999,16(3):22-23
    [13] 邢凤兰等.印染助剂.北京:化学工业出版社.2002,250
    [14] 叶金鑫.纺织用固色剂的发展.现代纺织技术.2003,11(2):43-46
    [15] 郑光洪,冯西宁.染料化学.北京:中国纺织出版社.2000,37
    [16] 罗敏 溶胶-凝胶技术在纺织上的应用与研究 东华大学博士论文 2003.9
    [1] 消毒技术规范.中华人民共和国卫生部.2002
    [2] 孙越励.纺织品抗菌技术的探讨.产业用纺织品.1999,17(12):12-15
    [3] 邹承淑,张洪杰,商成杰.织物抗菌卫生整理的发展概况.印染.2002,增刊:58-59
    [4] Frechet J M J. Functional Polymers and Dendrimers-Reactivity, Molecular, Architecture and Interfacial Energy, Science. 1994,263(5154):1710-1715
    [5] Gauthier M, Moeller M. Uniform Highly Branched Polymers by Anionic Grafting Arborescent Graft Polymers. Macromolecules. 1991,24(16):4548-4553
    [6] Ohtani B. Ogawa Y, Ishimoto S.N. et al. Photocatalytic Activity of Amorphous Anatase Mixture of Titanium(Ⅳ) Oxide Particles Suspended in Aqueous Solutions, Journal of Physics Chemistry B: 1997, 101(19):3764-3752
    [7] 杨栋梁,王焕祥.负离子技术在纺织品中的应用近况(一).印染.2002(20):46-49
    [8] 毕鹏宇,陈跃华,李汝勤.负离子纺织品及其应用的研究.纺织学报.2003,26(6):99-101
    [9] 张艳,陈跃华,陈杰华等.负离子纺织品的研究与应用.上海纺织科技.2002,30(5):52
    [10] 薛迪庚.织物的功能整理.北京:中国纺织出版社.2000,107
    [11] Textor T, Bahners T H, Schollmeyer E. Coating Wool and Silk by Sol-Gel Technique. The 10th International Wool Textile Research Conference. 2003, F1-12:1-5
    [12] Textor T, Bahners T H, Schollmeyer E. Inorganic-organic Hybrid Polymers to Protect Technical Textiles. Technical Textiles. 2002, 45(8): 103-105
    [13] Textor T, BahnersT H, Scholhneyer E. Surface Modification of Textile Fabrics by Coating Based on the Sol-Gel Process. Melliand Textilberichte. 1999, 80(10): 229
    [14] Mahltig B, Bottcher H. Modified Silica Sol Coatings for Water-Repellent Textiles. Journal of Sol-Gel and Technology. 2003, 27(1): 43-52
    [16] Mathltig B, Bottcher H. Refining of Textiles by Nanosol Coating. Melliand Textilberichte. 2002, 83(4):50-51
    [16] 侯永善编.染整工艺学.北京:纺织工业出版社.1993:133-135

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700