有限元动力学宽频带计算与连接结构实验建模方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为满足航天器结构对结构动力学计算越来越高的精度和计算频率范围要求,本文开展了拓宽结构有限元分析频率范围和连接结构实验建模方法的研究。
     限制上限分析频率的主要原因之一是有限元模型的规模超过了计算机的处理能力,而上限分析频率决定了分析的频带宽度。为在保证计算精度的前提下降低模型规模,首先提出了一种具有r阶修正精度的自由界面子结构模态综合法,通过增加修正阶次,可以将足够多的高阶截断模态的影响包含在计算过程中,保证了计算精度。随后,将界面协调条件也推广到r阶,构造了关于广义界面力坐标和广义模态坐标的方程,将高阶截断模态的影响也写为广义模态坐标的形式,从而在消除高阶附着模态之间线性相关问题的同时,使模态降阶后整体结构运动方程中仅包含广义模态坐标,方程的规模不会随修正阶次的上升而上升,提高了模态分析的计算效率。为改善计算效率和计算精度之间的平衡,同时还提出了一种确定修正阶次r的自适应算法。最后对传统的模态截止准则进行了修正,提高了宽频范围内频率响应的计算效率。
     对“点连接”结构提出了一种基于频响函数直接识别连接结构动刚度和频响矩阵的“无模型”实验建模方法。为克服实验测量噪声导致的“相对欠传感器”问题,首先建立了四条基本方程,接着以其为依据,提出了一种估计未测自由度频响函数的方法,然后,通过同时将所有估计和实验测试得到的频响信息都纳入到由四条基本方程导出的统一识别方程中,引入了尽可能多的频响信息,达到了抑制实验测试噪声影响并克服其导致的“相对欠传感器”问题的目的。数值和实验算例的计算结果表明,本文提出算法的计算精度显著优于同类算法。
     对“线连接”和“面连接”这两类“绝对欠传感器”的连接结构提出了一种“无模型”间接实验建模方法,即首先估计未测自由度运动量信息和界面力,然后由此二者直接构造连接结构单元刚度阵、阻尼阵和质量阵。采用这一方法,首先实现了对“线连接”结构的实验建模,然后对“面连接”结构提出了“虚结构”+“虚连接单元”的等效建模方法,以克服“面连接”结构尺寸大造成的直接构造刚度阵、阻力阵和质量阵的困难。与现行的各种有模型方法相比,即预先构造参数化非线性模型然后识别模型参数的方法,本文提出方法的识别精度不依赖于预先构造的模型准确程度,可以避免识别参数过程中的大规模自由度寻优问题,有利于保证计算精度和计算效率。实验算例的计算结果验证了本文提出的方法。
For satisfying ever raising demands on the structural dynamic computationaccuracy and the upper analysis frequency of spacecraft structures,methods forextending Finite Element Analysis (FEA) to the broadband frequency range andimproving the accuracy of conection structure modeling through experiments areinvestigated in this dissertation.
     One major difficulty in carrying out broadband vibration analysis for spacecraftstructure with conventional FEA is caused by the sharp increase in the number ofDegrees of Freedoms (DOFs). For avoiding this sharp increase in the number of DOFswith rational accuracy, an rthorder free interface modal synthesis method is proposed atfirst. With up to rthorder Residual Attachments Modes (RAMs) retained in thecomputation, sufficient influences of higher-order truncated modes can be included inthe computation to ensure the accuracy. Then a set of higher order interfacecompatibility conditions is introduced into computation to eliminate the lineardependence of the retained RAMs for ensuring computation accuracy and to deriveformula of complete structure only in terms of generalized modal coordinates forensuring computation efficiency. To reach a balance between the computation accuracyand the efficiency, a self-adapt algorithm for determining the exact value of r is alsosuggested. Finally, for broadband frequency response analyses, a modified modalcut-off criterion is proposed to reduce the number of the eigenpairs retained in thecomputation and hence improve the computation efficiency.
     To overcome the relative insufficient sensor difficulty caused by experimentalmeasurement noise, a non-model method for identifying the dynamic properties of pointtype connection structure with partially measured Frequency Response Functions (FRFs)is proposed. Four basic formulas are derived first and a method for estimatingunmeasured FRFs is developed as the second step of the identification procedure. Thento suppress the influence of measurement noise for overcome the relative insufficientsonsor difficulty, the four basic formulas are integrated together to form a united formformula for utilizing all available data, i.e. all measured and estimated FRFs. With thisapproach, the relative insufficient sonser difficulty can be overcomed and thus the identification accuracy can be improved significantly compared to exisiting methods. Anumerical example and an experimental example are provided to describe theidentification procedure and to show the effectiveness of the proposed method.
     For identifying dynamic properties of line type connection and area typeconnection structure, which usually encounters absolute insufficient sensor difficulty, anon-model method is proposed. The strategy of the method is to estimate the motioninformation, i.e. acceleration, velocity and displacement, of unmeasured DOFs andjunction forces firstly, and then connection stiffness matrix, damp matrix and massmatrix are constructed with these estimated motion information and junction forces.With this strategy, line type connection structure can be modeled; however, modelingarea type connection still faces challenge due to the dimension of the connectionstructure is too large to directly construct stiffness matrix, damp matrix and mass matrix.Thus an equal modelling method is developed to model such kind of connection withVirtual Structure (VS) and Virtual Connection Element (VCE). Compared to variouscurrent modeling methods with predefined or presumed connection models, theidentification accuracy of the proposed method does not depends on the accuracy of thepredefined or presumed models, and large-scale optimization procedure can also beavoided. An experimental example is provided to describe the identification procedureand show the effectiveness of the proposed method.
引文
[1] Ji L. Mid-frequency vibration of built-up structures [D]. Southampton: ISVR, University ofSouthampton,2003.
    [2] Ihlenburg F, Babu ka I. Dispersion analysis and error estimation of Galerkin finite elementmethods for the Helmholtz equation [J]. International Journal for Numerical Methods inEngineering,1995,38(22):3745-3774.
    [3] Deraemaeker A, Babu ka I, Bouillard P. Dispersion and pollution of the FEM pollution for theHelmholtz equation in one, two and three dimensions [J]. International Journal for NumericalMethods in Engineering,1999,46(4):471-499.
    [4]姚德源,王其政.统计能量分析原理及其应用[M].北京:北京理工大学出版社,1995.
    [5] Ohayon, R, Soize, C. Structural acoustics and vibration: mechanical models, variationalformulations and discretization [M]. San Diego: Academic Press,1998.
    [6] Sarkar A, Ghanem R. Mid-frequency structural dynamics with parameter uncertainty [J].Computer Methods in Applied Mechanics and Engineering,2002,191(47-48):5499-5513.
    [7]7th Framework Programme of CAE Methodologies for Mid-Frequency Analysis in Vibrationand Acoustics. Assessment report on the hybrid FE-SEA method [EB/OL].2011[2011-09-29].http://www.midfrequency.org/documents/assessment-reports-1/d22_assessmentreport_hybridfesea_rsl.
    [8]王勖成,邵敏.有限单元法基本原理和数值方法[M].2版.北京:清华大学出版社,1997.
    [9] Birgersson F, Ferguson N S, Finnveden S. Application of the spectral finite element method toturbulent boundary layer induced vibration of plates [J]. Journal of Sound and Vibration,2003,259(4):873-891.
    [10] Birgersson F, Finnveden S, Nilsson C M. A spectral super element for modeling of platevibration, part1: general theory [J]. Journal of Sound and Vibration,2005,287(1-2):297-314.
    [11] Birgersson F, Finnveden S. A spectral super element for modeling of plate vibration, part2:turbulence excitation [J]. Journal of Sound and Vibration,2005,287(3-4):315-328.
    [12] Desmet W. A wave based prediction technique for coupled vibro-acoustic analysis [M].Flamant: Katholieke Universiteit Leuven,1998.
    [13] Desmet W, Sas P, Vandepitte D. A comparison between an indirect trefftz method and thefinite-element method for solving coupled vibro-acoustic problems [J]. Journal of AcousticSociety of America,1999,106(4):2118.
    [14] Genechten B V, Pluymers B, Vanmaele C, et al. A hybrid wave based vibro-acoustic modelingtechnique for the prediction of interior noise in an aircraft fuselage[C].//Proceedings of the25th Congress of the International Council of the Aeronautical Sciences. Hamburg: ICAS,2006.
    [15] Van Genechten B, Pluymers B, Vanmaele C, et al. On the coupling of wave based modelswith modally reduced finite element models for structural acoustic analysis[C].//Proceedingsof the2006International Conference on Noise and Vibration Engineering. Leuven: ISMA,2006:2383-2404.
    [16] Van Genechten B, Pluymers B, Vandepitte D, et al. A hybrid wave based-modally reducedfinite element method for the efficient analysis of low-and mid-frequency car cavityacoustics[C].//Proceedings of the SAE2009Noise and Vibration Conference and Exhibition.St. Charles: SAE,2009.
    [17] Vergote K, Van Genechten B, Vandepitte D, et al. On the analysis of vibroacoustic systems inthe mid-frequency range using a hybrid deterministic-statistical approach [J]. Computers andStructures,2011,89(11-12):868-877.
    [18] Saikat Dey, Joseph J Shirron, Luise S Couchman. Mid-frequency structural acoustic andvibration analysis in arbitrary, curved three-dimensional domains [J]. Computers andStructures,2011,79(6):617-629.
    [19] Ladeveze P. A new computational approach for structure vibrations in the medium frequencyrange [J]. Comptes Rendus Academie des Sciences Paris,1996,322(IIb):849-856.
    [20] Ladeveze P, Blanc L, Rouch P, et al. A multiscale computational method for mediumfrequency vibrations of assemblies of heterogeneous plates [J]. Computers and Structures,2003,81(12):1267-1276.
    [21] Ladeveze P, Rouch P, Riou H, et al. Analysis of medium-frequency vibrations in a frequencyrange [J]. Journal of Computational Acoustics,2003,11(2):255-284.
    [22] Ladeveze P, Riou H. Calculation of medium-frequency vibrations over a wide frequencyrange [J]. Computer Methods in Applied Mechanics and Engineering,2005,194(27-29):3167-3191.
    [23] Chevreuil M, Ladeveze P, Rouch P. Transient analysis including the low-and themedium-frequency ranges of engineering structures [J]. Computers and Structures,2007,85(17-18):1431-1444.
    [24] Zhang Geng. Components-based and parametric reduced-order modeling methods forvibration analysis of complex structures [D]. Michigan: Mechanical Engineering, Universityof Michigan,2005.
    [25] Jin Hwan Ko, Doyoung Byun. Comparison on numerical solutions for mid-frequencyresponse analysis of finite element linear systems [J]. Computers and Structures,2010,88(1-2):18-24.
    [26] Bennighof JK, Kaplan MF. Frequency sweep analysis using multi-level substructuring, globalmodes and iteration [C].//Proceedings of the39th AIAA/ASME/ASCE/AHS structures,structural dynamics and materials conference. Long Beach: AIAA/ASME/ASCE/AHS,1998:2567-2575.
    [27] Gao W, Li S, Yang C, et al. An implementation and evaluation of the AMLS method forsparse eigenvalue problems [J]. ACM Transactions on Mathematical Software,2008,34(4).
    [28] Qu ZQ. Accurate methods for frequency responses and their sensitivities of proportionallydamped system [J]. Computer&Structures,2001,79(1):87-96.
    [29] Soize, C, Hutin, P M, Desanti A, et al. Linear dynamic analysis of mechanical systems in themedium frequency range [J]. Computers and Structures,1986,23(6):605-637.
    [30] Vasudevan, R, Liu, Y N. Application of time integration and transform techniques toscattering problems [G].//Structural Acoustics. New York: American Society of MechanicalEngineers,1991:35-40.
    [31] Liu, W K, Zhang, Y, Ramirez M R. Multiple scale finite element methods [J]. InternationalJournal for Numerical Methods in Engineering,1991,32(5):969-990.
    [32] Sparrow V W. Mid-frequency range finite element (MFR-FE) approach for structuralvibrations and interior noise [C].//Proceedings of the40th AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics, and Materials Conference and Exhibit. Bellevue:AIAA/ASME/ASCE/AHS/ASC,1999,360-370.
    [33] Savin E. Mid-frequency vibrations of a complex structure: experiments and comparison withnumerical simulations [J]. AIAA Journal,2002,40(9):1876-1884.
    [34] Soize C. Reduced models in the medium frequency range for general dissipativestructural-dynamics systems [J]. European Journal of Mechanics-A/Solids,1998,17(4):657-685.
    [35] Soize, C. Reduced models for computational structural acoustics in the medium-frequencyrange [C].//Proceedings of the ASME Noise Control and Acoustics Division. New York:American Society of Mechanical Engineers,1999:479-485.
    [36] Soize, C, Mziou, S. Dynamic substructuring in the medium-frequency range[R]. ONERAReport TP,2000-210.
    [37] Soize C, Mziou S. Dynamic substructuring in the medium-frequency range [J]. AIAA Journal,2003,41(6):1113-1118.
    [38] Ettouney M M, Daddazio R P, Abboud N N. Some practical applications of the use if scaleindependent elements for dynamic analysis of vibrating systems [J]. Computers&Structures,1997,65(3):423-432.
    [39] Ercan M Dede, Gregory M Hulbert. Conceptual design of tunable structures formid-frequency response [C].//Proceeding of50th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics, and Materials Conference. Palm Springs:AIAA/ASME/ASCE/AHS/ASC,2009-2111.
    [40] Lu L. Dynamic substructuring by FEA/SEA [C].//Winter Annual Meeting of the AmericanSociety of Mechanical Engineers. Dallas: American Society of Mechanical Engineers,1990:9-12.
    [41] Soize C. A model and numerical Method in the medium frequency range for vibroacousticpredictions using the theory of structural fuzzy [J]. Journal of the Acoustical Society ofAmerica,1993,94(2):849-865.
    [42] Pierce A D, Sparrow V W, Russell D A. Fundamental structural-acoustic idealizations forstructures with fuzzy internal [J]. Journal of Vibration and Acoustics,1995,117(4):339-348.
    [43] Belyaev A K. Dynamic simulation of high-frequency vibration of extended complexstructures [J]. Mechanics of Structures and Machines,1992,20(2):155-168.
    [44] Belyaev A K. High-frequency vibration of extended complex structures [J]. ProbabilisticEngineering Mechanics,1993,8(1):15-24.
    [45] Langley R S, Brernner P. A hybrid method for the vibration analysis of complexstructural-acoustic systems [J]. Journal of the Acoustical Society of America,1999,105(3):1657-1671.
    [46] Shorter P J, Langley R S. Vibro-acoustic analysis of complex systems [J]. Journal of Soundand Vibration,2005,288(3):669-700.
    [47] Langley R S, Cotoni V. Response variance prediction for uncertain vibro-acoustic systemusing a hybrid deterministic-statistical method [J]. Journal of the Acoustical Society ofAmerica,2007,122(6):3445-3463.
    [48] Niedermaier D, Kaouk M. ARES1X Hybrid modeling with comparison to flight data[C/OL].//ESI Japan Users Conference,2010. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100038464_2010040745.pdf.
    [49] Vergote K, Genechten V B, Vandepitte D, et al. On the analysis of vibroacoustic systems inthe mid-frequency range using a hybrid deterministic-statistical approach [J]. Computers andStructures,2011,89(11-12):868-877.
    [50] Soize C, Hutin P M, Desanti A, et al. Linear dynamic analysis of mechanical systems in themedium frequency range [J]. Computers and Structures,1986,23(5):605-637.
    [51] Soize C. Estimation of the fuzzy substructure model parameters using the mean power flowequation of the fuzzy structure [J]. Journal of Vibration and Acoustics,1998,120(1):279-286.
    [52] Soize C, Bjaoui K. Estimation of fuzzy structure parameters for continuous junctions [J].Journal of the Acoustical Society of America,2000,107(4):2011-2020.
    [53] Sparrow V W, Russell D A, Rochat J L. Implementation of discrete fuzzy structure models inmathematica [J]. International Journal for Numerical Methods in Engineering,1994,37(17):3005-3014.
    [54] Rochat J L, Sparrow V W. Incorporating compressional and shear wave types into fuzzystructure models for plates[C].//Proceedings of the1995Design Engineering TechnicalConferences. New York: American Society of Mechanical Engineers,1995:247-252.
    [55] Sparrow V W, Buehrle R. Fuzzy structures analysis of aircraft panels in NASTRAN[C].//Proceedings of the42nd AIMASME/ASCE/AHS/ASC Structures, Structural DynanticsConference and Exhibit. Seattle: American Institute of Aeronautics and Astronautics,2001:1032-1041.
    [56] Lyon R H. Sea, power how, and energy accountancy[R]. SAE Paper951303.
    [57] Belyaev A K, Palmov V A. Integral theories of random vibration of complex structures [M].//Elishakoff I, Lyon R H. Random Vibration-Status and Recent Developments. Amsterdam:Elsevier,1986:19-38.
    [58] Nefske D J, Sung S H. Power flow finite element analysis of dynamic systems: basic theoryand application to beams [J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design,1989,111(1):94-100.
    [59] Wohlever J C. Bernhard R J. Mechanical energy flow models of rods and beams [J]. Journalof Sound and Vibration,1992,153(1):1-19.
    [60] Bouthier O M, Bernhard R J. Models of space-averaged energetics of plates [J]. AIAA Journal,1992,30(3):616-623.
    [61] Bouthier O M, Bernhard R J. Simple models of energy flow in vibrating membranes [J].Journal of Sound and Vibration,1995,182(1):129-147.
    [62] Carcaterra A, Sestieri A. Energy density equations and power flow in structures [J]. Journal ofSound and Vibration,1995,188(2):269-282.
    [63] Xing J T, Price W G. A power-flow analysis based on continuum dynamics [J]. Royal Societyof London Proceedings Series A,1999,455(1982):401-436.
    [64] Vlahopoulos N, Zhao X. Basic development of hybrid finite element method formid-frequency structural vibrations [J]. AIAA Journal,1999,37(11):1495-1505.
    [65] Zhao X, Vlahopoulos N. A hybrid finite element formulation for mid-frequency analysis ofsystems with excitation applied on short members. Journal of Sound and Vibration,2000,237(2):181-202.
    [66] Vlahopoulos N, Zhao X. An investigation of power flow in the mid-frequency range forsystems of co-linear beams based on a hybrid finite element formulation [J]. Journal of Soundand Vibration,2001,242(3):445-473.
    [67]杨炳渊.连接子结构试验建模的发展与应用[J].强度与环境,2000,2:51-59.
    [68] Ibrahima R A, Pettit C L. Uncertainties and dynamic problems of bolted joints and otherfasteners [J]. Journal of Sound and Vibration,2005,279(3-5):857-936.
    [69] Kerschen G, Worden K, Vakakis A F, et al. Past, present and future of nonlinear systemidentification in structural dynamics [J]. Mechanical Systems and Signal Processing,2006,20(3):505-592.
    [70] Inamura T, Sata T. Stiffness and damping identification of element of a machine-tool structure[J]. Annals of the CIRP,1979,28(1):235-239.
    [71] Kim T R, Wu S M, Eman K F. Identification of joint parameters for a taper joint [J]. Journalof Engineering for Industry,1989,111(3):282-287.
    [72] Okubo N, Miyazaki M. Development of uncoupling technique and its application[C].//Proceeding of International Modal Analysis Conference. Florida: Society for ExperimentalMechanics,1984:1194-1200.
    [73] Tsai J S, Chou Y E. The identification of dynamic characteristics of a single bolt joint [J].Journal of Sound and Vibration,1988,125(3):487-502.
    [74] Yang T C, Fan S H, Lin C S. Joint stiffness identification using FRF measurements [J].Computers and Structures,2003,81(28-29):254-255.
    [75]李效韩,杨炳渊.结构振动分析中的连接子结构[J].宇航学报,1987,1:7-15.
    [76] Wang Yi, Lim T C. An experimental and computational study of the dynamic characteristicsof spot-welded sheet metal structures[C].//SAE2001World Congress Technical Papers.Detroit: Society of Automobile Engineering,2001.
    [77] Ren Y, Beards C F. Identification of joint properties of a structure using FRF data [J]. Journalof Sound and Vibration,1995,186(4):567-587.
    [78] Celic D, Boltezar M. Identification of the dynamic properties of joints using frequency-response functions [J]. Journal of Sound and Vibration,2008,317(1-2):158-174.
    [79] Yang K T, Park Y S. Joint structural parameter identification using a subset of frequencyresponse function measurements [J]. Mechanical Systems and Signal Processing,1993,7(6):509-530.
    [80] Celic D, Boltezar M. The influence of the coordinate reduction on the identification of thejoint dynamic properties [J]. Mechanical Systems and Signal Processing,2009,23(4):1260-1271.
    [81] Worden K, Tomlinson G R. Nonlinearity in structural dynamics: detection, identification andmodeling [M]. London: Institute of Physics Publishing,2001.
    [82] Vakakis A F, Ewins D J. Effects of weak non-linearities on modal analysis. MechanicalSystems and Signal Processing,1994,8(2):175-198.
    [83] Storer D M, Tomlinson G R. Recent developments in the measurements and interpretation ofhigher order functions from nonlinear structures [J]. Mechanical Systems and SignalProcessing,1993,7(2):173-189.
    [84] Feldman M. Nonlinear system vibration analysis using the Hilbert transform-I: free vibrationanalysis method [J]. Mechanical Systems and Signal Processing.1994,8(2):119-127.
    [85] Feldman M. Nonlinear system vibration analysis using the Hilbert transform-II: forcedvibration analysis method [J]. Mechanical Systems and Signal Processing.1994,8(2):309-318.
    [86] Setio S, Setio H D, Jezequel L. A method of nonlinear modal identification from frequencyresponse tests [J]. Journal of Sound and Vibration.1992,158(3):497-515.
    [87] Ahmadian H, Zamani A. Identification of nonlinear boundary effects using nonlinear normalmodes [J]. Mechanical System and signal processing,2009,23(6):2008-2018.
    [88] Lenaerts V, Kerschen G, Golinval J C. Identification of a continuous structure with ageometrical non-linearity, Part II: proper orthogonal decomposition [J]. Journal of Sound andVibration,2003,262(4):907-919.
    [89] Golinval J C, Kerschen G, Lenaerts V, et al. European COST action F3on structural dynamics,working group3-identification of non-linear systems; introduction and conclusions [J].Mechanical Systems and Signal Processing,2003,17(1):177-178,251-254.
    [90] Richards C M, Singh R. Feasibility of identifying non-linear vibratory systems consisting ofunknown polynomial forms [J]. Journal of Sound and Vibration,1999,220(3):413-450.
    [91] Atkins P, Worden K. Identification of a multi-degree-of-freedom nonlinear system.//Proceedings of the15th International Modal Analysis Conference. Orlando: Society forExperimental Mechanics,1997:1023-1028.
    [92] Richards C M, Singh R. Characterization of rubber isolator nonlinearities in the context ofsingle-and multi-degree-of-freedom experimental systems [J]. Journal of Sound andVibration,2001,247(5):807-834.
    [93] Adams D E, Allemang R J. Polynomial non-polynomial, and orthogonal polynomialgenerating functions for nonlinear system identification.//Proceedings of the InternationalSeminar on Modal Analysis. Leuven:2000.
    [94]王光远,郑钢铁.连接梁的非线性耦合振动分析与实验[J].振动工程学报,2009,22(1):41-47.
    [95] Wang Guangyuan, Zheng Gangtie. Vibration of two beams connected by nonlinear isolators:analytical and experimental study [J]. Nonlinear Dynamics,2010,62(3):507-519.
    [96]王光远.非线性隔振与柔性结构耦合动力学及在结构设计中的应用[博士学位论文].北京:清华大学,2011.
    [97] Groper M, Hemmye J. Partial slip damping in high strength friction grip bolted joints。//Proceedings of the Fourth International Conference of Mathematical Modeling. New York:Pergamon Press,1983.
    [98] Iwan W D. A distributed-element model for hysteresis and its steady-state dynamic response[J]. Journal of Applied Mechanics,1966,(33):893-900.
    [99] Song Y, Hartwigsen C J, et al. Simulation of dynamics of beam structures with bolted jointsusing adjusted Iwan beam elements [J]. Journal of Sound and Vibration,2003,273(1-2):249-276.
    [100] Abad J, Franco J M, Celorrio R, et al. Design of experiments and energy dissipation analysisfor a contact mechanics3D model of frictional bolted lap joints [J]. Advances in EngineeringSoftware,2011, in Press.
    [101]白绍竣.包带连接建模与力学特性研究[博士学位论文].哈尔滨:哈尔滨工业大学,2010.
    [102] Aydin Gunduz, Akira Inoue, Rajendra Singh. Estimation of interfacial forces in time domainfor linear systems [J]. Journal of Sound and Vibration,2010,329(13):2616-2634.
    [103] Karl K, Stebens. Force identification problems-an overview[C].//Proceedings of the1978Society of Experimental Mechanics Spring Conference on Experimental Mechanics. Societyof Experimental Mechanics,1978:838-844.
    [104] Dobson B J, Rider E. A review of the indirect calculation of excitation forces from measuredstructural response data [J]. Journal of Mechanical Engineering Science,1990,204(C2):69-75.
    [105]刘恒春,朱德愚,孙久厚.振动载荷识别的奇异值分解法[J].振动工程学报,1990,3(1):24-32.
    [106] Liu Y, Shepard W S Jr. Dynamic force identification based on enhanced least squares and totalleast-squares schemes in the frequency domain [J]. Journal of Sound and Vibration,2005,282(1-2):37-60.
    [107]田燕,王菁,郑海起.多载荷识别频响函数矩阵求逆法的改进算法[J].军械工程学院学报,2002,14(4):13-17.
    [108] Zheng S F, Zhou L, Lian X M, et al. Coherence analysis of the transfer function for dynamicforce identification [J]. Mechanical Systems and Signal Processing,2011,25(6):2229-2240.
    [109]许锋,陈怀海,鲍明.动载荷识别的广义域模态模型及其精度分析研究[J].计算力学学报,2003,20(2):218-222.
    [110] Parloo E, Verboven P, Guillaume P, et al. Force identification by means of in-operation modalmodels [J]. Journal of Sound and Vibration,2003,262(1):161-173.
    [111]唐秀近.动态力识别的时域方法[J].大连工学院学报,1987,26(4):21-27.
    [112]唐秀近.时域动态载荷识别的精度问题[J].大连理工大学学报,1990,30(1):31-37.
    [113] Gregory D L, Priddy T G, Smallwood D O. Experimental determination of the dynamic forcesacting on non-rigid bodies[C].//Aerospace Technology Conference and Exposition. Societyof Automobile Engineering. Long Beach:1986.
    [114] Smallwood D O, Gregory D L. Experimental determination of the mass matrix using aconstrained least squares solution[C].//AIAA/ASME SDMC Conference. Monterey:AIAA/ASME,1987.
    [115] Bateman V I, Carne T G. Force reconstruction for impact tests of an energy-absorbing nose [J].The International Journal of Analytical and Experimental Modal Analysis,1992,7:41-50.
    [116] James G H. Estimation of the space shuttle rollout forcing function[C].//23rd InternationalModal Analysis Conference. Orlando: Society for Experimental Mechanics,2005.
    [117] Mayes R L. Measurement of lateral launch loads on re-entry vehicles using SWAT[C].//12thInternational Modal Analysis Conference. Honolulu: Society for Experimental Mechanics,1994:1063-1068.
    [118]初良成.工程结构中的动态载荷识别及动力稳定性问题[博士学位论文].大连:大连理工大学,1994.
    [119]初良成,曲乃泅,乌日瑞锋.动态载荷识别的时域正演法[J].应用力学学报,1994,11(2):9-18.
    [120] Steltzner A D, Kammer D C. Input force estimation using an inverse structural filter[C].//17th International Modal Analysis Conference. Kissimmee: Society for ExperimentalMechanics,1999:954-960.
    [121] Matthew S, Allena, Carneb T G. Delayed, multi-step inverse structural filter for robust forceidentification [J]. Mechanical Systems and Signal Processing,2008,22(5):1036-1054.
    [122]张方,朱德懋.基于神经网络模型的动载荷识别[J].振动工程学报,1997,10(2):156-162.
    [123]张方,朱德懋,张福祥.动荷载识别的时间有限元模型理论及其应用[J].振动与冲击,1998,17(2):1-4.
    [124] Goldman R L. Vibration analysis by dynamic partitioning [J]. AIAA Journal,1969,7(6):1152-1154.
    [125] Hou S N. Review of modal synthesis techniques and a new approach [J]. Shock and VibrationBulletin,1969,40(4):25-39.
    [126] MacNeal R H. A hybrid method of component mode synthesis [J]. Computers&Structures,1971,1(4):581-601.
    [127] Suarez L E, Matheu E E. A modal synthesis technique based on the force derivative method[J]. Journal of Vibration and Acoustics,1992,114(2):209-216.
    [128] Craig R R, Chang C J. Free-interface methods of substructure coupling for dynamic analysis[J]. AIAA Journal,1976,14(11):1633-1635.
    [129] Kang J H, Kim Y Y. Field-consistent higher-order free-interface component mode synthesis[J]. International Journal for Numerical Methods in Engineering,2001,50(3):595-610.
    [130] Rubin S. Improved component-mode representation for structural dynamic analysis [J]. AIAAJournal,1975,13(8):995-1006.
    [131] Qiu J B, Ying Z G, Williams F W. Exact modal synthesis techniques using residual constraintmodes [J]. International Journal for Numerical Methods in Engineering,1997,40(13):2475-2492.
    [132]王文亮,桂作润.结构振动与动态子结构方法[M].上海:复旦大学出版社,1985.
    [133]王文亮,朱农时,胥加华. CN群上对称结构的双协调模态综合[J].航空动力学报,1990,5(4):352-356.
    [134]郑兆昌.复杂结构振动研究的模态综合技术.振动与冲击,1982,1(1):28-36.
    [135]谢耕,郑兆昌.动力子结构法中Ritz基的一种选择.振动工程学报,1990,3(2):28-37.
    [136]应祖光,邱吉宝,潭志勇.精确剩余模态及其综合技术[J].振动工程学报,1996,9(1):38-46.
    [137]向树红,邱吉宝,王大钧.模态分析与动态子结构方法新进展[J].力学进展.2004,34(3):289-303.
    [138] Wang J H, Liou C M. Identification of parameters of structural joints by use ofnoise-contaminated FRFs [J]. Journal of Sound and Vibration,1990,142(2):261-277.
    [139] Liu W. Structural dynamic analysis and testing of coupled structures [D]. London: ImperialCollege of Science, Technology and Medicine,2000.
    [140] Ginsberg J H.机械与结构振动——理论与应用[M].白化同,李俊宝,译.北京:宇航出版社,2005:140-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700