复标度方法对共振态的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先介绍了单粒子共振态的研究意义、研究方法及研究进展。指出单粒子共振态的研究对于了解奇特核的物理性质具有重要意义。其次给出了复标度方法的理论框架,指出其出发点是引入坐标变换r→eiθr,且复标度变换要求满足ABC定理。接下来给出了复标度方法的相对论拓展,即Dirac-CSM方法和RMF-CSM方法。复标度方法研究共振态的几个实例也一并介绍。本文着重介绍了两个方面问题:第一、复标度方法被用于研究指数势和Morse势中Dirac粒子的共振问题。为了论证本文方法的适用性,计算结果和其它文献提供的结果进行了比较,可以发现,本文结果的非相对论极限值和其它的非相对论计算吻合得相当好。共振参数对势场形状的依赖性被进一步检查,敏感性被详尽分析。通过比较贋自旋双重态的能量和宽度,在本文模型中,很好的贋自旋对称性被发现。通过改变控制势场形状的三个参数,贋自旋对称和势场形状之间的关系被进一步研究。第二、我们发展了描述形变核共振态的理论。在描述形变核的Schrodinger方程中,通过引入复标度变换了统一描述束缚态和共振态的理论。以31Ne为例,检验了这种理论的适用性和有效性,并用这个理论系统研究了31Ne的单中子共振态,通过比较发现,我们获得的31Ne的单中子共振态的能量和宽度与耦合道方法的计算结果一致。尤其,我们获得的最低的两个共振能级和宽度呈现特殊的变化规律,能够很好地解释31Ne的形变晕现象。最后给出了本文的总结和展望。
In this thesis, we have first introduced the importance of resonances in physics, and the methods of exploring resonances, as well as the recent progress on the resonance researches. It is pointed out that the study of resonances has important significance in understanding the physical properties of weakly bound nuclei. Secondly, we have presented the theoretical formalism of complex scaling method, and shown the starting point of complex scaling transformation by introducing a coordinate transformation r→eiθr, and the requirements of the complex scaling transformation being to meet the ABC theorem. Then we have introduced our development on the complex scaling method, i.e., the relativistic expansion of complex scaling method,(Dirac-CSM and RMF-CSM). Several examples on the applications of Dirac-CSM and RMF-CSM have also been introduced in two aspects.
     Firstly, we have applied the Dirac-CSM to study the resonances of a Dirac particle in a Morse potential. The applicability of the method is demonstrated with the results compared with the available data. It is shown that the present calculations in the nonrelativistic limit are in excellent agreement with the nonrelativistic calculations. Further, the dependence of the resonant parameters on the shape of the potential is checked with the sensitivity to the potential parameters analyzed. By comparing the energies and widths of the pseudospin doublets, well pseudospin symmetry is discovered in the present model. The relationship between the pseudospin symmetry and the shape of the potential is investigated by changing the Morse potential shaped by the dissociation energy, the equilibrium intermolecular distance, and the positive number controlling the decay length of the potential.
     Secondly, we have developed a complex scaling method for describing the resonances of deformed nuclei and presented a theoretical formalism for the bound and resonant states on the same footing. With31Ne as an illustrated example, we have demonstrated the utility and applicability of the extended method and have calculated the energies and widths of low-lying neutron resonances in31Ne. The bound and resonant levels in the deformed potential are in full agreement with those from the multichannel scattering approach. The width of the two lowest-lying resonant states shows a novel evolution with deformation and supports an explanation of the deformed halo for31Ne.
     Finally, we give the summary and outlook of this paper.
引文
[1]I. Tanihata, H. Hamagaki, O. Hashimoto, et al., Measurements of interaction cross sections and nuclear radii in the light p-shell region [J], Phys. Rev. Lett.55, 2676-2679 (1985).
    [2]The Frontiers of Nuclear Science, A long Range Plan,2007, http://dnp.aps.org./ nplinks/lrps/2007-Nuclear-Science.Low-Res.pdf.
    [3]NuPECC Long Range Plan 2004:Perspectives for Nuclear Physics Research in Europe in the Coming Decade and beyond, http://www.nupecc.org/1rp02/ long_range_plan_2004.pdf.
    [4]Opportunities in Nuclear Science:A Long-Range Plan for the Next Decade, The DOE/NSF Science Advisory Committee, April 2002.
    [5]L. F. Cantoa, P. R. S. Gomesb, R. Donangeloa, M. S. Husseinc, Fusion and breakup of weakly bound nuclei [J], Phys. Rep.424,1-111 (2006).
    [6]Z. Elekes, Zs. Dombradi, N. Aoi, and etal., Spectroscopic study of neutron shell closures via nucleon transfer in the near-dripline nucleus 230 [J], Phys. Rev. Lett.98,102502 (2007).
    [7]R. Kanungo, C. Nociforo, A. Prochazka, and etal., One-neutron removal measurement reveals 240 as a new doubly magic nucleus [J], Phys. Rev. Lett. 102,152501 (2009).
    [8]T. Nakamura, N. Kobayashi, Y. Kondo, and etal., Halo structure of the island of inversion nucleus 31Ne [J], Phys. Rev. Lett.103,262501 (2009).
    [9]K. Tanaka, T. Yamaguchi, T. Suzuki, and etal., Observation of a large reaction cross section in the drip-line nucleus 22C [J], Phys. Rev. Lett.104,062701 (2010).
    [10]A. S. Jensen, K. Riisager, D. V. Fedorov, E. Garrido, Structure and reactions of quantum halos [J], Rev. Mod. Phys.76,215-261 (2004).
    [11]J. C. Pei......, F. R. Xu, Deformed coordinate-space Hartree-Fock-Bogoliubov approach to weakly bound nuclei and large deformations [J], Phys. Rev. C 78, 064306 (2008).
    [12]孟杰,郭建友,李剑,李志攀,梁豪兆,龙文辉,牛一斐,牛中明,尧江明,张颖,赵鹏巍,周善贵,原子核物理中的协变密度泛函理论[J],物理学进展,31,199-336(2011).
    [13]D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, and P. Ring, Relativistic Hartree-Bogoliubov theory:static and dynamic aspects of exotic nuclear structure [J], Phys. Rep.409,101-259 (2005).
    [14]J. Meng, H. Toki, S.G. Zhou, S.Q. Zhang, W.H. Long, L.S. Geng, Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei [J], Prog. Part. Nucl. Phys.57,470-563 (2006).
    [15]G. A. Lalazissis, Relativistic Hartree-Bogoliubov theory and the isospin dependence of the effective nuclear force [J], Prog. Part. Nucl. Phys.59, 277-284 (2007).
    [16]T. Niksic, D. Vretenar, P. Ring, Relativistic nuclear energy density functionals: Mean-field and beyond [J], Prog. Part. Nucl. Phys.66,519-548 (2011).
    [17]J. Meng and P. Ring, Relativistic Hartree-Bogoliubov Description of the Neutron Halo in 11 Li [J], Phys. Rev. Lett.77,3963 (1996); Giant halo at the neutron drip line [J], Phys. Rev. Lett.80,460 (1998).
    [18]L. G. Cao and Z. Y. Ma, Exploration of resonant continuum and giant resonance in the relativistic approach [J], Phys. Rev. C 66,024311 (2002).
    [19]N. Sandulescu, L. S. Geng, H. Toki, and G. Hillhouse, Pairing correlations and resonant states in the relativistic mean field theory [J], Phys. Rev. C 68,054323 (2003).
    [20]Taylor, J. R.,1987, Scattering Theory:The Quantum Theory of Nonrelativistic Collisions (Krieger, Malabar, FL) [M].
    [21]A. T. Kruppa, K. Arai, Resonances and the continuum level density [J], Phys. Rev. A 59,3556 (1999).
    [22]V. A. Mandelshtam, H. S. Taylor, V. Ryaboy, N. Moiseyev, Stabilization theory for computing energies and widths of resonances [J], Phys. Rev. A 50,2764 (1994).
    [23]H. S. Taylor, A. U. Hazi, Comment on the stabilization method:Variational calculation of the resonance width [J], Phys. Rev. A,14,2071 (1976).
    [24]L. Zhang, S. G. Zhou, J. Meng, and E. G. Zhao, Real stabilization method for nuclear single-particle resonances [J], Phys. Rev. C 77,014312 (2008).
    [25]B. N. Lu, E. Guang. Zhao, and S. G. Zhou, Pseudospin Symmetry in Single Particle Resonant States [J], Phys. Rev. Lett.109,072501 (2012).
    [26]V. I. Kukulin, V. M. Krasnopl'sky, J. Horacek, Theory of Resonances:Principles and Applications [M], Kluwer Academic, Dordrecht,1989.
    [27]S. C. Yang, J. Meng, and S.G. Zhou, Exploration of Unbound States by Analytical Continuation in the Coupling Constant Method Within Relativistic Mean Field Theory [J], Chin. Phys. Lett.18,196 (2001).
    [28]S. S. Zhang, J. Meng, S.G. Zhou, G.C. Hillhouse, Analytic continuation of single-particle resonance energy and wave function in relativistic mean field theory [J], Phys. Rev. C 70,034308 (2004).
    [29]N. Tanaka, Y. Suzuki, K. Varga, Unbound states by analytic continuation in the coupling constant [J], Phys. Rev. C 59,1391 (1999).
    [30]S. Aoyama, Theoretical Prediction for the Ground State of H 10 e with the Method of Analytic Continuation in the Coupling Constant [J], Phys. Rev. Lett. 89,052501 (2002).
    [31]G. Cattapan, E. Maglione, From bound states to resonances:Analytic continuation of the wave function [J], Phys. Rev. C 61,067301 (2000).
    [32]张时声,孟杰,郭建友,基于Schroedinger方程的耦合常数解析延拓方法[J]高能物理与核物理.27,1095(2003).
    [33]S. S. Zhang, J. Y. Guo, S. Q. Zhang, J. Meng, Analytic Continuation in the Coupling Constant Method for the Dirac Equation [J], Chin. Phys. Lett.21,632 (2004).
    [34]J. Y. Guo, R. D. Wang, and X. Z. Fang, Pseudospin symmetry in the resonant states of nuclei [J], Phys. Rev. C 72,054319 (2005).
    [35]J. Y. Guo and X. Z. Fang, Isospin dependence of pseudospin symmetry in nuclear resonant states [J], Phys. Rev. C 74,024320 (2006).
    [36]S. S. Zhang, M. S. Smith, G. Arbanas, and R. L. Kozub, Structures of exotic 131, 133Sn isotopes and effect on r-process nucleosynthesis [J], Phys. Rev. C 86, 032802(R) (2012).
    [37]Y. K. Ho, The method of complex coordinate rotation and its applications to atomic collision processes [J], Phys. Rep.99,1-68 (1983). N. Moiseyev, Quantum theory of resonances:calculating energies, widths and cross-sections by complex scaling [J], Phys. Rep.302,212-293 (1998).
    [38]N. Michel, W. Nazarewi cz, M. Ploszajczak and T. Vertse, Shell model in the complex energy plane, Topical Review [J], J. Phys. G:Nucl. Part. Phys.36, 013101 (2009).
    [39]E. Garrido, D. V. Fedorov, H. O. U. Fynbo, A. S. Jensen, Isospin mixing and energy distributions in three-body decay [J], Phys. Lett. B 648,274-278 (2007).
    [40]T. Matsumoto, K. Kato, and M. Yahiro, New description of the four-body breakup reaction [J], Phys. Rev. C 82,051602(R) (2010).
    [41]T. Myo, R. Ando, and K. Kato, Five-body resonances of 8He using the complex scaling method [J], Phys. Lett. B 691,150-155 (2010).
    [42]N. Michel, W. Nazarewicz, M. Ploszajczak, and K. Bennaceur, Gamow shells model description of neutron-rich nuclei [J], Phys. Rev. Lett.89,042502 (2002).
    [43]R. Id Betan, R. J. Liotta, N. Sandulescu, and T. Vertse, Two-Particle Resonant States in a Many-Body Mean Field [J], Phys. Rev. Lett.89,042501 (2002).
    [44]J. Dobaczewski, N. Michel, W. Nazarewicz, etal., Shell structure of exotic nuclei [J],Prog. Part. Nucl. Phys.59,432-445 (2007).
    [45]K. Tsukiyama, M. Hjorth-Jensen, and G. Hagen, Gamow shell-model calculations of drip-line oxygen isotopes [J], Phys. Rev. C 80,051301(R) (2009).
    [46]N. Michel, W. Nazarewicz, and M. Ploszajczak, Isospin mixing and the continuum coupling in weakly bound nuclei [J], Phys. Rev. C 82,044315 (2010).
    [47]A. T. Kruppa, P. H. Heenen, H. Flocard, R. J. Liotta, Particle-unstable nuclei in the Hartree-Fock theory [J], Phys. Rev. Lett.79,2217-2220 (1997).
    [48]A. T. Kruppa, P. H. Heenen, R. J. Liotta, Resonances in the Hartree-Fock BCS theory [J], Phys. Rev. C 63,044324 (2001).
    [49]N. Michel, K. Matsuyanagi, M. Stoitsov, Gamow-Hartree-Fock-Bogoliubov method:Representation of quasiparticles with Berggren sets of wave functions [J], Phys. Rev. C 78,044319 (2008).
    [50]G. Hagen, T. Papenbrock, and M. Hjorth-Jensen, Ab Initio Computation of the 17F Proton Halo State and Resonances in A=17 Nuclei [J], Phys. Rev. Lett. 104,182501(2010)
    [51]I. A. Ivanov, Y. K. Ho, Complex rotation method for the Dirac Hamiltonian [J], Phys. Rev. A 69,023407 (2004)
    [52]G. Pestka, M. Bylicki, J. Karwowski, Application of the complex-coordinate rotation to the relativistic Hylleraas-CI method:a case study [J], J. Phys. B,39, 2979-2987 (2006)
    [53]A. D. Alhaidari, Relativistic extension of the complex scaling method [J], Phys. Rev. A 75,042707 (2007)
    [54]J. Y. Guo, X. Z. Fang, and et al., Application of the complex scaling method in relativistic mean-field theory [J], Phys. Rev. C 82,034318 (2010)
    [55]Q. Liu, J. Y. Guo, Z. M. Niu and S. W. Chen, Resonant states of deformed nuclei in the complex scaling method [J], Phys. Rev. C 86,054312 (2012)
    [56]I. Hamamoto, Interpretation of Coulomb breakup of 31Ne in terms of deformation [J], Phys. Rev. C 81,021304 (2010)
    [57]J. Aguilar and J. M. Combes, A class of analytic perturbations for one-body Schrodinger Hamiltonians [J], Commun. Math. Phys.22,269 (1971); E. Balslev and J. M. Combes, Spectral properties of many-body Schrodinger operators with dilatation-analytic interactions [J], ibid.22,280 (1971)
    [58]R. A. Weder, On the Lee model with dilatation analytic cutoff function [J], J. Math. Phys.15,20(1974).
    [59]Seba P,The complex scaling method for Dirac resonances [J], Lett. Math. Phys., 16,51(1988).
    [60]J. Y. Guo, M. Yu, and etal., A relativistic extension of the complex scaling method using oscillator basis Functions [J], Comput.Phys.Commun.181, 550-556(2010).
    [61]J. Y. Guo, J. Wang, and et al., The relativistic development of basis expansion method with complex scaling for the description of bound and resonant states [J], Int. J. Mod. Phys. E 19,1357-137 (2010).
    [62]S. A. Sofianos, S. A. Rakityansky, Exact method for locating potential resonances and Regge trajectories [J], J. Phys. A 30,3725 (1997).
    [63]A.D. Alhaidari, Study of resonances in the complex charge plane [J], J. Phys. A 37,5863 (2004).
    [64]T. Cowan et al., Observation of correlated narrow-peak structures in positron and electron spectra from superheavy collision systems [J], Phys. Rev. Lett.56,444 (1986).
    [65]P. M. Morse, Diatomic Molecules According to the Wave Mechanics. Ⅱ. Vibrational Levels [J], Phys. Rev.34,57 (1929).
    [66]M. E. Goggin and P. W. Milonni, Driven Morse oscillator:Classical chaos, quantum theory, and photodissociation [J], Phys. Rev. A 37,796 (1988).
    [67]O. Aydogdu and R. Sever, Pseudospin and spin symmetry in Dirac-Morse problem with a tensor potential [J], Phys. Lett. B 703,379 (2011).
    [68]I. Inci, D. Bonatsos, and I. Boztosun, Electric quadrupole transitions of the Bohr Hamiltonian with the Morse potential [J], Phys. Rev. C 84,024309 (2011).
    [69]I. Boztosun, D. Bonatsos, and I. Inci, Analytical solutions of the Bohr Hamiltonian with the Morse potential [J], Phys. Rev. C 77,044302 (2008).
    [70]D. A. Morales, Energy eigenstates of the rotating morse oscillator using the shifted l/N expansion [J], Chem. Phys. Lett.161,253 (1989).
    [71]E. D. Filho and R. M. Ricotta, Morse potential energy spectra through the variational method and supersymmetry [J], Phys. Lett. A 269,269 (2000).
    [72]J. P. Killingbeck, A. Grosjean, and G. Jolicard, The Morse potential with angular momentum [J], J. Chem. Phys.116,447 (2002).
    [73]S. H. Dong, R. Lemus, and A. Frank, Ladder operators for the Morse potential [J], Int. J. Quantum Phys.86,433 (2002).
    [74]K. Mohammed, M. M. Shukla, F. Milstein, and J. L. Merz, Lattice dynamics of face-centered-cubic metals using the ionic Morse potential immersed in the sea of free-electron gas [J], Phys. Rev. B 29,3117 (1984).
    [75]J. T. Sun, L. Gao, X. B. He, Z. H. Cheng, Z. T. Deng, X. Lin, H. Hu, S. X. Du, F. Liu, and H. J. Gao, Surface reconstruction transition of metals induced by molecular adsorption [J], Phys. Rev. B 83,115419 (2011).
    [76]I. Nasser, M. S. Abdelmonem, H. Bahlouli, and A. D. Alhaidari, The rotating Morse potential model for diatomic molecules in the J-matrix representation:Ⅱ. The S-matrix approach [J], J. Phys. B 41,215001 (2008).
    [77]L. Satpathy and P. Sarangi, Resonances of the bonding potential of 12C+12C system [J], J. Phys. G 16,469 (1990).
    [78]L. Satpathy, Nuclear molecular resonances [J], Prog. Part. Nucl. Phys.29,327 (1992).
    [79]L. Satpathy and P. Sarangi, The mechanism of nuclear molecular resonances and the alpha -particle chain configuration in 24Mg [J], J. Phys. G 20, L37 (1994).
    [80]L. Satpathy, Resonance states in the 12C+12C modified Morse potential [J], Phys. G 31,1233 (2005).
    [81]K. Kato and Y. Abe, Resonance states in the 12C-12C Morse potential [J], Phys. Rev. C 55,1928 (1997).
    [82]D. Jarukanont, K. Na, and L. E. Reichl, Quasibound states and heteroclinic structures in the driven Morse potential [J], Phys. Rev. A 75,023403 (2007).
    [83]A. D. Alhaidari, Solution of the Relativistic Dirac-Morse Problem [J], Phys. Rev. Lett.87,210405(2001).
    [84]S. Flugge, Practical Quantum Mechanics (Springer-Verlag, Berlin,1974) [M].
    [85]F. Cooper, A. Khare, and U. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific, Singapore,2001) [M].
    [86]C. Berkdemir, Pseudospin symmetry in the relativistic Morse potential including the spin-orbit coupling term [J], Nucl. Phys. A 770,32 (2006).
    [87]W. C. Qiang, R. S. Zhou, and Y. Gao, Application of the exact quantization rule to the relativistic solution of the rotational Morse potential with pseudospin symmetry [J], J. Phys. A:Math. Theor.40,1677 (2007).
    [88]K. T. Hecht and A. Adler, Generalized seniority for favored J≠0 pairs in mixed configurations [J],Nucl. Phys. A 137,129 (1969).
    [89]A. Arima, M. Harvey, and K. Shimizu, Pseudo LS coupling and pseudo SU3 coupling schemes [J], Phys. Lett. B 30,517 (1969).
    [90]J. N. Ginocchio, Pseudospin as a Relativistic Symmetry [J], Phys. Rev. Lett.78, 436 (1997).
    [91]J. Meng, K. Sugawara-Tanabe, S.Yamaji, P. Ring, andA.Arima, Pseudospin symmetry in relativistic mean field theory [J], Phys. Rev. C 58, R628 (1998).
    [92]J. Meng, K. Sugawara-Tanabe, S. Yamaji, and A. Arima, Pseudospin symmetry in Zr and Sn isotopes from the proton drip line to the neutron drip line [J], Phys. Rev. C 59,154 (1999).
    [93]P. Alberto, M. Fiolhais, M. Malheiro, A. Delfino, and M. Chiapparini, Isospin Asymmetry in the Pseudospin Dynamical Symmetry [J], Phys. Rev. Lett.86, 5015(2001).
    [94]S. G. Zhou, J. Meng, and P. Ring, Spin Symmetry in the Antinucleon Spectrum [J], Phys. Rev. Lett.91,262501 (2003).
    [95]A. Leviatan, Symmetries and Supersymmetries of the Dirac Hamiltonian with Axially Deformed Scalar and Vector Potentials [J], Phys. Rev. Lett.103, 042502 (2009).
    [96]H. Z. Liang, P. W. Zhao, Y. Zhang, J. Meng, and N. V. Giai, Perturbative interpretation of relativistic symmetries in nuclei [J], Phys. Rev. C 83, 041301(R)(2011).
    [97]J. N. Ginocchio, Relativistic U(3) symmetry and pseudo-U(3) symmetry of the Dirac Hamiltonian [J], J. Phys. Conf. Ser.267,012037 (2011).
    [98]S. W. Chen and J. Y. Guo, Relativistic effect of spin and pseudospin symmetries [J], Phys. Rev. C 85,054312 (2012).
    [99]W. H. Long, P. Ring, J. Meng, N. Van Giai, and C. A. Bertulani, Nuclear halo structure and pseudospin symmetry [J], Phys. Rev C 81,031302(R) (2010).
    [100]L. B. Castro, Relating pseudospin and spin symmetries through chiral transformation with tensor interaction [J], Phys. Rev. C 86,052201(R) (2012).
    [101]A. S. de Castro and P. Alberto, Spin and pseudospin symmetries in the Dirac equation with central Coulomb potentials [J], Phys. Rev. A 86,032122 (2012).
    [102]P. Alberto, A. S. de Castro, and M. Malheiro, Spin and pseudospin symmetries of the Dirac equation with confining central potentials [J], Phys. Rev. C 87, 031301(R)(2013).
    [103]J. Y. Guo, Exploration of relativistic symmetry by the similarity renormalization group [J], Phys. Rev. C 85,021302(R) (2012).
    [104]D. P. Li, S. W. Chen, and J. Y. Guo, Further investigation of relativistic symmetry with the similarity renormalization group [J], Phys. Rev. C 87, 044311(2013).
    [105]H. Z. Liang, S. H. Shen, P. W. Zhao, and J. Meng, Pseudospin symmetry in supersymmetric quantum mechanics:Schrodinger equations [J], Phys. Rev. C 87,014334 (2013).
    [106]B. N. Lu, E. G. Zhao, and S. G. Zhou. Exact conservation and breaking of pseudospin symmetry in single particle resonant states [C], AIP Conf. Proc. 1533,63-69(2013).
    [107]G. Rawitscher, C. Merow, M. Nguyen, and I. Simbotin, Resonances and quantum scattering for the Morse potential as a barrier [J], Am. J. Phys.70,935 (2002).
    [108]J. Dobaczewski, W. Nazarewicz, T. R. Werner, J.-F. Berger, C. R. Chinn, and J. Decharg'e, Mean-field description of ground-state properties of drip-line nuclei: Pairing and continuum effects [J], Phys. Rev. C 53,2809 (1996).
    [109]W. Poschl, D. Vretenar, G. A. Lalazissis, and P. Ring, Relativistic Hartree-Bogoliubov Theory with Finite Range Pairing Forces in Coordinate Space:Neutron Halo in Light Nuclei [J], Phys. Rev. Lett.79,3841 (1997).
    [110]I. Hamamoto, Interpretation of Coulomb breakup of Ne31 in terms of deformation [J], Phys. Rev. C 81,021304(R) (2010).
    [111]S. G. Zhou, J. Meng, P. Ring, and E. G. Zhao, Neutron halo in deformed nuclei [J], Phys. Rev. C 82,011301 (R) (2010).
    [112]E. Wigner and L. Eisenbud, Higher Angular Momenta and Long Range Interaction in Resonance Reactions [J], Phys. Rev.72,29 (1947).
    [113]G. M. Hale, R. E. Brown, and N. Jarmie, Pole structure of the Jπ=3/2+ resonance in 5He [J], Phys. Rev. Lett.59,763 (1987).
    [114]J. Humblet, B.W. Filippone, and S. E. Koonin, Level matrix,16N β decay, and the 12C (α,γ) 160 reaction [J], Phys. Rev. C 44,2530 (1991).
    [115]J. R. Taylor, Scattering Theory:The Quantum Theory on Nonrelativistic Collisions (Wiley & Sons, New York,1972) [M].
    [116]A. U. Hazi and H. S. Taylor, Stabilization Method of Calculating Resonance Energies:Model Problem [J], Phys. Rev. A 1,1109 (1970).
    [117]N. Tanaka,Y. Suzuki, and K.Varga, Exploration of resonances by analytic continuation in the coupling constant [J], Phys. Rev. C 56,562 (1997).
    [118]N. Moiseyev, Quantum theory of resonances:calculating energies, widths and cross-sections by complex scaling [J], Phys. Rep.302,212 (1998).
    [119]K. Arai, Resonance states of C12 in a microscopic cluster model [J], Phys. Rev. C 74,064311(2006).
    [120]S. Aoyama, T. Myo, K. Kato, and K. Ikeda, Chaos with Few Degrees of Freedom [J], Prog. Theor. Phys.116,1 (2006).
    [121]T. Myo, Y. Kikuchi, and K. Kato, Five-body resonances of 8C using the complex scaling method [J], Phys. Rev. C 85,034338 (2012), and references therein.
    [122]M. Bylicki, G. Pestka, and J. Karwowski, Relativistic Hylleraas configuration-interaction method projected into positive-energy space [J], Phys. Rev. A 77,044501 (2008).
    [123]L. S. Ferreira, E. Maglione, and R. J. Liotta, Nucleon Resonances in Deformed Nuclei [J], Phys. Rev. Lett.78,1640 (1997).
    [124]K. Yoshida and K. Hagino, Role of low-1 component in deformed wave functions near the continuum threshold [J], Phys. Rev. C 72,064311 (2005).
    [125]K. Hagino and N. Van Giai, From bound states to resonances:Analytic continuation of the wave function [J], Nucl. Phys. A 735,55 (2004).
    [126]G. Hagen and J. S. Vaagen, Study of resonant structures in a deformed mean field by the contour deformation method in momentum space [J], Phys. Rev. C 73,034321 (2006).
    [127]I. Hamamoto, One-particle resonant levels in a deformed potential [J], Phys. Rev. C 72,024301 (2005).
    [128]Z. P. Li, J. Meng, Y. Zhang, S. G. Zhou, and L. N. Savushkin, Single-particle resonances in a deformed Dirac equation [J], Phys. Rev. C 81,034311 (2010).
    [129]I. Hamamoto, Neutron shell structure and deformation in neutron-drip-line nuclei [J], Phys. Rev. C 85,064329 (2012).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700