大豆NDH复合体及其在盐胁迫中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆作为重要的经济作物,是人类植物蛋白和植物油的重要来源。同时,全世界约20%的可耕地和接近一半的灌溉地都受到不同程度的盐碱威胁。因此,揭示大豆在盐胁迫条件下的光合生理机制,提高大豆的抗逆性及其光合能力自然成了这一研究领域的重要问题。
     叶绿体NAD(P)H脱氢酶复合体(NAD(P)H dehydrogenase (NDH) complex)是起源于藻类,并最早在烟草中被发现的一个蛋白复合体。在蓝藻和高等植物中,NAD(P)H脱氢酶复合体在光下还原PQ并参与围绕PSI的环式电子传递,在逆境条件下为光合作用提供额外的ATP,进而增强植物对逆境环境的适应能力。因此,为了明确NDH复合体在提高大豆盐耐受性中的作用,我们用栽培大豆Melrose及其体细胞杂交后代S111-9作为研究材料,并通过运用两种酵母双杂交技术,研究了NDH复合体各亚基间的互作关系,以及NDH复合体与PSI复合体之间的互作关系。同时,我们还研究了盐胁迫对两种大豆的光合生理特性、NDH复合体介导的CEF1活性、NdhB和NdhH以及Rubisco的含量和亚细胞定位的影响。结果摘要如下:
     通过运用酵母双杂交技术,我们首次发现了组成NDH复合体的NdhB与4个亲水亚基NdhH、NdhI、NdhJ和NdhK之间,NdhH与NdhI和NdhK之间,NdhD与NdhK之间的互作关系。从而明确了NdhB亚基在NDH复合体结构组成中的核心地位,以及NdhH亚基可能是NDH复合体亲水部分的核心亚基的结论。此外,我们还发现了S111-9中ndhB含有一个由36个氨基酸组成的类囊体转运肽。同时,我们的研究结果还首次表明,PSI复合体的两个核心亚基PsaA(?)PsaB,分别与NdhH、NdhI和NdhJ以及NdhH和NdhI存在互作关系。
     通过比较Melrose和S111-9在盐胁迫条件下的表型和光合生理特性,我们发现S111-9具有比Melrose更强的盐耐受性。同时,PSI和PSII光化学活性、作用光关闭后叶绿素荧光的瞬时上升和P700+再还原速率等参数都表明,高的NDH复合体介导的CEF1活性是造成其具有更强的盐耐受性的主要原因。而GFP融合蛋白共表达、NdhB和NdhH的含量和亚细胞定位的结果表明,S111-9中ndhB所含有的类囊体转运肽,可能在其NdhB亚基迁移定位的过程中起到重要的作用,从而造成了S111-9中NDH复合体的的积累,进而使其在盐胁迫条件下具有高的NDH复合体介导的CEF1活性。此外,Rubisco的含量和亚细胞定位的结果也表明,S1l1-9的强盐耐受性可能也与Rubisco的含量和活性存在一定的联系。
     与此同时,我们还意外地发现盐胁迫会影响大豆叶绿体中淀粉粒的降解和运输。而盐胁迫条件下,Melrose和S111-9的叶片中有效磷含量的变化表明,有效磷含量的变化与叶绿体中淀粉粒的降解和运输存在密切的联系。
     综上所述,我们的研究结果首次阐明了NDH复合体各亚基间及其与PSI复合体之间的互作关系。同时,进一步明确了NDH复合体介导的CEF1在提高大豆抗耐盐能力中的作用。而S111-9中ndhB所含有的类囊体转运肽的作用,也将为我们更加深入地研究NDH复合体的生理功能提供新的视角。
Soybean is an important economic crop, and the main source of plant protein and oil for human being. Meanwhile, about 20% available cultivated land and 1/2 irrigation field have been affected by saline at the different levels in the worldwide. Therefore, studying the photosynthetic physiological mechanisms of soybean under salt stress, and improving the ability of stress tolerance and photosynthesis of soybean will be important topic in this research field.
     Chloroplast NAD(P)H dehydrogenase (NDH) complex is originated from cyanobacteria, and was first found in tobacco. In cyanobacteria and higher plants, NDH complex reduces PQ in the light and is involved in the cyclic electron flow around PSI (CEF1), supplying extra ATP for photosynthesis and enhancing the fitness to environment, particularly under environmental stress conditions. So, in order to define the roles of NDH complex in improving the stress tolerant of soybean, G. max Melrose (cv.Melrose) and somatic hybrid descendants S111-9 were used in our research. According to the analysis by two type of yeast two hybrid, we study the relationships between all subunits that consist of NDH complex, and the relationships between NDH complex and PSI complex. At the same time, we also study the photosynthetic physiological characteristics, activities of CEF1 induced by NDH, the amounts and subcellular localization of NdhB, NdhH and Rubisco in Melrose and S111-9 under salt stress. And results are as follows:
     According to yeast two hybrid, we first find that NdhB subunit interacts with four hydrophilic subunits NdhH, NdhI, NdhJ and NdhK respectively, NdhH subunit interacts with NdhI and NdhJ, and NdhD subunit interacts with NdhK. Based on these results, we suggest that NdhB subunit is a core subunit in NDH complex and NdhH subunit may be a core subunit in the hydrophilic part of NDH complex. In addition, we also find that a thylakoid transit peptide of ndhB with 36 amino acids in S111-9. And our results first show that PsaA and PsaB, two core subunits in PSI complex, interact with NdhH, NdhI and NdhJ, and NdhH, NdhI respectively.
     Compared with the phenotype and photosynthetic physiological characteristics in Melrose and S111-9 under salt stress, we find that S111-9 have a higher salt tolerance than Melrose. Meanwhile, the results of photochemical efficiency of PSI and PSII, postillumination transient increase and re-reduction of P700+, which all show that higher activity of CEF1 induced by NDH is the main reason for having high salt tolerance in S111-9. And the results of GFP fusion protein coexpression, the amounts and subcellular localization of NdhB and NdhH, which also infer that the thylakoid transit peptide of ndhB in S111-9 may play an important role in the translocation and localization of NdhB subunit, and resulting in the accumulation of NDH complex, further improving the activity of CEF1 under salt stress. Besides, the results of the amounts and subcellular localization of Rubisco always suggest that the high salt tolerance of S111-9 may be related to the amounts and activity of Rubisco.
     Meanwhile, we still accidentally find that salt stress will affect the degradation and transport of starch in soybean's chloroplast. Under salt stress conditions, the results of the contents of available phosphorous also suggest that there is a close relationship between the Pi concentrations and the degradation and transport of starch in chloroplast.
     In conclusion, our results first clarify the interaction relationship between the subunits of NDH complex, NDH complex and PSI complex. Moreover, we also confirm that the CEF1 induced by NDH functions in improving the salt tolerance of soybean. And the function of thylakoid transit peptide of ndhB in S111-9 also will give us a new vision for deeply studying the physiological function of NDH complex.
引文
蒋德安,翁晓燕&陆庆(2001) Rubisco活化酶免疫扩散定量分析研究.浙江大学学报(农业与生命科学版),27,255-258.
    翁晓燕,蒋德安&陆庆(1999)影响水稻光合日变化的酶和相关因素分析.生物数学学报,14,495-500.
    Andreas H., Katrin A., Agnieszka Z., Jorg M., Henrik V.S.& Poul E.J. (2007) Knock-out of the chloroplast-encoded PSI-J subunit of photosystem I in Nicotiana tabacum:PSI-J is required for efficient electron transfer and stable accumulation of photosystem Ⅰ. FEBS Journal,274,1734-1746.
    Arnon D.I., Allen M.B.& Whatley F.R. (1954) Photosynthesis by isolated chloroplasts. Nature,174,394-396.
    Asada K., Heber U.& Schreiber U. (1993) Electron Flow to the Intersystem Chain from Stromal Components and Cyclic Electron Flow in Maize Chloroplasts, as Detected in Intact Leaves by Monitoring Redox Change of P700 and Chlorophyll Fluorescence. Plant and Cell Physiology,34,39-50.
    Baena-Gonzalez E., Allahverdiyeva Y., Svab Z., Maliga P., Josse E.M., Kuntz M., Maenpaa P.& Aro E.M. (2003) Deletion of the tobacco plastid psbA gene triggers an upregulation of the thylakoid-associated NAD(P)H dehydrogenase complex and the plastid terminal oxidase (PTOX). Plant Journal,35,704-716.
    Baker N.R., Harbinson J.& Kramer D.M. (2007) Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant Cell and Environment,30,1107-1125.
    Barth C.& Krause G.H. (2002) Study of tobacco transformants to assess the role of chloroplastic NAD(P)H dehydrogenase in photoprotection of photosystems I and Ⅱ. Planta,216,273-279.
    Bendall D.& Manasse R. (1995) Cyclic photophosphorylation and electron transport. Biochim et Biophys Acta,1229,23-28.
    Bukhov N.& Carpentier R. (2004) Alternative photosystem I-driven electron transport routes:mechanisms and functions. Photosynthesis Research,82,17-33.
    Bukhov N.G., Samson G.& Carpentier R. (2000) Nonphotosynthetic reduction of the intersystem electron transport chain of chloroplasts following heat stress. Steady-state rate. Photochem Photobiol,72,351-357.
    Burrows P.A., Sazanov L.A., Svab Z., Maliga P.& Nixon P.J. (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO Journal,17,868-876.
    Casano L.M., Martin M.& Sabater B. (2001) Hydrogen peroxide mediates the induction of chloroplastic Ndh complex under photooxidative stress in barley. Plant Physiology,125,1450-1458.
    Casano L.M., Zapata J.M., Martin M.& Sabater B. (2000) Chlororespiration and poising of cyclic electron transport. Plastoquinone as electron transporter between thylakoid NADH dehydrogenase and peroxidase. Journal of Biological Chemistry,275,942-948.
    Chen J., Liu Y., Ni J., Wang Y., Bai Y., Shi J., Gan J., Wu Z.& Wu P. (2011) OsPHFl regulates the plasma membrane localization of low-and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice. Plant Physiology,157,269-278.
    Cleland R.E.& Bendall D.S. (1992) Photosystem I cyclic electron transport: measurement of ferredoxin-plastpquinone reductase activity. Photosynthesis Research,34,409-418.
    Corneille S., Cournac L., Guedeney G., Havaux M.& Peltier G. (1998) Reduction of the plastoquinone pool by exogenous NADH and NADPH in higher plant chloroplasts. Characterization of a NAD(P)H-plastoquinone oxidoreductase activity. Biochim et Biophys Acta,1363,59-69.
    Dai J.Q., Zhu X.J., Liu F.Q., Xiang J.H., Nagasawa H.& Yang W.J. (2008) Involvement of p90 ribosomal S6 kinase in termination of cell cycle arrest during development of Artemia-encysted embryos. Journal of Biological Chemistry,283,1705-1712.
    Dai X.Y., Xu Y.Y., Ma Q.B., Xu W.Y., Wang T., Xue Y.B.& Chong K. (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiology,143,1739-1751.
    DalCorso G., Pesaresi P., Masiero S., Aseeva E., Schunemann D., Finazzi G., Joliot P., Barbato R.& Leister D. (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell,132,273-285.
    Davis D.J.& San Pietro A. (1977) Evidence for the role of sulfhydryl groups in a pH-dependent transition of ferredoxin:NADP oxidoreductase. Arch Biochem Biophys,184,572-577.
    Deng Y., Ye J.& Mi H. (2003) Effects of low CO2 on NAD(P)H dehydrogenase, a mediator of cyclic electron transport around photosystem Ⅰ in the cyanobacterium synechocystis PCC6803. Plant and Cell Physiology,44,534-540.
    Dionisio S.M.L.& Tobita S. (2000) Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. Journal of Plant Physiology,157,54-58.
    Driessen A.J.M.& Nouwen N. (2008) Protein translocation across the bacterial cytoplasmic membrane. Annual Review of Biochemistry,77,643-667.
    Emanuelsson O., Brunak S., Von H.G.& Nielsen H. (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocol,2,953-971.
    Endo T., Shikanai T., Takabayashi A., Asada K.& Sato F. (1999) The role of chloroplastic NAD(P)H dehydrogenase in photoprotection. FEBS Letters,457, 5-8.
    Evans M.V.W., Telfer A.& Lord A.V. (1972) Evidence for the role of a bound ferredoxin as the primary electron acceptor of photosystem Ⅰ in spinach chloroplasts. Biochim et Biophys Acta,267,530-537.
    Favory J.J., Kobayshi M., Tanaka K., Peltier G., Kreis M., Valay J.G.& Lerbs-Mache S. (2005) Specific function of a plastid sigma factor for ndhF gene transcription. Nucleic Acids Research,33,5991-5999.
    Flexas J., Ribas-Carbo M., Bota J., Galmes J., Henkle M., Martinez-Canellas S.& Medrano H. (2006) Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytologist, 172,73-82.
    Garcia V.M., Garcia M.E., Rascon C.Q., Herrera E.L.& Aguado S.G. (2005) Chlorophyll accumulation is enhanced by osmotic stress in graminaceous chlorophyllic cells. Journal of Plant Physiology,162,650-661.
    Golbeck J.H. (1992) Structure and function of photosysteml. Annual Review of Plant Physiology and Plant Molecular Biology,43,293-324.
    Golbeck J.H.& Warden J.T. (1982) Electron-Spin Resonance Studies of the Bound Iron-Sulfur Centers in Photosystem-I-Photo-Reduction of Center-a Occurs in the Absence of Center-B. Biochim et Biophysica Acta,681,77-84.
    Gomez S.M., Bil K.Y., Aguilera R., Nishio J.N., Faull K.F.& Whitelegge J.P. (2003) Transit peptide cleavage sites of integral thylakoid membrane proteins. Molecular & Cellular Proteomics,2,1068-1085.
    Guera A., Calatayud A., Sabater B.& Barreno E. (2005) Involvement of the thylakoidal NADH-plastoquinone-oxidoreductase complex in the early responses to ozone exposure of barley (Hordeum vulgare L.) seedlings. Journal of Experimental Botany,56,205-218.
    Hahn A., Bublak D., Schleiff E.& Scharf K.D. (2011) Crosstalk between Hsp90 and Hsp70 Chaperones and Heat Stress Transcription Factors in Tomato. Plant Cell,23,741-755.
    Hanton S.L., Matheson L.A., Chatre L., Rossi M.& Brandizzi F. (2007) Post-Golgi protein traffic in the plant secretory pathway. Plant Cell Report,26,1431-1438.
    Hasegawa P.M., Bressan R.A., Zhu J.K.& Bohnert H.J. (2000) Plant Cellular and Molecular Responses to High Salinity. Annu Rev Plant Physiol Plant Mol Biol,51,463-499.
    Hashimoto M., Endo T., Peltier G., Tasaka M.& Shikanai T. (2003) A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. Plant Journal,36,541-549.
    Havaux M. (1996) Short-term responses of photosystem I to heat stress. Induction of a PSII-independent electron transport through PSI fed by stromal components. Photosynthesis Research,47,85-97.
    Havaux M., Greppin H.& Strasser R.J. (1991) Functioning of photosystem I and photosystem II in pea leaves exposed to heat stress in the presence or absence of light. Analysis using in vivo fluorescence, absorbance, oxygen and photoacoustic measurements. Planta,186,88-98.
    Hirose T.& Sugiura M. (2001) Involvement of a site-specific trans-acting factor and a common RNA-binding protein in the editing of chloroplast mRNAs: development of a chloroplast in vitro RNA editing system. EMBO Journal, 20,1144-1152.
    Hong J., Jiang D.A., Weng X.Y., Wang W.B.& Hu D.W. (2005) Leaf anatomy, chloroplast ultrastructure, and cellular localization of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and RuBPCO activase in Amaranthus tricolor L. Photosynthetica,43,519-528.
    Hormann F., Soll J.& Bolter B. (2007) The chloroplast protein import machinery:a review. Methods Mol Biol,390,179-193.
    Horvath E.M., Peter S.O., Joet T., Rumeau D., Cournac L., Horvath G.V., Kavanagh T.A., Schafer C., Peltier G.& Medgyesy P. (2000) Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiology,123,1337-1350.
    Ishihara S., Takabayashi A., Ido K., Endo T., Ifuku K.& Sato F. (2007) Distinct functions for the two PsbP-like proteins PPL1 and PPL2 in the chloroplast thylakoid lumen of Arabidopsis. Plant Physiology,145,668-679.
    Ishikawa N., Takabayashi A., Ishida S., Hano Y., Endo T.& Sato F. (2008) NDF6:a thylakoid protein specific to terrestrial plants is essential for activity of chloroplastic NAD(P)H dehydrogenase in Arabidopsis. Plant and Cell Physiology,49,1066-1073.
    Ishitani M., Takabe, T., Kojima, K. and Takabe, T (1993) Regulation of glycinebetaine accumulation in the halotorerant cyanobacterium Aphanothece halophytica. Australian Journal of Plant Physiology,20,693-703.
    Jha D., Shirley N., Tester M.& Roy S.J. (2010) Variation in salinity tolerance and shoot sodium accumulation in Arabidopsis ecotypes linked to differences in the natural expression levels of transporters involved in sodium transport. Plant Cell and Environment,33,793-804.
    Jin S.H., Hong J., Li X.Q.& Jiang D.A. (2006) Antisense inhibition of rubisco activase increases rubisco content and alters the proportion of rubisco activase in stroma and thylakoids in chloroplasts of rice leaves. Annals of Botany,97, 739-744.
    Jordan D.B.& Ogren W. (1984) The CO2/O2 specificity of ribulose-1,5-biphosphate carboxylase/oxygenase. Planta,161,308-313.
    Junzou H., Hiroaki S., Robert W., Takashi I., Masahiro S., Masao M., Chihiro K., Yasuko H., Chong-Rong S., Bing-Yuan M., Yu-Qing L., Akira K., Yoko N., Atsushi H., Shinozaki K.& Sugiura M. (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome:Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet,217,185-194.
    Kanji O., Hideya F., Takayuki K., Hiromosa S., Tohru S., Satoshi S., Kazuhiko U., Yasuhiko S., Masayuki T., Zhen C., Shin-ichi A., Hachiro I.& Haruo O. (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature,322,572-574.
    Klughammer B., Sultemeyer D., Badger M.R.& Price G.D. (1999) The involvement of NAD(P)H dehydrogenase subunits, NdhD3 and NdhF3, in high-affinity CO2 uptake in Synechococcus sp. PCC7002 gives evidence for multiple NDH-1 complexes with specific roles in cyanobacteria. Mol Microbiol,32,1305-1315.
    Klughammer C.& Schreiber U. (1998) Measuring P700 absorbance changes in the near infrared spectral region with a dual wavelength pulse modulation system. In:G. Garab (Ed.), Photosynthesis:Mechanism and Effects, pp. pp 4357-4360. Kluwer Academic Publishers, Dordrecht, The Netherlands.
    Kofer W., Koop H.U., Wanner G.& Steinmuller K. (1998) Mutagenesis of the genes encoding subunits A, C, H, I, J and K of the plastid NAD(P)H-plastoquinone-oxidoreductase in tobacco by polyethylene glycol-mediated plastome transformation. Mol Gen Genet,258,166-173.
    Kotera E., Tasaka M.& Shikanai T. (2005) A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature,433,326-330.
    Kotting O., Pusch K., Tiessen A., Geigenberger P., Steup M.& Ritte G. (2005) Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphoglucan, water dikinase. Plant Physiology, 137,242-252.
    Koussevitzky S., Ne'eman E., Peleg S.& Harel E. (2008) Polyphenol oxidase can cross thylakoids by both the Tat and the Sec-dependent pathways:a putative role for two stromal processing sites. Physiologia Plantarum,133,266-277.
    Kovacs L., Damkjaer J., Kereiche S., Ilioaia C., Ruban A.V., Boekema E.J., Jansson S.& Horton P. (2006) Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell,18,3106-3120.
    Kramer D.M., Avenson T.J.& Edwards G.E. (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton reactions. Trends in Plant Science,9,349-357.
    Lascano H.R., Casano L.M., Martin M.& Sabater B. (2003) The activity of the chloroplastic Ndh complex is regulated by phosphorylation of the NDH-F subunit. Plant Physiology,132,256-262.
    Lin A.P., Wang G.C., Yang F.& Pan G.H. (2009) Photosynthetic parameters of sexually different parts of Porphyra katadai var. hemiphylla (Bangiales, Rhodophyta) during dehydration and re-hydration. Planta,229,803-810.
    Livingston A.K., Cruz J.A., Kohzuma K., Dhingra A.& Kramer D.M. (2010a) An Arabidopsis Mutant with High Cyclic Electron Flow around Photosystem I (hcef) Involving the NADPH Dehydrogenase Complex. Plant Cell,22,221-233.
    Livingston A.K., Kanazawa A., Cruz J.A.& Kramer D.M. (2010b) Regulation of cyclic electron flow in C-3 plants:differential effects of limiting photosynthesis at ribulose-1,5-bisphosphate carboxylase/oxygenase and glyceraldehyde-3-phosphate dehydrogenase. Plant Cell and Environment,33, 1779-1788.
    Lu K.X., Cao B.H., Feng X.P., He Y.& Jiang D.A. (2009) Photosynthetic response of salt-tolerant and sensitive soybean varieties. Photosynthetica,47,381-387.
    Lu K.X., Yang Y., He Y.& Jiang D.A. (2008) Induction of cyclic electron flow around photosystem 1 and state transition are correlated with salt tolerance in soybean. Photosynthetica,46,10-16.
    Lunde C., Jensen P.E., Haldrup A., Knoetzel J.& Scheller H.V. (2000) The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature,408,613-615.
    Ma W.& Mi H. (2005) Expression and activity of type 1 NAD(P)H dehydrogenase at different growth phases of the cyanobacterium, Synechocystis sp. PCC6803. Physiologia Plantarum,125,135-140.
    Martin M., Casano L., Zapata J., Guera A., Campo E., Schmitz-Linneweber C., Maier R.& Sabater B. (2004) Role of thylakoid Ndh complex and peroxidase in the protection against photo-oxidative stress:fluorescence and enzyme activities in wild-type and ndhF-deficient tobacco. Physiologia Plantarum,122,443-451.
    Merchant S.& Sawaya M.R. (2005) The light reactions:a guide to recent acquisitions for the picture gallery. Plant Cell,17,648-663.
    Mi H., Tsuyoshi E., Teruo O.& Kozi A. (1995) Thylakoid Membrane-Bound, NADPH-Specific Pyridine Nucleotide Dehydrogenase Complex Mediates Cyclic Electron Transport in the Cyanobacterium Synechocystis sp. PCC 6803. Plant and Cell Physiology,36,661-668.
    Mi H., Tsuyoshi E., Ulrich S.& Kozi A. (1992) Donation of Electrons from Cytosolic Components to the Intersystem Chain in the Cyanobacterium Synechococcus sp. PCC7002 as Determined by the Reduction of P700. Plant and Cell Physiology,38,1099-1105.
    Mi H., Tsuyoshi E., Ulrich S., Teruo O.& Kozi A. (1992) Electron Donation from Cyclic and Respiratory Flows to the Photosynthetic Intersystem Chain is Mediated by Pyridine Nudeotide Dehydrogenase in the Cyanobacterium Synechocystis sp. PCC 6803. Plant and Cell Physiology,33,1233-1237.
    Mi H., Tsuyoshi E., Ulrich S., Teruo O.& Kozi A. (1994) NAD(P)H Dehydrogenase-Dependent Cyclic Electron Flow around Photosystem I in the Cyanobacterium Synechocystis PCC 6803:a Study of Dark-Starved Cells and Spheroplasts. Plant and Cell Physiology,35,163-173.
    Midorikawa T., Matsumoto K., Narikawa R.& Ikeuchi M. (2009) An Rrf2-type transcriptional regulator is required for expression of psaAB genes in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiology,151,882-892.
    Miller J.P., Lo R.S., Ben-Hur A., Desmarais C., Stagljar I., Noble W.S.& Fields S. (2005) Large-scale identification of yeast integral membrane protein interactions. Proceedings of the National Academy of Sciences,102,12123-12128.
    Moeller L., Gan Q.L.& Wang K. (2009) A bacterial signal peptide is functional in plants and directs proteins to the secretory pathway. Journal of Experimental Botany,60,3337-3352.
    Munekage Y., Hashimoto M., Miyake C., Tomizawa K., Endo T., Tasaka M.& Shikanai T. (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature,429,579-582.
    Munekage Y., Hojo M., Meurer J., Endo T., Tasaka M.& Shikanai T. (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell,110,361-371.
    Munne-Bosch S., Shikanai T.& Asada K. (2005) Enhanced ferredoxin-dependent cyclic electron flow around photosystem I and alpha-tocopherol quinone accumulation in water-stressed ndhB-inactivated tobacco mutants. Planta, 222,502-511.
    Munns R. (2002) Comparative physiology of salt and water stress. Plant Cell and Environment,25,239-250.
    Munshi M.K., Kobayashi Y.& Shikanai T. (2005) Identification of a novel protein, CRR7, required for the stabilization of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant Journal,44,1036-1044.
    Munshi M.K., Kobayashi Y.& Shikanai T. (2006) Chlororespiratory reduction 6 is a novel factor required for accumulation of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant Physiology,141,737-744.
    Muraoka R., Okuda K., Kobayashi Y.& Shikanai T. (2006) A eukaryotic factor required for accumulation of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant Physiology,142,1683-1689.
    Myouga F., Motohashi R., Kuromori T., Nagata N.& Shinozaki K. (2006) An Arabidopsis chloroplast-targeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat-stress response. Plant Journal, 48,249-260.
    Nagashima A., Hanaoka M., Motohashi R., Seki M., Shinozaki K., Kanamaru K., Takahashi H.& Tanaka K. (2004) DNA microarray analysis of plastid gene expression in an Arabidopsis mutant deficient in a plastid transcription factor sigma, SIG2. Biosci Biotechnol Biochem,68,694-704.
    Neumann G., Massonneau, A., Martinoia, E., Romheld, V. (1999) Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta,208,373-383.
    Nixon P.J., Gounaris K., Coomber S.A., Hunter C.N., Dyer T.A.& Barber J. (1989) psbG is not a photosystem two gene but may be an ndh gene. Journal of Biological Chemistry,264,14129-14135.
    Ohkawa H., Price G.D., Badger M.R.& Ogawa T. (2000) Mutation of ndh genes leads to inhibition of CO2 uptake rather than HCO3- uptake in Synechocystis sp. strain PCC 6803. Journal of Bacteriol,182,2591-2596.
    Okuda K., Chateigner-Boutin A.L., Nakamura T., Delannoy E., Sugita M., Myouga F., Motohashi R., Shinozaki K., Small I.& Shikanai T. (2009) Pentatricopeptide repeat proteins with the DYW motif have distinct molecular functions in RNA editing and RNA cleavage in Arabidopsis chloroplasts. Plant Cell,21,146-156.
    Okuda K., Myouga F., Motohashi R., Shinozaki K.& Shikanai T. (2007) Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. Proceedings of the National Academy of Sciences,104,8178-8183.
    Pandey S.& Assmann S.M. (2004) The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. Plant Cell,16,1616-1632.
    Papanikou E., Karamanou S.& Economou A. (2007) Bacterial protein secretion through the translocase nanomachine. Nature Reviews Microbiology,5,839-851.
    Parry M.A., Andralojc P.J., Khan S., Lea P.J.& Keys A.J. (2002) Rubisco activity: effects of drought stress. Annal of Botany,89 Spec No,833-839.
    Peng L., Shimizu H.& Shikanai T. (2008) The chloroplast NAD(P)H dehydrogenase complex interacts with photosystem I in Arabidopsis. Journal of Biological Chemistry,283,34873-34879.
    Pieulle L., Guedeney G., Cassier-Chauvat C., Jeanjean R., Chauvat F.& Peltier G. (2000) The gene encoding the NdhH subunit of type 1 NAD(P)H dehydrogenase is essential to survival of Synechocystis sp. PCC6803. FEBS Letters,487,272-276.
    Qi YH, Wang SK, Shen CJ, Zhang SN, Chen Y, Xu YX, Liu Y, Wu YR, Jiang DA (2012) OsARF12, a transcription activator on auxin response gene, regulates root elongation and affects iron accumulation in rice (Oryza sativa). New Phytologist,193,12.
    Qiu N.& Lu C. (2003) Enhanced tolerance of photosynthesis against high temperature damage in salt-adapted halophyte Atriplex centralasiatica plants. Plant Cell and Environment,26,1137-1145.
    Quiles M.J. (2006) Stimulation of chlororespiration by heat and high light intensity in oat plants. Plant Cell and Environment,29,1463-1470.
    Quiles M.J.& Lopez N.I. (2004) Photoinhibition of photosystems I and II induced by exposure to high light intensity during oat plant growth-effects on the chloroplast NADH dehydrogenase complex. Plant Science,166,815-823.
    Raikhel N.& Chrispeels M.J. (2000) Protein sorting and vesicle traffic. In: Biochemistry and molecular biology of plants (ed G.W. Buchanan BB, Jones Rl). American Society of Plant Physiologist, Rockville, Maryland.
    Robert J., Amel L., Hans C.P.M.& Michel H. (2008) The PsaE subunit of photosystem I prevents light-induced formation of reduced oxygen species in the cyanobacterium Synechocystis sp. PCC 6803. Biochim et Biophys Acta, 1777,308-316.
    Rojo E.& Denecke J. (2008) What is moving in the secretory pathway of plants? Plant Physiology,147,1493-1503.
    Rumeau D., Peltier G.& Cournac L. (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell and Environment,30,1041-1051.
    Saier M.H. (2006) Protein secretion and membrane insertion systems in gram-negative bacteria. Journal of Membrane Biology,214,75-90.
    Saier M.H., Ma C., Rodgers L., Tamang D., Yen M., Laskin A., Sariaslani S.& Gadd G. (2008) Protein secretion and membrane insertion systems in bacteria and eukaryotic organelles. In:Advances in Applied Microbiology, pp.141-197. Elsevier Inc.
    Salvucci M.E.& Crafts-Brandner S.J. (2004a) Inhibition of photosynthesis by heat stress:the activation state of Rubisco as a limiting factor in photosynthesis. Physiologia Plantarum,120,179-186.
    Salvucci M.E.& Crafts-Brandner S.J. (2004b) Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiology,134,1460-1470.
    Saski C., Lee S.B., Daniell H., Wood T.C., Tomkins J., Kim H.G.& Jansen R.K. (2005) Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes. Plant Molecular Biology, 59,309-322.
    Sazanov L.A., Burrows P.A.& Nixon P.J. (1998a) The chloroplast Ndh complex mediates the dark reduction of the plastoquinone pool in response to heat stress in tobacco leaves. FEBS Letters,429,115-118.
    Sazanov L.A., Burrows P.A.& Nixon P.J. (1998b) The plastid ndh genes code for an NADH-specific dehydrogenase:isolation of a complex I analogue from pea thylakoid membranes. Proceedings of the National Academy of Sciences,95, 1319-1324.
    Scheller H.V. (1996) In Vitro Cyclic Electron Transport in Barley Thylakoids follows Two Independent Pathways. Plant Physiology,110,187-194.
    Shikanai T. (2007) Cyclic electron transport around photosystem I:genetic approaches. Annu Rev Plant Biol,58,199-217.
    Shikanai T., Endo T., Hashimoto T., Yamada Y., Asada K.& Yokota A. (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proceedings of the National Academy of Sciences,95, 9705-9709.
    Shimizu H., Peng L., Myouga F., Motohashi R., Shinozaki K.& Shikanai T. (2008) CRR23/NdhL is a subunit of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant and Cell Physiology,49,835-842.
    Shimizu H.& Shikanai T. (2007) Dihydrodipicolinate reductase-like protein, CRR1, is essential for chloroplast NAD(P)H dehydrogenase in Arabidopsis. Plant Journal,52,539-547.
    Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T. Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K., Ohto C., Torazawa K., Meng B.Y., Sugita M., Deno H., Kamogashira T., Yamada K. Kusuda J., Takaiwa F., Kato A., Tohdoh N., Shimada H.& Sugiura M. (1986) The complete nucleotide sequence of the tobacco chloroplast genome:its gene organization and expression. EMBO Journal,5,2043-2049.
    Sirpio S., Holmstrom M., Battchikova N.& Aro E.M. (2009) AtCYP20-2 is an auxiliary protein of the chloroplast NAD(P)H dehydrogenase complex. FEBS Letters,583,2355-2358.
    Smith A.M., Zeeman S.C.& Smith S.M. (2005) Starch degradation. Annu Rev Plant Biol,56,73-98.
    Sonoike K. (1996) Photoinhibition of photosystem I:its physiological significance in the chilling sensitivity of plants. Plant and Cell Physiology,37,239-247.
    Stagljar I., Korostensky C., Johnsson N.& te Heesen S. (1998) A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proceedings of the National Academy of Sciences,95,5187-5192.
    Streb P., Josse E.-M., Gallouet E., Baptist F., Kuntz M.& Comic G. (2005) Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain plant species Ranunculus glacialis. Plant Cell and Environment,28, 1123-1135.
    Streb S., Egli B., Eicke S.& Zeeman S.C. (2009) The debate on the pathway of starch synthesis:a closer look at low-starch mutants lacking plastidial phosphoglucomutase supports the chloroplast-localized pathway. Plant Physiology,151,1769-1772.
    Suorsa M., Sirpio S.& Aro E.M. (2009) Towards characterization of the chloroplast NAD(P)H dehydrogenase complex. Mol Plant,2,1127-1140.
    Tagawa K., Tsujimoto H.Y.& Arnon D.I. (1963) Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proceedings of the National Academy of Sciences,49,567-572.
    Taiz L.& Zeiger E. (2010) Plant Physiology. (Fifth Edition ed.). Sinauer Associates, Inc.
    Takabayashi A., Ishikawa N., Obayashi T., Ishida S., Obokata J., Endo T.& Sato F. (2009) Three novel subunits of Arabidopsis chloroplastic NAD(P)H dehydrogenase identified by bioinformatic and reverse genetic approaches. Plant Journal,57,207-219.
    Takahashi S., Milward S.E., Fan D.Y., Chow W.S.& Badger M.R. (2009) How Does Cyclic Electron Flow Alleviate Photoinhibition in Arabidopsis? Plant Physiology,149,1560-1567.
    Tamaki F., Yukako H.& Kintake S. (2005) PsaK2 Subunit in Photosystem I Is Involved in State Transition under High Light Condition in the Cyanobacterium Synechocystis sp. PCC6803. Journal of Biological Chemistry,280,22191-22197.
    Tanaka K., Katada S., Ishikawa H., Ogawa T.& Takabe T. (1997) Electron flow from NAD(P)H dehydrogenase to photosystem I is required for adaptation to salt shock in the cyanobacterium Synechocystis sp. PCC6803. Plant and Cell Physiology,38,1311-1318.
    Thaminy S., Auerbach D., Arnoldo A.& Stagljar I. (2003) Identification of novel ErbB3-interacting factors using the split-ubiquitin membrane yeast two-hybrid system. Genome Research,13,1744-1753.
    Varagona M.J., Schmidt R.J.& Raikhel N.V. (1992) Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell,4,1213-1227.
    Von C.S., Evans J.R., Hudson G.S.& Andrews T.J. (1994) The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta,195,88-97.
    Wang D., Li X.F., Zhou Z.J., Feng X.P., Yang W.J.& Jiang D.A. (2010) Two Rubisco activase isoforms may play different roles in photosynthetic heat acclimation in the rice plant. Physiologia Plantarum,139,55-67.
    Wang D.& Portis A.R., Jr. (2007) A novel nucleus-encoded chloroplast protein, PIFI, is involved in NAD(P)H dehydrogenase complex-mediated chlororespiratory electron transport in Arabidopsis. Plant Physiology,144,1742-1752.
    Wang P., Duan W., Takabayashi A., Endo T., Shikanai T., Ye J.Y.& Mi H.L. (2006) Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiology,141,465-474.
    Wang W.X., Vinocur B., Shoseyov O.& Altman A. (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science,9,244-252.
    Yabuta S., Ifuku K., Takabayashi A., Ishihara S., Ido K., Ishikawa N., Endo T.& Sato F. (2010) Three PsbQ-like proteins are required for the function of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant and Cell Physiology,51,866-876.
    Yamane Y., Shikanai T., Kashino Y., Koike H.& Satoh K. (2000) Reduction of QA in the dark:Another cause of fluorescence Fo increases by high temperatures in higher plants. Photosynthesis Research,63,23-34.
    Yamori W., Sakata N., Suzuki Y., Shikanai T.& Makino A. (2011) Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. Plant Journal,68,966-976.
    Yan A., Wu E.& Lennarz W.J. (2005) Studies of yeast oligosaccharyl transferase subunits using the split-ubiquitin system:topological features and in vivo interactions. Proceedings of the National Academy of Sciences,102,7121-7126.
    Yang Y., Yan C.Q., Cao B.H., Xu H.X., Chen J.P.& Jiang D.A. (2007) Some photosynthetic responses to salinity resistance are transferred into the somatic hybrid descendants from the wild soybean Glycine cyrtoloba ACC547. Physiologia Plantarum,129,658-669.
    Yoshito Tanaka, Seiichi Katada, Hiroshi Ishikawa, Teruo Ogawa & Teruhiro Takabe. (1997) Electron Flow from NAD(P)H Dehydrogenase to Photosystem I is Required for Adaptation to Salt Shock in the Cyanobacterium Synechocystis sp. PCC6803. Plant and Cell Physiology,38,6.
    Ytterberg A.J., Peltier J.B.& van Wijk K.J. (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts:A surprising site for differential accumulation of metabolic enzymes. Plant Physiology,140,984-997.
    Zhang S.& Henrik V.S. (2004) Light-harvesting Complex Ⅱ Binds to Several Small Subunits of Photosystem Ⅰ. Journal of Biological Chemistry,279,3180-3187.
    Zhou J., Jiao F., Wu Z., Li Y., Wang X., He X., Zhong W.& Wu P. (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiology,146,1673-1686.
    Zhou Y.H., Yu J.Q., Mao W.H., Huang L.F., Song X.S.& Nogues S. (2006) Genotypic variation of Rubisco expression, photosynthetic electron flow and antioxidant metabolism in the chloroplasts of chill-exposed cucumber plants. Plant and Cell Physiology,47,192-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700