无缝时空的多域集成时空数据模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
下一代GIS必须具备对海量时空数据进行有效的表达、管理与分析能力,而时空数据模型是解决上述问题的基础和关键。由于时空变化语义的复杂性、时间维表达的特殊性、动态多维扩展后技术实现的繁难性以及海量空间信息考虑时变因素后的超海量性,致使目前仍无普遍接受的时空数据模型;GIS基础平台研制和应用系统开发主体仍沿用传统空间数据模型与建模方法,已难以满足GIS对时空应用发展的需求,尤其是对海量时空数据管理与分析的需求。
     本研究以面向实体和多尺度时空过程统一集成描述的无缝时空思想为指导,采用基于地理特征域、时空场域、事件域以及关联域相综合的多重表达方法,按时空语义建模、时空数据逻辑建模和时空数据物理建模三个层次对无缝时空的多域集成时空数据模型(SMDI-STDM)进行了理论、技术到实践的综合探讨。模型在更基础层面上总结了不同地理事物和现象的时空变化特点,力图更为完整、有效地表达时空变化语义,设计相应的数据组织结构,并在解决海量时空数据的高效组织与存储问题上力争有所突破。主要研究内容包括:
     (1)综述。从空间语义、专题语义、时间语义及时空语义出发,构建了时空表达的一般性概念框架,讨论了国内外时空建模现状、发展趋势和面临的问题。
     (2) SMDI-STDM语义模型。提出了面向实体时空变化与多尺度时空过程集成统一描述的时空变化刻画的三层次论,并以此为主体命名为“无缝时空”思想。以无缝时空思想为指导,对时空语义的基本表达对象——①地理特征与时空场;②时空链与时空图;③事件与事件链作了分类讨论。最后,通过关联域集成地理特征域、时空场域和事件域,提出了基于时空多重表达方法的SMDI-STDM模型,并通过多域集成表达,对复杂时空变化现象进行了时空语义建模,包括“特征-场”联合建模和面向时空变化刻画三个层次的综合建模。
     (3) SMDI-STDM逻辑模型。以实现无缝时空的多域集成表达为目标,设计了两层架构的逻辑组织模型:①底层面向对象-关系型数据库进行了时空综合扩展,对空间数据类型与操作、时态数据类型与操作、时空数据类型与操作,时空关系与时空关系代数操作,以及时空关联关系作了形式化定义,并对地理特征的时空五域结构、时空场的四维时空块结构、多域关联结构、特征-场的数据组织结构,以及面向海量时空数据的时空图库集结构进行了讨论。②中间层则以面向对象方法实现了统一的逻辑数据组织,对时空对象、时空数据集、时空变化组织和时空实体关系与规则进行了类的层次关系设计。
     (4) SMDI-STDM物理模型。针对当前海量时空数据管理的艰难性和紧迫性,将GIS时空数据特点与当前底层数据库技术有机结合,提出了基于时空分区与时空聚簇思想和方法的海量时空数据组织与存储新模式。时空分区方法实现时空非聚集实体的分块分磁盘并行存储,时空聚簇方法则进一步在时空分区内部实现时空邻近与物理存储位置也邻近的映射关系。
     (5)原型、测试与应用。讨论了原型系统(GeoST)的基本架构、功能模块划分和开发策略,给出了多域集成表达系列原型,并采用了2~60GB数据量的单表对时空分区与时空聚簇机制进行了分级效率测试。最后,给出了应用实例。
     研究、测试与应用表明,SMDI-STDM模型的设计思想是有效的、合理可行的。面向实体和多尺度时空过程统一集成建模的设计思想和方法能更真实地表达地理事物和现象的本质特性,也更能被人们所接受;针对时空语义的特殊复杂性,采用多域集成多重表达方法是必要的,原型实例进一步说明了方法的可实现性;海量时空数据的测试充分验证了时空分区与时空聚簇机制的有效性,从而为当前迫切需要解决的海量时空数据高效管理问题提供了切实可行的解决方案。
A spatio-temporal data model is the critical basis of the abilities to effectively represent, manage and analyze massive spatio-temporal data,which is essential to next generation GIS. None of the existing spatio-temporal data models has been widely accepted caused by the complexity of spatio-temporal change semantics,the extraordinarity of the representation of time dimension,the complexities in the technical implementation of dynamic multi-dimensional extension and overwhelming mass data generated from adding time dimension to the massive spatial data.The ongoing researches and development of GIS base platform and applications may still employ traditional spatial data models and modeling methods,which can no longer satisfy the requirement of spatio-temporal applications in GIS, especially for the management and analysis of massive spatio-temporal data.
     Based on spatio-temporal semantic modeling,logical modeling and physical modeling methodology,this paper presents the theory,techniques and application of seamless temporal-space oriented multi-domain integrated spatio-temporal data model(SMDI-STDM), which is oriented to integrative description for entity changes and processes-the principles of seamless temporal-space,and uses the multi-representation approach integrating feature domain,spatio-temporal field domain,event domain and relation domain.The spatio-temporal changes of many geography entities and phenomenon are summarized and a corresponding data structure is designed to achieve a more complete and effective representation for spatio-temporal change semantics.The model also develops a new method for efficiently organizing and storing massive spatio-temporal data.The main content includes as follows:
     (1) Literature review.Typical spatio-temporal data models are reviewed and examined which is guided by a general conceptual framework of spatio-temporal representation constructed based on spatial semantics,attribute semantics,temporal semantics and spatio-temporal semantics.
     (2) SMDI-STDM semantic model.The seamless temporal-space concept mainly consists of the three-level-description of the spatio-temporal changes oriented to a integrative description for the entity changes and the spatio-temporal processes.Guided by the seamless temporal-space concept,basic objects for the representation of the spatio-temporal semantics are examined,which includeds feature and spatio-temporal field,spaito-temporal chain and spatio-temporal graph,event and event chain.Then, by utilizing relation domain integrating feature domain,spatio-temporal field domain and event domain,the SMDI-STDM model based on the multi-representation approach is presented.Using the multi-domain integrated representation method,the feature-field modeling and modeling for three-levels-description of spatio-temporal changes are further discussed.
     (3) SMDI-STDM logic model.To implement seamless temporal-space oriented multi-domain integrated representation,a logic organization model with two layers structure is designed.①On the lowest,object-relational database level, spaito-temporal extension is constructed.Spatial data types and operations,temporal data types and operations,spatio-temporal data types and operations,spatio-temporal relation and spafio-temporal algebra operations are formally defined as well as for spatio-temporal relationship.Features having spatio-temporal 5-domain structure, spatio-temporal fields in 4D spatio-temporal block structure,multi-domain relation structure,feature-field structure and spatio-temporal lib-dataset structure oriented to massive spatio-temporal data are examined.②On the middle layer,unified organization of logical data is implemented using an object oriented approach. Classes for spatio-temporal object,spatio-temporal dataset,spatio-temporal change organizer and spatio-temporal entity relationship and rule are designed.
     (4) SMDI-STDM physical model.In order to tackle the current difficulties of massive spatio-temporal data management,a new mode to organize and store massive spatio-temporal data based on spatio-temporal partition and spatio-temporal cluster are developed by the integration of GIS spatio-temporal data feature with current database technology.The spatio-temporal partition allows spatio-temporal unclustering entities to be stored in parallel structure at different blocks or disks. Further the spatio-temporal clustering presents the capacity of mapping entities neighboring in temporal space to their positions neighboring in physical storage.
     (5) Prototypes,tests and applications.A basic framework,function modules and the development strategy of Prototype GeoST are described.Series prototypes of multi-domain integrated representation are introduced.The efficiency of spatio-temporal partition and clustering method on single table from 2GB to 60 GB is tested.Finally,applications are presented.
     The experiments and applications show that the design of SMDI-STDM is effective, efficient,logical and practical.The modeling method based on integrative description of entity change and process could more realistically capture the essential features of geography entities and phenomenon,and may also be more acceptable.To solve the complexity of spatio-temporal change semantics,the multi-representation approach might be necessary and prototypes further show the practicability of the theory.The experiments with massive spatio-temporal data reveal that spatio-temporal partition and clustering method are efficient and logical,based on which a practical solution to effectively manage the massive spatio-temporal data could be marketed to users.
引文
边馥苓,傅仲良,胡自锋.面向目标的栅格矢量一体化三维数据模型[J].武汉测绘科技大学学报,2000,25(4):294-297.
    蔡启先.数据的时态性及其在非时态DBMS上的处理[J].计算机应用,2000,20(12):23-27.
    曹志月.时空数据模型的研究及其在时空地图可视化系统中的应用[D]:[博士学位论文].北京:中国科学院地理科学与资源研究所,2001.
    陈斌,方裕.大型分布式地理信息系统的技术与发展[J].中国图象图形学报,2001,6A(9):861-864.
    陈常松,何建邦.基于地理要素的资源与环境数据的组织方法[J].地理学报,1999,54(4):373-381.
    陈军.GIS空间数据模型的基本问题与学术前沿[J].地理学报,1995,50(增刊):24-33.
    陈军,郭薇.基于剖分的三维拓扑ER模型研究[J].测绘学报,1998a,27(4):308-317.
    陈军,郭薇.三维空间实体间拓扑关系的矩阵描述[J].武汉测绘科技大学学报,1998b,23(4):359-363.
    陈军.GIS空间数据模型的基本问题和学术前沿[J].地理学报,1995,增刊:24-33.
    陈军.Voronoi动态空间数据模型[M].北京:测绘出版社,2002:19-20.
    陈军,蒋捷.多维动态GIS的空间数据建模、处理与分析[J].武汉测绘科技大学学报,2000,25(3):189-195.
    程昌秀,周成虎,陆锋.对象关系型GIS中改进基态修正时空数据模型的实现[J].中国图象图形学报,2003,8A(6):697-702.
    陈述彭.遥感地学分析的时空维[J].遥感学报,1997,1(3):161-171.
    陈秀万等.基于事件的土地利用时空数据模型研究[J].中国图象图形学报,2003,8A(8):958-963.
    崔伟宏.空间数据结构研究[M].北京:中国科学技术出版社,1995.
    杜道生,陈军,李征航.RS、GIS、GPS的集成与应用[M].北京:测绘出版社,1995:51-62.
    杜道生,舒红.基于同步数据项组和碎分拓扑弧段时间标记的时念地理数据模型[J].武汉测绘科技大学学报,1997,22(2):96-101.
    方裕,周成虎,景贵飞,等.第四代GIS软件研究[J].中国图象图形学报,2001,6A(9):818-823.
    冯克忠.虚拟地理信息系统数据模型研究[D]:[博士学位论文].北京:中国科学院地理科学与资源研究所,2002.
    高锡章.基于大型数据库的海洋GIS设计与自主开发研究[D]:[博士学位论文].杭州:浙江大学GIS重点实验室,2004.
    龚健雅.GIS中面向对象的时空数据模型[J].测绘学报,1997,26(4).
    龚健雅,杜道生,李清泉,等.当代地理信息技术[M].北京:科学出版社,2004:11,18.
    龚健雅,夏宗国.矢量与栅格集成的三维数据模型[J].武汉测绘科技大学学报,1997,22(1):7-15.
    郭薇,陈军.三维拓扑空间关系的形式化描述及拓扑空间关系最小集[J].武汉水利电力大学学报,1996,29(4):85-90.
    郭薇,陈军.基于点集拓扑学的三维空间拓扑关系形式化描述[J].测绘学报,1997a,26(2):122-127.
    郭薇,陈军.基于流形拓扑学的三维空间实体形式化表达[J].武汉测绘科技大学学报,1997b,22(3):201-206.
    吴立新,史文中.地理信息系统原理与算法[M].北京:科学出版社,2003.
    黄明智,张祖勋.时空数据模型的N1NF基础[J].测绘学报,1997,26(1):1-6.
    蒋捷,陈军.基于事件的事件的时空数据库若干思考[J].测绘学报,2000,29(1):64-70.
    蒋捷,陈军.基于事件的土地划拨系统的时空数据库设计[J].测绘学报,2002,29(1):65-70.
    金培权.时空数据库研究[D]:[博士学位论文].北京:中国科学技术大学,2003.
    乐燕芬,陈军.顾及时态地块的土地划拨时空数据组织[J].武汉测绘科技大学学报,1997,22(3):222-228.
    李爱琴,龚建雅,李德仁.大型GIS地理数据库的无缝组织[J].武汉测绘科技大学学报,1998,23(1):57-61.
    李德仁.论RS、GPS与GIS集成的定义、理论与关键技术.遥感学报,1997,1(1):64-68.
    李德仁,关泽群.空间信息系统的集成与实现[M].武汉:武汉测绘科技大学出版社,2000:197-198.
    李德仁,李清泉.一种三维GIS混合数据结构[J].测绘学报,1997,26(2):128-133.
    李红旮.基于特征的时空三域数据模型及其在环境变迁中的应用研究[D]:[博士学位论文].北京:中国科学院遥感应用究所,1999.
    李红旮.地理信息系统中时空多维数据可视化技术研究[J].遥感学报,1999,3(2):24-45.
    李青元.三维矢量结构GIS拓扑学研究[D]:[博士学位论文].北京:中国矿业大学,1996.
    李小娟.基于特征的时空数据模型及其在土地利用动态监测信息系统中的应用[D]:[博士学位论文].北京:中国科学院遥感应用研究所,1999.
    李小娟,尹连旺,崔伟宏.土地利用动态监测中的时空数据模型研究[J].遥感学报,2002,6(5):370-375.
    李昭原,罗晓沛.数据库技术新进展[M].北京:清华大学出版社,1997:12-17.
    林广发,冯学智,王雷,等.以事件为核心的面向对象时空数据模型[J].测绘学报,2002,31(1):72-76.
    刘南,刘仁义.地理信息系统[M].高等教育出版社,2002:38-42,297.
    刘仁义.面向网络的海量空间与时态空间数据模型及其应用研究[D]:[博士学位论文].杭州:浙江大学GIS重点实验室,2004.
    刘仁义,刘南,苏国中.时空数据库基态修正模型的扩展[J].浙江大学学报(理学版),2000,27(2):196-200.
    刘仁义,刘南.基态修正时空数据模型的扩展及在土地产权产籍系统中的实现[J].测绘学报,2001,30(2):168-172.
    刘仁义,刘南.动态土地信息系统时空过程及时空数据存储[J].中国图象图形学报,2002,7A(4):387-393.
    路峰,李小娟,周成虎,等.基于特征的时空数据模型:研究进展与问题探讨[J].中国图象图形学报,2001,6A(9):830-835.
    马荣华,黄杏元.大型GIS海量数据分布式组织与管理.南京大学学报,2003,39(6):836-842.
    孟令奎,赵春宇,林志勇,等.基于地理事件时变序列的时空数据模型研究与实现[J].武汉大学学报(信息科学版),2003,28(2):202-206.
    闾国年,张书亮,龚敏霞,等.地理信息系统集成原理与方法[M].北京:科学出版社,2003:95.
    筛师宣,王珊.数据库系统概论[M].第3版.北京:高等教育出版社,2000:13-20.
    邵全琴.海洋GIS时空数据表达研究[D]:[博士学位论文].北京:中国科学院地理科学与资源研究所,2001.
    舒红.概念、形式化和逻辑时空数据建模原理初探[D]:[博士学位论文].武汉:武汉测绘科技大学,1998.
    舒红,陈军.面向对象的时空数据模型[J].武汉测绘科技大学学报,1997,22(3):229-233.
    舒红,陈军,杜道生等.时空拓扑关系定义及时态拓扑关系描述[J].测绘学报,1997,26(4):300-306.
    舒红,陈军,史文中.时空数据模型研究综述[J].计算机科学,1998,25(6):70-74.
    宋关福,钟耳顺,程新荣,等.多源空间数据无缝集成(SIMS)技术研究[C].见:99'中国GIS年会论文集.深圳:1999.
    谭竹贤,王毅,赵景亮,等.Oracle9i PL/SQL从入门到精通[M].北京:中国水利水电出版社,2002:483.
    唐常杰,于中华,游志胜,等.时态数据的变粒度分段存储策略及其效率分析[J].软件学报,1999,10(10):1085-1090.
    唐新明,吴岚.时空数据库模型和时间地理信息系统框架[J].遥感信息,1998,(4): 1999,(1).
    汤庸.时态数据库导论[M].北京:北京大学出版社,2004:20,29,38.
    谢传节.虚拟地理信息系统数据模型研究[D]:[博士学位论文].北京:中国科学院地理科学与资源研究所,2000.
    王晓栋.基于时空地理实体的综合时空数据模型研究及其在县级土地利用动态监测中的应用[D]:[博士学位论文].北京:中国科学院遥感应用研究所,1999.
    王晓栋,崔伟宏.数字地球的时空维实现[EB/OL].http://159.226.117.32/body/article/de_time_space.htm,2005-03-17.
    王晓栋,毛其智.基于综合时空数据模型的包头市郊区土地监测信息系统[J].清华大学学报(自然科学版),2002,42(6):810-813.
    王英杰,袁勘省,余卓渊.多维动态地学信息可视化[M].北京:科学出版社,2003:95,117-118.
    王泽根.海量空间数据组织及分布式解决方案[J].地球信息科学,2000,1:68-70.
    邬伦,刘瑜,张晶等.地理信息系统--原理、方法和应用[M].北京:科学出版社,2001:44,50,57,69-71.
    邬伦,张毅.分布式多空间数据库系统的集成技术[J].地理学与国土研究,2002,18(1):6-18.
    肖乐斌,钟耳顺,刘纪远,等.三维GIS的基本问题探讨[J].中国图象图形学报,2001,6(A-9):842-848.
    严泰来,吴平.带时间维土地信息系统的时空数据管理[J].中国土地科学,2002:16(6):11-19.
    余志文,张利田,邬永宏。基态修正时空数据模型的进一步扩展[J].中山大学学报(自然科学版),2003,42(1):100-103.
    张锦.多分辨率空间数据模型理论--实现技术研究[M].北京:测绘出版社,2004:4,10,33-43.
    张祖勋,黄明智.时态GIS的概念、功能和应用[J].测绘通报,1995,2:12-14.
    张祖勋,黄明智.时态GIS数据结构的研讨[J].测绘通报,1996,1:19-21.
    郑扣根,余青怡,潘云鹤.基于事件对象的时空数据模型的扩展与实现[J].计算机工程与应用,2001,3:45-47,61.
    朱欣焰,张建超,李德仁,等.无缝空间数据库的概念、实现与问题研究[J].武汉大学学报(自然科学版),2002,27(4):382-386.
    A Keith Turner.The difference among 2D,2.5D,3D and 4D[J].GIS world,1997(3):134-142.
    Agnar Renolen.History graphs:conceptual modeling of spatiotemporal data[C].In:Proc of GIS Frontiers in Business and Science.Brno,Czech Republic:International Cartographic Association,1997.31-43.
    Al-Taha K K . Temporal reasoning in cadastral systems[D] : [PhD Dissertation] . Maine : University of Maine , Department of Surveying Engineering, 1992.
    Al-Taha K K, Snodgrass R T, Soo M D. Bibliography on spatio-temporal Databases[J]. ACM SIGMOD Record, 1994, 22: 59-67.
    Andrej Vckovski. Interoperatable and distributed processing in GIS [M]. London: Taylor & Francis, 1998.
    Angel S, Hyman G M. Urban fields: a geometry of movement for regional science[M]. London: Pion Limited, 1976.
    Arctur D, Hair D, Tim S G, et al. Issues and prospects for the next generation of the spatial data transfer standard (SDTS) [J]. International Journal of Geographical Information Systems, 1998, 12 (4): 403-425.
    Armstrong M P. Temporality in spatial databases[C]. In: Proceedings of GIS/LIS '88. Texas: San Antonio, 1988. 880-889.
    Bishr Y . Overcoming the semantic and other barriers to GIS interoperability[J] . International Journal of Geographical Information Science, 1998, 12 (4): 299-314.
    
    Blaut JM. Space and process [J]. The Professional Geographer, 1961, 13(4): 1-7.
    C J Date. An introduction to database systems [M]. 7th edition. Addison-Wesley, 2002.
    C X Chen,C Zaniolo. Universal temporal extension for data language[C]. In: Proceedings of the 15th International Conference On Data Engineering, 1999. 428-437.
    Cai M C, Keshwani D, Revesz P Z. Parametric rectangles: a model for querying and animation of spatiotemporal databases[C]. In: Proceeding of the 7th International Conference on Extending Database Technology, 2000. 430-444.
    Castagneri J. Temporal GIS explores new dimension in time [J]. GIS World, 1998, 11(9): 48-51.
    Chakraborty J, Armstrong, M P. Using geographic plume analysis to assess community vulnerability to hazardous accidents[J]. Computers, Environment, and Urban Systems, 1996, 19: 341 - 356.
    Chen P P. The entity-relationship model: toward a unified view of data[J]. ACM transactions on Database Systems, 1976, 1(1): 9-36.
    Chomicki J, Revesz P Z. Constraint-based interoperability of spatiotemporal databases[J]. SSD 1997: 142-161.
    Chrisman N. Beyond the snapshot: changing the approach to change error and process[C]. In: MEgenhofer, RGolledge, eds. Spatial and temporal reasoning in geographic information systems . Oxford : Oxford University Press , 1998. 85-93.
    Claramunt C , M Theriault . Managing time in GIS : an event-oriented approach[J]. Recent Advances in Temporal Databases, Springer, 1995: 23-43.
    Claramunt C,M Theriault.Toward semantics for modeling spatio-temporal processes within GIS[J] . SDH'96, 1996: 227-243.
    Codd, EF. Data Models in database management [C]. In: ML Brodie, et al, eds. Proc of Workshop on data abstraction, databases and conceptual modeling. Colorado: ACM Press, 1981. 112-114.
    Copeland G, Maier D. Making Smalltalk a database system[C]. In: Proceedings of the International Conference on Management of Data. Boston, Mass, 1984: 316-325.
    Couclelis H. People manipulate objects (but cultivate fields): beyond the raster-vector debate in GIS[C]. In: A U Frank, I Campari, eds. Theories and Methods of Spatio-temporal Reasoning in Geographic Space, Lecture Notes in Computer Science 639. Berlin: Springer-Verlag, 1992. 65-77.
    D Pfoser, M Tryfona. Requirements, definitions and notations for spatiotemporal application environments[J]. ACM GIS 98, 1998: 124-130.
    Don M, Dale L. ESRI's spatial database engine: a seamless GIS solution[EB /OL]. http://gis. esri. com/library/userconf/proc96/T0100/PAP094/P94. HTM 2005-02-02.
    Dutton G. Improving spatial analysis in GIS environment [J]. CISM Journal, 1991, 45(4): 561-567.
    Erwig M, Guting R H, Schneider MM, et al. Spatio-temporal data types: An approach to modeling and querying moving objects in databases [C]. In: Proc ACM Symposium on Geographic Information Systems, 1998.
    
    ESRI. Geodatabase Object Model[EB/OL]. http://www. esri. com. / , 2005-02-02.
    ESRI. Building_a_Geodatabase [EB/OL]. http://www. geo.unizh.ch/department/services/it/esri/man_arcgis9. html/Build ing_a_Geodatabase. pdf, 2005-02-02.
    Fisher T R . Use of 3d GISs in hazardous waste site investigations[M]. Environmental Modeling with GISs, 1993: 238-247.
    Flor Eugenia Narciso. A spatio-temporal data model for incorporating time in geographic information systems (GEN-STGIS) [D]: [PhD Dissertation] . Florida : University of South Florida Tampa, 1999.
    Galton A. Fields and objects in space, time, and space-time [J]. Spatial Cognition and Computation, 4(1), 2004: 39-68.
    Garcia-Molina H, Ullman, J D.Widom J. Database systems: the complete book[M], New Jersy: Prentice Hall, 2002.
    Gatrell A C. Concepts of space and geographical data[C]. In Maguire D J, Goodchild M F, Rhind D W, eds. Geographical information systems: principles and applications Vol 1. Harlow, Longman: John Wiley & Sons Inc, 1991: 119-134.
    Goodchild M F. A special analytical perspective on geographic information systems[J]. International Journal of Geographical Information Systems, 1987(1): 327-333.
    Goodchild M F. Spatial analysis with GIS: problems and prospects[C]. In: Proceedings of GIS/LIS, Atlanta: ACSM-A SPRS-URISA-AM/FM, 1991: 40-48.
    Goodchild M F. Geographical data modeling[J]. Computers &Geosciences, 1992, 18 (4) : 401-408.
    Goodchild M F. Representing Fields. NCGIA Core Curriculum in GIScience[EB/OL], http://www. ncgia. ucsb. edu/giscc/units/u054/u054. html, 1997.
    Gore A. The digital earth: understanding our planet in the 21th century. The Lecture Note on the Science Center of California , http://www. digitalearth. gov/speech. html, 1998.
    Grenon P, Smith B. SNAP and SPAN: towards dynamic spatial ontology. Spatial Cognition and Computation, 2004, 4(1): 69-104.
    Guting R H. An introduction to spatial database systems[J], VLDB Journal, 1994, 4: 357-399.
    Haesevoets S, Kuijpers B. Closure properties of classes of spatio-temporal objects under boolean set operations [C]. In: Seventh International Workshop on Temporal Representation and Reasoning (TIME' 00), Nova Scotia, Canada, 2000.
    Hazelton N W J. Integrating time, dynamic modeling and geographical information systems : development of four-dimensional GIS[D] : [PhD Dissertation]. Melbourne: Department of Surveying and Land Information, The University of Melbourne, 1991.
    Hazelton N W J. Developments in spatio-temporal GIS[C]. In: T Sellis, et al, eds. Proceedings of the First Regional Conference on GIS Research. Victoria and Tasmania: 1992.
    Hazelton N W J. Beyond the 2-D Map: A new metaphor for multi-temporal 4-D GIS. In: Proceedings of GIS/LIS '92, 1992. 303-313.
    Hazelton N W J. Some operational requirements for a multi-temporal 4D GIS. In: Egenhofer M J, Golledge R G, eds. Spatial and Temporal Reasoning in Geographic Information Systems. Oxford: Oxford University Press, 1998. 63-73.
    Hazelton N W J, Leahy F J, Williamson I P. On the design of temporally-referenced, 3-dimensional GIS[C]. In: GIS/LIS 90 Proceedings, 1990. 357-372.
    Herring JR. The OpenGIS data model [J]. Photogrammetric Engineering and Remote Sensing, 1999, 65 (5): 585-588.
    Heuvelink, G B M. Identification of field attribute error under different models of spatial variation[J]. International Journal of Geographical Information Systems, 1996, 10, 921-935.
    Hornsby K, Egenhofer M J. Identity-based change: a foundation for spatio-temporal knowledge representation[J]. International Journal of Geographic Information Science, 2000, 14: 207-224.
    Hunter G J, Goodchild M F. A new model for handling vector data uncertainty in geographic information systems[J] . Journal of the Urban and Regional Information Systems Association, 1995, 8, 51-57.
    I Kakoudakis, B Theodoulidis, The TAU time model [J], TR no. TR-96-5, Timelab, UMIST, Manchester, UK, 1996.
    I Theodoulidis , P Loucopoulos . The time dimension in conceptual modeling[J]. Information Systems, 1991, 16(3): 273-300.
    IBM. IBM DB2 spatial extender and geodetic extender user' s guide and reference[EB/OL].
    
    Version 8.2. http://www.software.ibm.com/data/spatial, 2005-02-03.
    ISO/TC211. N604-1998. Feature cataloguing methodology[S]. ISO/CD 15046-10, 1998.
    
    ISO/TC211. N619-1998. Temporal schema[S]. ISO/CD 15046-8, 1998.
    ISO/TC211. N631-1998. Rules for application schema[S]. ISO/CD 15046-9, 1998.
    ISO/TC . 211-1998 . Geographic information-Part 10 : feature cataloguing methodology[S], 1998.
    Jammer M. The concept of space in antiquity[C]. In: Smart JJ, eds. Problems of space and time. New York, Macmillan, 1964.
    Jiang Jie, Chen Jun. Event-based spatio-temporal database design for land subdivision system [J]. Acta Geodaetica et Cartographica Sinica, 2000, 29(1) : 65-70(in Chinese).
    Jim Castagneri . Temporal GIS explores new dimensions in time[EB/0L]. http://www. geoplace. com/gw/1998/0998/998tmp. asp, 2005-04-14.
    Jim Melton, Andrew Eisenberg. SQL multimedia and application packages (SQL/MM) [EB / OL]. www. ischool. Washington. edu/myivory/teach/info445-s03/lectures/standards. pd f, 2005-02-03.
    Johnson I. Mapping the fourth dimension: the TimeMap project[C]. In: Proceedings of the 1997 Computer Applications in Archaeology Conference. http: //www. Archaeology.usyd. edu. au/research/time_map/proj_desc. Html, 1998.
    K Stolze. SQL/MM spatial: the standard to manage spatial data in relational database systems[J]. BTW 2003, Leipzig, 2003, 2.
    Karen K Kemp, Andrej Vckovsky. Towards an ontology of fields[C]. In: R J Abrahart , eds . Proceedings of the 3rd International Conference on GeoComputation. U K: GeoComputation CD-ROM, 1998.
    Katheeln Hornsby, Max Egenhofer, Patrick Hayes . Advances in conceptual modeling[C]. In: P Chen, D Embley, J Kouloumdjian, et al, eds. Lecture Notes in Computer Science, Vol 1227. Paris: Springer-Verlag, 1999. 98-109.
    Kelmelis J. Time and space in geographic information: toward a 4-dimensional spatiao-temporal data model[D]: [Unpublished PhD Dissertation]. Pennsylvania: Pennsylvania State University, 1991.
    Kemp K K. Fields as a framework for integrating GIS and environmental process models [J]. Part I: representing spatial continuity. Transactions in GIS, 1997a, 1: 219-234.
    Kemp K K. Fields as a framework for integrating GIS and environmental process models[J]. Part 2: specifying field variables. Transactions in GIS, 1997b 1: 235-246.
    Kucera H A, Sondheim M. SAIF-conquering space and time[C] . In: GIS 92 Symposium. Canada, Vancouver: 1992.
    Langran G, Chrisman N R.A framework for temporal geographic information[J]. Cartographica, 1988, 25(3): 1-14.
    Landgran G. Temporal GIS design tradeoffs [J]. Journal of the Urban and Regional Information Systems Association, 1989, 2(2): 16-25.
    Langran G. Time in geographic information system[M]. London: Taylor & Francis, 1992.
    Langran G. Issues of implementing a spatiotemporal system[J]. International Journal of Geographical Information Systems, 1993, 7(4): 305-314.
    Li Q Q, Li B J. 3D spatial data acquisition and modeling by using laser scanning [J]. The International Archives of Photogrammetry and Remote Sensing, 1999, 32(4W12): 87-90.
    Li Q Y, CaoDY, ZhuXD. 3D topology model on body divided [J]. The International Archives of Photogrammetry and Remote Sensing, 1999, 32(4W12): 91-98.
    Matthew YC Pang, Wenzhong Shi. A process-based temporal data model for digital earth[C]. In: Towards Digital Earth-Proceedings of the International Symposium on Digital Earth. Beijing: Science Press, 1999.
    Michael Worboys, Kathleen Hornsby. From objects to events: GEM, the geospatial event model[J]. GIScience, 2004: 327-344.
    Nancy J Yattaw. Conceptualizing space and time: a classification of geographic movement[J]. Cartography and Geographic Information Science, 1999, 26(2): 85-98.
    Nascimento M A, Silva J R O. Towards historical R-trees[C]. In: Proceedings of ACM Symposium on Applied Computing (ACM-SAC), 1998.
    Nikos Pelekis, Babis Theodoulidis, Ioannis Kopanakis, et al. Literature review of spatio-temporal database models[J]. Knowledge Engineering Review, to appear. Cambridge University Press, 2004.
    OGC. The open GIS abstract specification model [EB/OL]. http: //www. opengis. org.public.abstract.html, 1997.
    OGC. Topic0: abstract model overview, Version 3, Wayland, Massachusettes [EB/OL]. http://www. openGIS. Org/techno/spees. htm, 1998.
    OGC . Topic1 : feature geometry, Version 3 , Wayland , Massachusettes [EB/OL]. http://www. openGIS. org/techno/specs. htm, 1998.
    OGC. Topic 5: The open GIS feature, Version 3, Wayland, Massachusettes [EB/OL]. http://www.openGIS.org/techno/specs.httn, 1998.
    OpenGIS . OpenGIS specifications[EB/OL] . http : //www. opengis. o rg/techno/specs.htm, 1998.
    Oracle . Oracle spatial user's guide and reference , Release 9.2 [EB/OL]. http://www. oracle. com/technology/documentation/index. html. 2005.
    O' Sullivan D , Turner A . Visibility graphs and landscape visibility analysis[J]. International Journal of Geographical Information Science, 2001, 15, 221-237.
    Paul A Longley, Michael F Goodchild, David J Maguire, et al. Geographical information systems, Volume 1, Principles and Technical Issues[M]. Second Edition (Simplified Chinese Edition). 唐中实等译. Beijing: Publishing House of Electronics Industry, 2004: 26, 86-87.
    Peuquet D J. It's about time: a conceptual framework for the representation of temporal dynamics in geographic information systems[J]. Annals of the Association of American Geographers, 1994, 84(3): 441-461.
    Peuquet D J. Representations of Space and Time[M]. New York: Guilford Press, 2002.
    Peuquet D J, Duan N. An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data[J]. IJGIS, 1995: 9: 7-24.
    Peuquet D J, Qian L. An integrated database design for temporal GIS[C]. In: Proceedings of the 7th International Symposium on Spatial Data Handling, Delft, The Netherlands, 1997: 21-31.
    Peuquet D J, Smith B, Brogaard B. An Introduction to Ontology[C]. In: Peuquet D, Smith B, Brogaard B, eds. The Ontology of Fields, NCGIA. Santa Barbara: National Center for Geographic Information and Analysis, 1999.
    Peuquet D J, Wentz E. An approach for time-based analysis of spatiotemporal data[C]. In: Advances in GIS Research. Proceedings, 6th International Symposium on Spatial Data Handling, Edinburgh, UK. London: Taylor and Francis, 1994. 489-504.
    R Snodgrass. Temporal databases status and research directions [J]. SIGMOD RECORD, 1990, 19(4): 83-89.
    Ramachandran B, MacLeod F, Dowers S. Modeling temporal changes in a GIS using an object-oriented approach[C]. In: Sixth International Symposium on Spaital Data handling, Edinburgh, Scotland, 1994. 518-537.
    Raper J, Livingstone D. Development of a geomorphologic spatial model using object-oriented design [J]. International Journal of Geographical Information Systems, 1995, 9(4): 359-384.
    Reitsma F. Modeling geographic phenomena as processes [EB/OL]. Student poster and paper presented at the UCGIS Summer Assembly http://www. cobblestoneconcepts. com/ ucgis2summer2002/Reitsma/UCGIS%20paper. htm, 2002.
    Rosch E . Principles of categorization[M] . Cognition and Categorization. Hillsdale, NJ: Lawrence Erlbaum Associates, 1978: 727-48.
    Roshannejad A A, Kainz W. Handling identities in spatio-temporal databases [C]. In: Technical papers of the 1995 ACSM/ASPRS Annual Convention & Exposition. Charlotte, North Carolina, 1995. 119-126.
    Sachs M. The field concept in contemporary science[M]. Springfield: Charles C Thomas, 1973.
    SAIF. Spatial Archive and Interchange Format[EB/OL]. http://s2k-ftp. cs. berkeley. edu:8000/sequoia/scheraa/html/saif/saif Home. html , 2005-03-04.
    Sharma Chakravarthy, Seung-kyum Kim. Resolution of tme cncepts in temporal dtabase[J]. Information Science, 1994, 80: 91-125.
    Shekhar S, Sanjay C. Spatial database: a tour[M]. New Jersey: Prentice Hall, 2002.
    Shoshani A, Olken F, Wong H K T. Characteristics of scientific databases [C]. In: VLDB Conf, Singapore, August 1984. 147-160.
    Shoshani A, Wong H K T. Statistical and scientific database issues[J]. IEEE Trans, On Softw Eng, 1985, 11(10).
    Stonebraker M, Moor D. Object-relational DBMS: the next wave[M]. San Francisco: Morgan Kaufmann Publishers, Inc, 1996.
    Stonebraker M, Rowe L A. The design of POSTGRES[C]. In: C Zaniolo, eds. Proc 1986 ACM SIGMOD Int Conf on Management of Data. Washington D C: ACM Press, 1986. 340-355.
    Tang A Y, Adams T M, Usery E L. A spatial data model design for feature-based geographical information systems[J]. International Journal of Geographical Information Systems, 1996, 10(5): 643-659.
    Tansel A U, J Clifford, S Gadia, et al. Temporal databases: theory, design and implementation[M]. Benjamin/Cummings Publishing Company, 1993.
    TerBekke J H. Semantic data modeling[M]. Englewood Cliffs: Prentice Hall, 1992.
    Thomas J C, M F Goodchild. Extending geographical representation to include fields of spatial objects [J]. Int J Geographical information science, 2002, 16(6): 509-532.
    Thrift N. An introduction to time geography[M]. London: Geo-Abstracts Ltd, 1977.
    Tobler W R. Migration fields [C]. In: Clark W, Moore E, eds. Population Mobility and Residential Change, Studies in Geography No 25. Evanston: Department of Geography, 1978. 215-232.
    Tobler W R. Visual evidence for urban potential fields [J]. MappeMonde, 1991, 4: 46-47.
    UCGIS. Extensions to Geographic Representations, 2002 Research Agenda[EB/OL]. http: //www. ucgis. org/priorities/research/2002researchagenda. htm, 2004.
    Usery E L . A feature-based geographic information system model [J]. Photogrammetric Engineering & Remote Sensing, 1996, 62(7): 833-838.
    USGIS. The National Map [EB/OL]. http: //nationalmap. gov, 2005-04-02.
    Wachowicz M. Object-oriented design for temporal GIS[M]. London: Taylor & Francis, 1999.
    Wang X Y, Zhou X F. Spatiotemporal data modeling and management: a survey [C]. In: Proceedings of 36th International Conference on Technology of Object-Oriented Languages and Systems (TOOLS-Asia'00), Xi'an, China, 2000.
    Willmott C, Raskin R, Funk C, et al. Spherekit: the spatial interpolation toolkit [EB/OL]. National Center for Geographic Information and Analysis. http: //whizbang. geog. ucsb. edu/spherekit/, 1997.
    Worboys M F. Unifying the spatial and temporal components of geographical information[C]. In: Advances in Geographic Information Systems: Proceedings of the International Symposium on Spatial Data Handling Information Symposium on Spatial data Handling. Edinburgh, 1994a. 505-517.
    Worboys M F. A unified model for spatial and temporal information [J]. The Computer Journal, 1994b, 37: 26-33.
    Worboys M F. GIS: a computing perspective [J]. London: Taylor & Francis, 1995, 177.
    Wright D J, Goodchild M F. Data from the deep: implications for the GIS community[J]. Int J GIS, 1997, 11(6): 523-528.
    X Xu, J Han, W Lu. RT-tree: an improved R-tree index structure for spatiotemporal databases. In: Proceedings of the 4th International Symposium on Spatial Data Handling(SDH), 1990.
    Y Theodoridis, M Vazirgiannis, T Sellis. Spatio-temporal indexing for large multimedia applications. In: Proceedings of the 3rd IEEE Conference on Multimedia Computing and Systems (ICMCS), 1996.
    Yanfen Li. A feature-based temporal representation and its implementation with object-relational schema for base geographic data in object-based form[J]. UCGIS Assembly, 2004.
    Yeh T S, B de Cambray. Modeling highly variable spatio-temporal Data[C]. In: 6th AustraliAsian Database Conf, 1995. 221-230.
    Yeh T S, B de Cambray. Time as a geometric dimension for modeling the evolution of entities: a three-dimensional approach [J]. GIS and environmental modeling: Progress and Research Issues, 1999: 397-404.
    Yuan M. Temporal GIS and spatio-temporal data modeling [C]. In: Third International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Fe, 1996.
    Yuan M. Use of knowledge acquisition to build wildfire representation in
    Geographical Information Systems[J] . International Journal of Geographic Information Science, 1997, 11: 723-745.
    Yuan M. Hierarchical theory and geographic representation[J] . In: First International Conference on Geographic Information Science Savannah Marriott Riverfront, Savannah, Georgia, USA, 2000: 28-31.
    Yuan M. A conceptual framework to represent complex geographic phenomena with both object- and field-like properties[J] . Cartography and Geographic Information Science, 2001, 28(2): 83-96.
    Yuan M. Research challenges and opportunities on geospatial representation and data structure [EB/OL]. A white paper to NRC Workshop on the Intersection of Geospatial Information and Information Technology. www7. nationalacademies. org/cstb/wp_geo_yuan. pdf, 2003.
    Yuan M, D Mark, M Egenhofer, et al. Extensions to geographic representations[M], In review: research challenges in geographic information science. New York: John Wiley & Sons, 1999.
    Yuan M, D Mark, M Egenhofer,et al.Extensions to geographic representation[M]. A Research Agenda for Geographic Information Science, edited by R B, McMaster, E L Usery. CRC Press, Boca Raton, FL, 2004: 130-156.
    Zhao F. Transportation applications of temporal GIS[EB/OL]. In: Proceeding of the 1997 ESRI User Conference . http : //www. esri. com/base/common/userconf/proc97/PR0C97/ABSTRACT/A427. htm 1997-12.
    Zhilin Li. Scale issues in geographical information science[C]. In: Proceeding of Wuhan Geoinfomatics' 96, Wuhan, China, 1996.
    Zhou Chenghu, Lu Feng, QingWan. A conceptual model for a feature-based virtual network [J]. Geoinformatica, 2000, 4 (3) : 271-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700