大地电磁测深时间域拓扑处理去静态方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在全面了解国内外有关文献资料基础上,针对目前已有的大地电磁测深静态效应校正方法存在的不通用问题,引入数学拓扑原理为大地电磁法去静态效应提出了一种以野外实际观测资料为基础的可通用的全新方法——时间域拓扑处理去静态效应方法。为实现这一新方法,本文做了以下具有开拓性的研究工作:
     1)在对前人大量的文献、资料深入研究的基础上认为:空间滤波法、阻抗张量分解法、瞬变电磁资料校正法、正反演计算法、已知地质信息的综合解释法等,所有现有的静态校正方法在实际应用中,均受一定的限制条件和人为认识参与的局限,使其难以成为可广泛应用的通用校正方法。
     2)从空间采样的实质出发,通过研究连续剖面(CEMAP)观测的布设特点发现,对相邻电偶极电场观测值进行叠加(电场具有可叠加性)可提取出连续剖面(CEMAP)观测结果中所隐含的变极距观测信息。据此,本文提出对连续剖面(CEMAP)的电场观测结果进行叠加拓扑处理,以获取同一记录点不同极距的观测结果。用以反映和刻画出该记录点与局部不均匀体边界的空间关系,以达到探测浅部地质体和去除静态偏移的目的。率先将拓扑方法引入物探数据处理领域。
     3)利用前人的理论模型,通过进一步的理论分析建立了局部不均匀体上不同部位各记录点随拓扑观测极距变化可能出现的静态偏移模型。以此为基础,初步建立了拓扑处理结果的图形展示和分析解释方法。
     4)采用逐级叠加技术解决了现有单点观测仪器所获原始时间序列数据记录格式复杂(非适应拓扑处理采集记录格式)以及占用存储空间大等给拓扑处理所造成的技术难点。编制了适应单点两分量和剖面单分量标量叠加的两个拓扑处理程序。为拓扑处理软件的进一步发展奠定了基础。
     5)通过野外实验对这一新方法进行了初步验证。结果表明,拓扑处理技术新方法可以实现去静态的目的。野外实验也证实现有仪器设备性能指标可满足拓扑处理的基本要求,为我们开发更先进的仪器提供了相应的技术参数。
On the basis of fully understand of domestic and international literature, aiming at the problem that there isn’t a general method could do correction of static shift in MT, using the topology theory puts forward a new general static shift correcting method of MT basing on field observation data—removing static shift of MT using time domain topology processing method. The main content and conclusions are as follows :
     1) In the basis of a great quantity of papers and data, we considered that all static shift correcting method in field application have some limited and human influence, including spatial filtering method , impedance tensor decomposition method ,using TEM data correcting method, forward and inversion calculation method, comprehensive explanation using known geology information method and so on. Those methods can hardly become the general method.
     2) From starting with the research of the essence of space sampling ,through the research of the character of CEMAP’S observation device ,we can composed the observed electric field value of two adjacent poles together(because the electric field could be superposed), we found out the implied information with the change of pole’s distance in CEMAP data. So we put forward that using topology method process the CEMAP data, obtaining observation result with different pole distance in the same site. Further using those result research the relationship between site record and boundary of uneven body in space, prospect the shallow geological-mass and remove the static shift. This research take the lead in bringing the topology method into geophysical date processing field.
     3) Using the predecessor's theory model, and the theory analysis we can make it possible that static shift model of different record site on the uneven body ,and the changing of static shift with the distance between records poles using topology procession. On the basis of the model , we build the graphics display of topology result and analysis interpretation method.
     4) Using the classification stacking technique we solved the problem of the complex format of time series observed by the instrument designed for single site (un-fit record format of topology procession),and the problem of occupy lots of the storage space . Software package was compiled suiting for single site two components and profile single component superposition, and it lead the foundation of the development of topology processing soft.
     5) Through this new method of field experiment conducted a preliminary validation. The results show that the topological processing technology can romove the enfluence of static .The experiments also confirmed that the existing equipment performance can meet the requirements for topology method ,this experiment provinde corresponding technical parameters for developing more advanced equipmen.
引文
Andrieux, P., and W. E. Wightman, 1984, The so-called static correction in magnetotelluric measurements: 54th Annual International Meeting, SEG, Abstracts, 43-44.
    Bahr, K.,1988, Interpretation of the magnetotelluric impedance tensor: Regional induction and local telluric distortion: Journal of Geophysics 62, 119-129.
    Berdichevsky, M. N., and Dmitriev, V.I.,1976, Basic principles of interpretation of magnetotelluric sounding curves, in Adam, A., ED., Geoelectric and geothermal studies: KAPC Geophysical Monograph, Akademiai Kiado, Budapest,165-221.
    Berdichevsky, M. N., and Dmitriev, V. I., 1976a, Distortions of magnetic and electrical fields by near-surface lateral inhomogeneities: Acta Geodaet. Geophys. et Mantanist. Acad. Sci. Hung., 11, 447-483
    Berdichevsky, M. N., L. L. Vanyan, V. A. Kuznetsov, V. T. Levadny, M. N. Manndelbaum, G. P. Nerchaeva, B. A. Okulessky, P. P. Shilovsky, and I. P. Shpak, 1980, Geoelectric model of the Baikal region: Physics of the Earth and Planetary Interiors, 22, 1-11.
    Berdichevsky, M. N., Vanyan, L. L., and Dmitriev, V. I., 1989, Methods used in the U. S. S. R.. to reduce near-surface inhomogeneity effects on deep magnetotelluric sounding: Phys. Earth Plan. Int., 53, 194-206.
    Boehl, J.E., Bostick, F.X., Jr., and Smith, H.W., 1977, An application of the Hilbert transform to the magnetotelluric method: Elec. Geophys. Res. Lab. Tech. Rep., Uinv. of Texas at Austin.
    Bostick, F. X., Jr., 1977, A simple almost exact method of magnetotelluric analysis, in Ward,S., Ed., Workshop of Electrical Method in Geothermal Exploration, Univ. of Utah Res. Inst., U.S. Geol. Surv. Contract 14-08-0001-g-359
    Bostick, F. X., Jr., 1986, Electromagnetic array profiling (EMAP): 56th Ann. Internat. Mtg., Aoc. Expl. Geophys., Expanded Abstracts, 60-61.
    Cagniard, L., 1953, Basic theory of magnetotelluric method of geophysical exploration: Geophysics, 18, 605-635.
    Chouteau, M., and Bouchard, K., 1986, Two-dimensional terrain correction in MT surveys: Presented at 48th Ann, Mtg., EAEG.
    deGroot-Hedlin, C., 1991, Removal of static shift in two dimensional by regularized inversion: Geophysics, 56, 2102-2106.
    Fischer, G., and P. A. Schnegg, 1980, The dispersion relation of the magnetotelluric response and their incidence on the inversion problem: Geophysical Journal of the Royal Astronomical Society, 62,661-673.
    Fox, R. C., Hohmann, G. W., Killpack, T. J., Rijo, L., 1980, Topographic effects in resistivity and induced polarization surveys: Geophysics, 45, 75-93.
    Groom, R.W., and Bailey, R.C., 1989, Decomposition of magnetotelluric impedance tensors in the presence of local three- dimensional galvanic distortion: J.Geophys. Res., 94B2, 1913-1925.
    Hermance, J. F., 1982, The asymptotic response of three-dimensional basin offsets to magnetotelluric fields at long periods: the effects of current channeling: Geophysics, 47,1562-1573.
    Holcombe, H. T., 1982, Terrain effects in resistivity and MT surveys: Ph. D. thesis, Univ. of New Mexico.
    Jiracek, G. R., and Holcombe, H. t., 1981, Evaluation of topographic effects in magnetotellurics using a modeified Rayleigh technique: Presented at the 51st Ann. Mtg.,Soc. Expl. Geophys.
    Jiracek, G. R., Reddig, R. P., and Kojima, R. k., 1986, Application of the Rayleigh-FFT technique to magnetotelluric modeling and correction: Presented at 8th Workshop on electromagnetic induction, Neuchatel, Switzerland.
    Jiracek, G. R., 1990, Near-surface and topographic distortions in electromagnetic induction: Surveys in Geophy., 11,163-203.
    Jones, A. G., 1983a, The problem of“current channeling”: a critical review: Geophys. Surv., 6, 79-122
    Jones, A. G., 1983b, On the equivalence of the‘Niblett”and“Bostick”transformations in the magnetotelluric method: J. Geophys., 53, 72-73
    Jones, A. G., 1988, Static shift of magnetotelluric data and its removal in a sedimentary basin environment: Geophysics, 53, 967-978.
    Kaikkonen, P., 1986, Numerical electromagnetic modeling including studies of characteristic dimensional: a review : Surveys in geophys., 8, 301-337.
    Kanfman, A. A., 1985, Tutorial: Distribution of alternating electrical zgarges in a conducting medium: Geophys. Prosp., 33, 171-184.
    Kurtz, R. D., DeLaurier, J. M., and Gupta, J. C., 1986a, Amagnetotelluric sounding across Vancouver Island sees the subducting Juan de Fuca plate: Nature, 321, 596-599
    Langlois, P., L. Bolduc, and M. Chouteau, 1996, Probability of occurrence of geomagnetic storms based on a study of the distribution of the electric field amplitudes measured in Abitibi, Québec, in 1993-94: Journal of Geomagnetism and Geoelectrcity, 48, 1033-1041.
    LeMouel, J. L., and Menvielle, M., 1982, Geomagnetic variation anomalies and deflection of telluric currents: Geophys. J. Roy. Astr. Soc., 68,575-587.
    Larsen J. C., 1977, Removal of local surface conductivity effects from low frequency mantle response curves: Acta Geodaet., Geophys. et Montanist. Acad. Sci. Hung., 12, 183-186
    Ledo, J., A. Gabas, and A. Marcuello, 2002, Static shift leveling using geomagnetic transfer functions: Earth Planets and Space, 54, 493-498.
    Meju, M. A., 1996, Joint inversion of TEM and distorted MT soundings: Some effective practical considerations: Geophysics, 61, 56-65.
    Moroz, Yu. F., 1985, A layer of increased electrical conductivity in the crist and upper mantle under Kamchatka: Izvestiya, Earth Physics, 21, 693-699
    Mozley, E. C., 1982, An investigation of the conductivity distribution in the vicinity of a Cascade Volcano: Ph. D. thesis, Univ. of Calif., Berkeley.
    Niblett, E. R., and Sayn-Wittgenstein, C., 1960, Variation of the electrical conductivity with depth by the magnetotelluric method: Geophysics, 25, 998-1008
    Ogawa, Y., 2002, On two-dimensional modeling of magnetotelluric field data: Surveys in Geophysics, 23, 251-273.
    Park, S. K., Orange, A. S., and Madden, T. R., 1983, Effects of three-dimensional structure on magnetotelluric sounding curves: Geophysics, 48, 1402-1405.
    Park, S. K., 1985, Distortion of magnetotelluric sounding curves by three-dimensional structures: Geophysics, 50, 786-797.
    Pellerin, L., and G. W. Hohmann, 1990, Transient electromagnetic inversion :A remedy for magnetotelluric static shifts: Geophysics, 55, 1242-1250.
    Reddig, R. P., and Jiracek, G. R., 1984, Topographic modeling and correction in magnetotelluric: 54th Ann. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 44-47.
    Rijo, L., 1977, Modeling of electric and electromagnetic data: Ph. D. Thesis, Univ. of Utah.
    Rodi, W., and R. Mackie, 2001, Nonlinear conjugate gradients algorithm for 2D magnetotelluric inversion: Geophysics, 66, 174-187.
    Schultz, A., R. D. Kurtz, A. D. Chave, and A. G. Jones, 1993, Conductivity discontinuities in the upper mantle beneath a stable craton: Geophysical Research Letters, 20, 2941-2944.
    Shoemaker, C. L., Shoham, Y., and Hockey, R. L., 1986, Interpretation of natural source electromagnetic array data: 56th Ann. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 63-65
    Singer, B. S., 1992, Correction for distortions of magnetotelluric field: Limits of validity of the static approach: Surveys in Geophysics, 13, 309-340.
    Smith, J. T., and J. R. Booker, 1991, Rapid inversion of two- and three-dimensional magnetotelluric data: Journal of Geophysical Research, 96, 3905- 3922.
    Sternberg, B. K., Buller, P. L., Kisabeth, J. L., and Mehreteab, E., 1982, Electrical methods for hydrocarbon exploration:Ⅱ, magnetotelluric (MT) method: Proc. Southern Methodist University Sympos.,Ⅲ, Uncoventional Methods in Exploration for Petroleum and Natural Gas, SUM Press, 1984, 202-230.
    Sternberg, B. K., J. C. Washburne., and L. Pellerin, 1988, Correction for the static shift in magetotellurics using transient electromagnetic soundings: Geophysics, 53, 1459-1468.
    Swift, C. M., 1967, A magnetotelluric investigation of an electrical conductivity anomaly in the southwestern United States: Ph. D. thesis, M. I. T.
    Tikhonov, A.N., 1950, On determining electrical characteristics of the deep layers of the earth’s crust, Dokl. Aca. Nauk., USSR, 73, 295-297
    Torres Verdin, C., 1985, Implications of the Born approximation for the MT problem in three-dimensional environments: MS thesis, Univ. of Texas, Austin.
    Torres-Verdin, C., and F. X. Bostick, 1992, Principles of spatial surface electric field filtering in magnetotellurics: Electromagnetic array profiling (EMAP): Geophysics, 57, 603-622.
    Tournerie, B., and M. Chouteau, 1998, Deep conductivity structure in Abitibi using long dipole magnetotelluric measurements: Geophysical Research Letters, 25, 2317-2320.
    Tournerie, B., and M. Chouteau, 2002, Analysis of magnetotelluric data along the Lithoprobe seismic line 21 in the Blake River Group, Abitibi, Canada: Earth Planets and Space, 54, 575-589.
    Tournerie, B., M. Choutesu, and D. Marcotte, 2007, Magnetotelluric static shift: Estimation and removal using the cokriging method: Geophysics, 72, F25-F34
    Vozoff, K., 1972, The magnetotelluric method in the exploration of sedimentary basins: Geophysics, 37, 98-141.
    Wannamaker, P. E., 1983, Resistivty structure of the northern Basin and Range, in Eaton, G. P., Ed., The role of heat in development of energy and mineral resources in the northern Basin and range Province: Geoth. Res. Counc., Spec. Rep., 13, 345-362.
    Wannamaker, P. E., Hohmann, G. W., and Ward, S. H., 1984a, Electromagnetic modeling ofthree-dimensional bodies in layered earths using integral equations: Geophysics, 49, 60-74.
    Wannamaker, P. E., Hohmann, G. W., and Ward, S. H., 1984b, magnetotelluric responses of three-dimensional bodies in layered earths: Geophysics, 49, 1517-1533.
    Wannamaker, P. E., 1985, Very low frequency magnetotelluric and dipole-dipole responses of three-dimensional thin-layer resistivity structure modeled using finite elements: Dept. of Energy Rep. DOE/SAN/12196-14,Univ. of Utah Research. Inst.
    Wannamaker, P. E., Stodt, J. A., and Rijo, L., 1986, Two-dimensional topographic responses in magnetotellurics modeled using finite elements: Geophysics, 51, 2131-2144.
    Warner, B. N., Bloomquist, M. G., and Griffith, P. B., 1983, Magnetotelluric interpretations based upon new processing and display techniques: 53rd Ann. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 151-154.
    Weidelt, P., 1972, The inverse problem of geomagnetic induction: Z. Geophys. 38, 257-289
    Word, D. R., Goss, R., and Chambers, D. M., 1986, An EMAP case study: 56th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts,61-63.
    Word, D. R., Smith, H. W., and Bostick, F. X., Jr., 1969, An investigation of the magnetotelluric tensor impedance method: Elec. Geophys. Res. Lab. Tech. Rep. No. 82, Univ. of Texas at Austin.
    Wu, N., J. R. Booker, and J. T. Smith, 1993, Rapid tow-dimensional inversion of COPROD2 data: Journal of Geomagnetism and Geoelectricity, 45, 1073- 1087.
    Zhang, P., M. Chouteau, M. Mareschal, R. Kurtz, and C. Hubert, 1995, High-frequency magnetotelluric investigation of crustal structure in northern central Abitibi, Quebec, Canada: Geophysical Journal International, 120, 406-418.
    陈辉王春庆雷达王书民孟小红吕国印, 2007, CSAMT法静态效应模拟及其校正方法对比[J],物探化探计算技术,第29卷增刊: 64~68.
    陈乐寿王光愕, 1990,大地电磁测深法[M],北京:地质出版社.
    陈清礼胡文宝李金铭杨华, 1999,利用地表电阻率校正大地电磁静态偏移.物探与化探,第23卷,第4期: 289~295。
    邓前辉等, 1993,电磁方法研究与勘探[M].北京:地展出版社.。
    方战杰郭海敏, 2001,分形在油藏动态参数预测中的应用[J].测井技术, 25(1): 21- 23.
    付海燕刘小军, 2006,基于分形插值的大地电磁静校正方法[J],石油天然气学报(江汉石油学院学报),第28卷: 77~80.
    高红伟张胜业, 1998,阻抗张量分解进行大地电磁静校正的研究[J].地质科技情报, 17(1): 91~96
    何继善, 1990,可控源音频大地电磁法[M].长沙:中南工业大学出版社.
    何展翔1993,电磁测深静态位移的相权滤波法[A].国际地球物理讨论会,北京.
    李爱勇杨生, 2007.10, MT资料处理解释中有效视电阻率的利用.第八届中国国际地球电磁学讨论会,湖北荆州,论文集: 173~181.
    李爱勇唐冬春杨生, 2004,直接消除电场分量静态效应的静改方法[J].石油地球物理勘探,第39卷增刊: 96~98.
    李吉松朴化荣, 1994, MT法电磁相位移偏移研究.石油地球物理勘探, 29(2) : 189~198.
    李金铭, 2005,地电场与电法勘探[M].北京:地质出版社.
    李韦文1993,浅层电性不均匀体对大地电磁测深的影响及其校正[J].电磁方法研究与进展.
    刘国栋陈乐寿,1984,大地电磁测深研究.地震出版社
    刘宏施泽进刘东琴杨轮凯, 2005,山区电磁测深的地形影响分析[J],石油物探,第44卷第4期: 404~408.
    龙人全, 1991,介绍大地电磁法曲线的超相位现象[J],石油物探译从, 1: 72~74
    鲁红英肖思和, 2002,三维地震资料储层参数建模方法研究一分形协同克里格法[J],成都理工学院学报, 29 (6): 694~ 697.
    鲁新便田春来李貅, 1995,瞬变电磁测深在大地电磁测深曲线静校正中的应用[J], 石油物探, 34(1): 86~95.
    石应骏刘国栋等, 1985,大地电磁测深教程[M].北京:地质出版社。
    罗延钟何展翔马瑞伍等, 1991,可控源音频大地电磁法的静态效应校正[J].物探与化探, l5(3): 196
    罗延钟万乐, 1996,电法勘探新进展[M],北京:地质出版社.
    罗志琼, 1990,用电磁阵列法压制MT静态效应影响的研究.地球科学, 15(增刊): 13~22.
    强建科,阮白尧,熊彬,2004,浅部不均匀体对目标体电阻率异常影响的研究[J],地球物理学报, 47(3):542
    阮百尧, 1997年,大地电磁测深中用一维反演结果近似二维地电断面的效果[J].石油地球物理勘探,第四期第32卷.
    宋维琪董长安李泌, 1999,一种提高视电阻率曲线分辨率的方法.石油地球物理勘探,第34卷第4期: 426~429,441.
    宋守根汤井田何继善, 1995,小波分析与电磁测深中静态效应的识别、分离及压制[J]. 地球物理学报, 38 (1): 120.
    苏发汤井田何继善等, 1995,电磁测深中视电阻率假异常现象分析[J]. 5( 4): 14.
    苏鸿尧何展翔, 2000,表层电性不均匀对大地电磁测深曲线的畸变研究[J].地质科技情报, 19 (3 ): l03.
    王家映. Oldenburg, D. W., Levy, S., 1985,大地电磁的拟地震解释法.石油地球物理勘探. 20(1) : 66~ 79
    王家映, 1990,电磁阵列剖而法的基本原理[J].地球科学, 15(增刊): 1~11.
    王家映, 1992,关于大地电磁的静校正问题[J].地质利技情报, 11(1): 69 ~ 76.
    王家映, 1995,大地电磁拟地震解释法[M],北京:石油工业出版社.
    王家映, 1997,我国大地电磁探测研究新进展.地球物理学报, 40(增刊): 206~217.
    王家映, 1998,地球物理反演理论.湖北武汉:国地质大学出版社.
    王永涛白改先, 1997,大地电磁测深曲线的畸变及校正[J].石油物探, 36(1): 95~106.
    魏胜王家映, 1993,二维大地电磁资料的偏移.地球物理学报. 36( 2) : 256~262.
    魏胜王家映罗志琼, 1996,应用地球物理学进展[M].武汉:中国地质大学出版社.
    魏胜王家映罗志琼, 1996,全MT张量分解技术及其应用,应用地球物理学进展(王家映主编),武汉:中国地质大学出版社: 38~45.
    魏文博, 2002,我国大地电磁测深新进展及瞻望[J].地球物理学进展, 17(2): 245~254.
    吴炳良邵敏, 2005,大地电磁三维静态位移校正方法及其应用效果[J].勘探地球物理进展,第28卷第3期: 219~222.
    吴广耀胡建德, 1990,大地电磁数据的二维连续模型自动反演.地球科学. 15(9).
    吴小平徐果明卫山等, 1998,利用新的M T视电阻率定义识别薄互层[J].石油地球物理勘探, 33(3) : 328- 335.
    解海军陈明牛阎述, 1998,利用小波分析压制静态效应[J].煤田地质与勘探, 26 (4): 61.
    谢和平孙洪泉, 1994,分形插值曲面理论及其应用[J].应用数学和力学, 19 (4): 297- 306.
    许建荣, 2004,平面聚类静态校正法[J],石油地球物理勘探.第39卷第6期, 720-723.
    杨菱等,1990年,复杂地区大地电磁测深曲线的性质及资料解释问题[J].地球科学一中国地质大学学报,第15卷增刊.
    杨生, 1994, EMAP处理方法在CSAMT勘查中的应用[J].有色金属矿产与勘查, 3(6): 345.
    杨生鲍光淑李爱勇, 2002., MT法中静态效应及阻抗张量静态校正法[J].中南工业大学学报,第33卷第1期: 8~13.
    杨生鲍光淑张金胜, 2002,远参考大地电磁测深法应用研究[J].物化与化探, 26(1): 27-31.
    姚治龙,王庆乙,胡玉平,刘俊昌,2001年,利用丁EM测深校正MT静态偏移的技术问题[J],地震地质, 23 ( 2):257~263.
    于鹏王家林吴健生, 2001年,有限差分法大地电磁多参数偏移成像,地球物理学报,第44卷第4期: 552-562.
    张少云, 1999,电磁排列剖面法(EMAP).江苏地质, 23(3), 167~171
    张翔,胡文宝,严良俊,2002,小波变换在大地电磁测深静校正中的应用[J],江汉石油学院学报, 24(2):40
    张翔,张世忠,胡文宝,严良俊,张世忠,2002年6月,小波变换在大地电磁测深静校正中的应用[J],江汉石油学院学报,第24卷第2期,40-41。
    张翔,陈清礼,苏朱刘,严良俊,胡文宝,1999,同步阵列大地电磁测深法及其在山区的应用技术与效果[J],石油物探,第38卷第3期,93-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700